
A NovaGenesis Proxy/Gateway/Controller for
OpenFlow Software Defined Networks

Antonio M. Alberti, Victor H. de O. Fernandes, Marco
A. F. Casaroli, Lúcio H. de Oliveira, Frederico M.

Pedroso Júnior
NovaGenesis Project, ICT Lab, Instituto Nacional de

Telecomunicações, INATEL
37540-000, Santa Rita do Sapucaí, Minas Gerais, Brazil
{alberti@inatel.br; victorh@gee.inatel.br; marco.casaroli@gmail.com;

lucio.henrique@inatel.br; fredericom@gec.inatel.br}

Dhananjay Singh
Department of Electronics Engineering, Hankuk University

of Foreign Studies, Yongin, South Korea
{dan.usn@ieee.org}

Abstract—Software-defined networking (SDN) is a promising
approach to deal with complexity in new generation networks.
The idea is to “extract simplicity” from what we have learned in
the last decades while “mastering complexity” at designing and
deploying network infrastructures. The idea is to decouple con-
trol and data planes. In this sense, OpenFlow is a protocol for
remote control of switches’ forwarding tables, replacing the tra-
ditional distributed network control model by a centralized one.
An open problem in OpenFlow, and more generally on SDN, is
how to integrate network control with services orchestration, i.e.
to enable service frameworks to negotiate with network repre-
sentatives in order to create service-aware networks. In this pa-
per, we employ the design principles of a new architecture called
NovaGenesis to implement a proxy/gateway/controller for Open-
Flow networks. This service represents, interoperates, and con-
trols a Python OpenFlow controller (POX) in order to expose its
resources directly to NovaGenesis services. The POX Agent
(POXA), as it is called, innovates on exposing OpenFlow re-
sources to NovaGenesis name-oriented service orchestration,
enabling the direct establishment of service level agreements
among POX and NovaGenesis services.

Keywords—Software-defined networking, OpenFlow,
NovaGenesis, proxy, gateway, controller

I. INTRODUCTION
The current Internet TCP/IP protocols were proposed in the

70’s. At that time, computing technology and digital communi-
cations had just started and technological perception of the
society was very limited, since there were no mobile devices,
tablets, social networks, or even the Internet. Due to the fast
technological evolution and the increase on the number of con-
nected devices, the Internet architecture has become an amaz-
ing artifact, invading all aspects of our lives. However, in many
ways the current Internet and its related technologies are a vic-
tim of their own success. Networking infrastructure is becom-
ing more and more complex, requiring a lot of human interven-
tion (operational costs). New protocols are created to fulfill
gaps in previous designs without adequate analysis of unin-
tended effects. Many design inconsistencies were created, in-
creasing inefficiency and complexity of the current protocol
stacks. We became masters at keeping this complex network

running and little has been done to extract simplicity from the
lessons learned in the last decades [1][2]

In this context, some networking researchers, like Scott
Shenker, Nick McKeown, and Martin Casado, to name a few
of them, have proposed a revision of the current networking
design abstractions. They defend the idea that abstractions have
played a big role on computer science for decades, shielding
high-level software from the complexity existing in lower lev-
els. Therefore, they contend that it is time to apply the “power
of abstractions” for networking, since the role of software on
the contemporary technologies is increasing considerably. They
argued that it is time to review the key abstractions we are em-
ploying in network design. In this scenario, they proposed a
“software engineering-like” approach to design communication
networks. What was called software-defined networking
(SDN) [2].

The first target of SDN proposal is on simplifying network
control. For this aim, four abstractions have been proposed: (i)
forwarding abstraction, which encompasses a flexible, soft-
ware-controlled, frame forwarding model to decouple data
plane from control plane; (ii) a state distribution abstraction,
which comprehends a centralized control program that operates
over a summarized network view, aiming at reducing the in-
consistencies of distributed states (as in the current Internet
data plane); (iii) a configuration abstraction, where the output
of the control program is transported to the controlled equip-
ment by a control protocol, creating what can be called a net-
work operating system (NOS); and (iv) a specification abstrac-
tion, that enables the generation of abstract configurations for
network devices, enabling the creation of virtual topologies
over the physical ones.

OpenFlow (OF) [3] has emerged as a configuration abstrac-
tion implementation. It defines the structure of a switch, as well
as the protocol used by the control program (controller) to gen-
erate the network view and to configure forwarding tables on
physical equipment. A diversity of network controllers can be
used together with OpenFlow, among them NOX, HyperFlow,
DevoFlow, Onix, POX, etc. The specification abstraction is
left for controller clients, such as FlowVisor, which enables
creation of isolated slices of network resources through orches-

tration of OF controllers. It can be seen as a network “hypervi-
sor”, analogous to a virtual machine monitor in computer virtu-
alization technology. The aim is to provide an ecosystem of
network applications that run over this NOS.

While OF facilitates the development of network engineer-
ing applications over NOS, there is a gap between this ecosys-
tem (for network control) and the software-as-a-service (SaaS)
ecosystem. Service-oriented architecture (SOA) [10] provides
dynamic orchestration of services, supporting their entire life-
cycling, such as service and substrate resources discovery, ne-
gotiation, contracting, and releasing. SOA provides a business-
oriented environment where services placement is negotiated
with physical resources representatives. SOA abstractions ena-
ble to expose and negotiate computing and network resources
to create service-awareness, i.e. customized networks that are
tuned for better supporting applications requirements.

In this context, there is no impediment to think on OF, or
more generally, on SDN software, as services in SOA context.
The advantage of this approach would be a better integration of
SOA and SDN approaches. Network operating systems can be
implemented as SOA services, enabling dynamic exposition,
discovery, contracting, and releasing of networking controllers
to create a service-defined architecture (SDA). SDN software
is implemented as services, and all their capabilities are trans-
parently exposed to SOA environment. As a result, any user
application can search, negotiate, and contract SDN software to
create service-aware networks.

We are developing an information and communications
technologies (ICT) architecture called NovaGenesis (NG) [4],
which envisions the convergence of SOA, SDN, and content-
centric networking (CCN) [11]. In NG, contents and services
are uniquely named. Named-content and named-services life-
cycling is provided, including search, negotiation, contracting,
and releasing. NG provides a powerful environment for re-
source management and control. The idea is to create an envi-
ronment where services and content can be self-organized ac-
cording to users’ objectives, rules, regulations, expectations,
etc. Distributed, named-services self-organize to provide self-
emergent behavior, like resource management, networking
control, etc. Thus, in NovaGenesis point of view, optimal net-
work control is obtained as a result of fair dynamic negotiation
among services and network representatives, controllers, oper-
ating systems, and hypervisors.

 In this scenario, we propose a NovaGenesis service called
Python OpenFlow controller agent (POXA) to fulfill the gap
between NG services and OF-based SDN. The POXA accumu-
lates proxy/gateway/controller (PGC) functionalities, which
will be further explained in this paper. The aim is to represent
OF software inside the NovaGenesis, enabling NG services to
dynamically contract OF resources. The paper also contributes
with a SOA, SDN, and CCN convergence model, which can be
used by researchers as a reference to integrate these paradigms.
The remaining of the paper is organized as follows. Section II
introduces the NovaGenesis architecture. Section III briefly
describes the Python OpenFlow controller (POX). Section IV
presents POXA, which allows the integration of NG proposal
with OF controlled networks. Section V reports the implemen-

tation of the POXA and its validation together with POX. Fi-
nally, the Section VI concludes the paper.

II. NOVAGENESIS ARCHITECTURE
NovaGenesis architecture [4] is a set of distributed systems

aimed at convergent information processing, storage, and ex-
changing. Therefore, it includes the scope of the current Inter-
net, SDN, CCN, and many others information architectures. A
complete review of the technologies considered on NG design
can be found in reference [7]. The synergies among these tech-
nologies have been explored in reference [8].

In NG design, every information processor is seen as a ser-
vice, which includes networking applications, network protocol
implementations, cloud services, peer-to-peer applications,
machine-to-machine services, etc. These services organize
themselves based on names and service contracts to meet “se-
mantics rich” goals, policies, regulations, etc. By “semantics
rich” we mean the employment of expressive languages that
can properly feed artificial intelligence decision making, such
as rule-based or fuzzy logic systems.

A. Fundamental Concepts and Design Abstractions
1) Individual Existences
An “individual” existence is anything that can be classified

as independent or separated from others. It is an individual in a
population. For example, a process in a distributed system or
bit in a message.

2) Naming and Naming Structure
To support “semantics rich” expressiveness, NG adopts

natural language names (NLNs), as well as self-certifying
names (SCNs). NG rethinks naming and the role of naming on
ICT architectures. By definition, a name is a set of symbols that
denote some existence, e.g. a car, a switch, or a controller.
NLNs can be in English or any other language. For example,
one can call its local domain OF controller as “my OF control-
ler”. Meanwhile, SCNs are the output of hash functions – the
so called hash codes – that can be attributed to individual or
group existences. An example of SCN is 76B3622BE503236C
F03F55CB32860108, which is a 128 bits Murmurhash 3 output for
a host English name attributed by Linux. NG assumes that all
existences will be present on future information architectures,
thus all names are important. In contrast, the current Internet
naming is very limited, since the idea of important “things” to
be named in the 70’s was completely different than today.

3) Contents and Name Bindings
 The binary pattern of a digital content can be used as the

input to generate a hash code to name this content. Unique,
perennial attributes can be used to generate SCNs for almost
every existence. NovaGenesis considers name bindings (NBs),
i.e. the link between names and “things”, physical or virtual, as
the foundation to represent existences “semantics” relation-
ships, including “contains”, “is contained”, and “same type”
semantics operators. NBs are also seen as links among names.
Thus, NG is grounded on name bindings to represent all enti-
ties relationships. Content, services, operating systems, net-
work interfaces, hosts, switches, networks, domains, people,
etc., can have their NLNs and/or SCNs linked to represent a
diversity of “semantics” relations.

4) Identification and Localization
Names that observe certain rules can be used as identifiers

and locators. An unique name in a certain scope can be used as
an identifier for communication in this scope, while a locator is
a name that provides a notion of distance among existences in a
certain space. For example, consider a scope where a person’s
name (let’s say “John”) and its mobile device’s name are
unique. In this scope, the person’s name can be related to the
device’s name in order to express an “ownership” relation. An-
other person, let’s say “Mary”, can use “John” as the target for
a communication. From a NB between “John” and its mobile
device’s name, the architecture can determine a possible device
for this communication. Also, the two person’s names, i.e.
“John” and “Mary”, can be bound to a certain room’s name,
e.g. “Laboratory 1”. Thus, the room’s name can be used to lim-
it the space of this communication. Since both persons have
named devices inside the same room, a notion of distance can
be derived from devices’ SCNs and the NBs among the persons
names and the room name. Therefore, with proper scoping and
space definitions it is possible to use NLNs and SCNs as identi-
fiers and locators.

5) Name Binding and Content Publishing and Subscribing
New architectures have the opportunity to change the tradi-

tional “receiver accepts all" paradigm to a publish/subscribe
one. In the pub/sub paradigm, contents are published by ser-
vices and subscribed by others. Thus, a service publishes a con-
tent (or a NB) and authorizes other services to subscribe. A
target communicating service needs to subscribe the infor-
mation before transferring it. This enables authorized content
and name bindings distribution.

6) Software-as-a-Service
 This paradigm proposes that software can be seen as a ser-
vice, i.e. an individual existence (or a group of existences)
aimed at processing, exchanging, or storing information. In this
paper, we assume that all information handling is done by
software implemented as services, following a SOA terminolo-
gy. In this context, even protocol implementations are seen as
services. A protocol is a shared language. They are the rules –
the previous knowledge required to communicate. Thus, we
propose the concept of protocol-implemented-as-a-service
(PIaaS). Protocol implementations, SDN controllers, operating
systems, virtualization software, etc., are seen as services.

7) Name-Binding-Based Service and Content Lyfe-cycling
The life-cycle of digital contents and services is name-

binding-based. In other words, life-cycling is based on name
bindings and their publishing and subscribing. The search for
service partners and their contents is name-based. Services
publish and subscribe content by their names. The pub/sub ser-
vice creates a distributed middleware where services can self-
organize using NLNs, SCNs, and their bindings.

8) Forwarding and Routing
SCN-based forwarding is employed. Every host has an

unique SCN, which is used as a target for communication. A
gateway service translates SCNs to legacy addresses when NG
run over already established technologies, such as Ethernet,
Wi-Fi, and even TCP/IP. During bootstrapping, other technol-
ogies’ addresses are informed to NG gateways. The gateway
publishes mappings as name bindings. Therefore, frame for-

warding can be done using SCNs and/or NLNs, e.g. named
content, services, operating systems, domains, networks, etc.
Routing is supported by recursive subscription of name bind-
ings. Unknown identifiers or locators can be subscribed via
pub/sub service.

9) Proxy Services
Physical existences are represented by proxy services that

can search, negotiate, and contract other services. Dynamic
service level agreements (SLAs) can be established among
physical existences’ representatives and other architecture ser-
vices, such as network management and controlling services or
resource orchestration brokers. Network awareness can be ob-
tained through the establishment of SLAs with these proxy
services. Also, high level services can search, negotiate, and
contract networking, storage, and processing resources via their
representative services.

The SLA is an information object that contains service re-
quirements, clauses to be respected, evaluation and finalization
criteria, among other data. All the information required to de-
scribe and regulate a service offer could be included.

B. Current Implementation
1) Hash Table Service (HTS)
Several instances of this service at different hosts store

name bindings using a hash table data structure. The result is a
distributed hash table that follows the naming and services
conventions of NG. The HTS is a network cache. Two methods
have been implemented: store, get, and delivery.

2) Generic Indirection Resolution Service (GIRS)
This service aims at selecting the proper HTS instance to

store a certain name binding and/or content. In the current im-
plementation, GIRS decides to which HTS a NB or a content
must be send using SCN binary patterns. Future versions will
explore NB and content placement according to their usage, i.e.
to create a localization-aware storage solution.

3) Publish/Subscribe Service (PSS)
Implements name binding and content publishing and sub-

scribing. In the current version, services publish NBs and con-
tents to other services. Interested services should subscribe
them using NLNs and/or SCNs. In future versions, the PSS will
implement the secure rendezvous among publishers and sub-
scribers. Figure 1 illustrates the relationship among HTS,
GIRS, and PSS. Three methods have been implemented: pub,
sub, and notify.

4) Proxy/Gateway Service (PGS)
The communication among NG services is done using

ASCII messages. To forward messages among different host
computers, we implemented a proxy-gateway service (PGS).
The PGS acts as a gateway, encapsulating NG messages via
Linux sockets. A PGS also represents and exposes other NG
core services to other domain PGSs, enabling NG protocols to
initialize properly.

5) Message Format
Messages contain several command lines and a payload

(not obligatory). There is a bank line separating both portions,
when necessary. The command lines portion is composed by a

set of command lines, which can be dynamically expanded
according to the need. They are formatted as:

ng -command --alternative version [vectorial arguments]

Where:
• command is the action to be done.

• alternative selects among alternatives of how the action can be done.

• version is the desired version of implementation.

• vectorial arguments are the arguments of the command.

Each command can have one or more vectorial arguments,
which are structured as follows:

< n type E1 E2 E3 E4 ... En >

Where:
• n is the number of elements in the argument vector.

• type is the type of the elements in the argument vector.

• E1 E2 E3 E4 ... En are the elements of the argument vector.

Fig. 1. NovaGenesis services for distributed publishing/subcribing of name-
bindings and content.

III. POX – PYTHON OPENFLOW CONTROLLER
The POX [5] had arisen as an OF controller that provides

the fast development of networking control using Python pro-
gramming language. The components embedded in the POX
are modules developed in Python, which combined may offer
many alternatives to the development of networking applica-
tions. Following the POX components example, it is possible to
create new components to be used as networking control appli-
cations in the OF network operational system, on the same way
that it has been developed for computers operational systems
nowadays.

IV. POXA – POX AGENT
The POXA is a proxy/gateway/controller (PGC) service

that represents a POX inside the NG environment. It exposes

POX capabilities, as well as its internal structure using NLNs
and SCNs. More specifically, POXA publishes named infor-
mation objects that describe POX capabilities. This description
can be in any language. However, extensible markup language
(XML) is a good candidate. These descriptive information ob-
jects are published by POXA using keywords that foster under-
standing with possible clients. A NovaGenesis service that is
searching for the services provided by POXA, can subscribe
similar keywords, generating a ranking of possible peer ser-
vices. When a possible client discovers a promising POXA, it
can publishes a service request. Or, in the opposite direction,
the POXA can offer its services for candidate peers, enabling
them to decide on accepting or not a service offer.

The POXA is also a gateway between NG and the Python
command line interface provided by POX. In other words, NG
messages contain in its payloads generic SDN instructions that
are parsed and translated to Python by the POXA. Therefore,
NG enables the creation of a generic SDN language for net-
work control, which can be translated to OF protocol or any
other SDN implementation. After translating the generic SDN
instructions to POX compatible commands, the POXA for-
wards the commands to POX and captures the obtained results.

In this implementation, the SLA is very simple. It just con-
firms the identification of involved peers. However, more so-
phisticated SLA models can be easily implemented. For exam-
ple, availability, response time, and reliability requirements of
a SDN controller can be inserted in the SLA to enable quality
of service agreement. Complex negotiation can be introduced
among POXA and other NG services. In this case, client ser-
vices can subscribe and evaluate POXA published service of-
fers and decide on accepting them as they are or proposing
modifications. The SLA is about performance, availability, and
security requirements.

The POXA represents POX interests at negotiating SLAs in
NG ecosystem. Any other NG service can negotiate SLAs with
the POXA to make changes at the network level using Open-
Flow. The POXA demonstrates the NG distributed, self-
organizing, network controlling approach, where several SDN
controllers (OpenFlow or other) are represented and control
network resources according to negotiated SLAs. The joint NG
PGC and OF approach provides a more broad and flexible so-
lution that makes network control a reflection of the SLAs. In
this paper, we propose a resource management agent (RMA) as
the client of POXA service. An SLA is established between the
RMA and the POXA before control information exchanging.

V. EXPERIMENTAL RESULTS
We tested POXA together with other NG services and the

POX controller in laboratory as illustrates the Fig. 2. The ob-
jective was to validate our proposal to fulfill the gap between
SOA and OF-based SDN.

A. Network Setup Scenario
The network setup chosen test scenario is formed by:

• An OpenFlow access point (SWITCH-OF), based on
OFSoftSwitch [9], which runs over OpenWRT [6] in a
Linksys WRT54GLTM wireless router;

• An OpenFlow controller (OF-C), based on POX, and
a NovaGenesis service (POXA), running on a Fedora
Linux at DellTM Ultrabook;

• A NG Node (Host NG), running a RMA that
determines the need for installing a forwarding flow
on the SWITCH-OF. The RMA orchestrates the
combined resources via OF and NG implementations;

• A number of hosts connected to the SWITCH-OF.

Fig. 2. Picture of the experimental scenario at the Inatel’s ICT laboratory.

Fig. 3 shows a sequence diagram of the messages ex-
changed in this scenario to install the flow on the switch, all
requested by the RMA running on the host where the left host
contains a RMA that sends to the POXA a command to create a
frame forwarding flow using NG protocol. The command con-
tains the source and destination MAC addresses. The POXA
translates the command to a classic interprocess communica-
tion (IPC) message and forwards it to the POX. The POX cre-
ates a flow_mod message and forwards it to the access point
(AP) using the OF. The AP answers back with an OK which is
propagated to the POXA first and finally to the RMA.

Fig. 3. Messages flow between Host and Switch-OF.

Fig. 4 illustrates the proposed stack. Not only the RMA, but
also the POXA are interconnected by PGSs. In this scenario,
the NG cloud employs only the Ethernet protocol to forward its
messages - there is no TCP/IP inside the NG cloud. However,
the POX uses TCP/IP over Ethernet to talk outside the NG
cloud with the access point. There is no TCP/IP inside the NG
cloud. The NG messages are transported directly over Ethernet.

B. Testbed Results
After running the previous scenario setup, we checked the

flow creation in the SWITCH-OF using the Linux 'dpctl dump-
flows' command-line utility, which sends an OF message to the
SWITCH-OF and gets the requested information about the
flow entries:
dpctl dump-flows tcp:127.0.0.1

stats_reply (xid=0x25156283): flags=none type=1(flow)

Fig. 4. Protocol stack inside and outside the NG cloud.

 This status shows that there are no flows allocated on the
access point (SWITCH-OF). Using NG protocol, the RMA
sends to the POXA the command line to ask for a flow entry
creation in the SWITCH-OF. This command line goes inside a
textual file called POXAFile1.txt and has 14 bytes. The follow-
ing log shows the RMA creating a message with this command
line to the POXA. The –msg command line is for forwarding
and routing, while the –scn is for message integrity. The –run -
-publishpoxadata command runs a user defined code to publish
the RMA control file to the POXA via PSS.
ng -msg --cl 0.1 [< 1 string
6C7C2B32CBE39452B07EA3812C4E4D9A_RMA_PID > < 1 string
9FDB455D86A9691C2F41268964417375_Core_BID > < 1 string
9FDB455D86A9691C2F41268964417375_Core_BID >]

ng -scn --seq 0.1 [< 1 string
B03CB1A465916480A98D6E8F076E32EA >]
ng -run --publishpoxadata 0.1 []
 -msg --cl 0.1
 -msg --cl 0.1
 -scn --seq 0.1
(Preparing POXAData Publish.)
(Aware of POXA data values. Preparing to publish.)
 (Pushing a message to the InputQueue. Size = 1)

The following log shows a fragment of the message delivered
to the POXA:
ng -delivery --bind 0.1 [< 1 string 18 > < 1 string
F3D7692F6D4418D45B458E54083574FC > < 1 string POXAFile1.txt
>]

ng -info --payload 0.1 [< 1 string POXAFile1.txt >]

ng -delivery --bind 0.1 [< 1 string 2 > < 1 string
F3D7692F6D4418D45B458E54083574FC > < 3 string
9FDB455D86A9691C2F41268964417375_Core_BID
7251FC2E62B8AF6C9B5969FC611FB90C_OSID
6C7C2B32CBE39452B07EA3812C4E4D9A_RMA_PID >]

ng -delivery --bind 0.1 [< 1 string 9 > < 1 string
F3D7692F6D4418D45B458E54083574FC > < 1 string
76B3622BE503236CF03F55CB32860108_HID >]

ng -message --type 0.1 [< 1 string 1 >]
ng -scn --ack 0.1 [< 2 string
13A4A3F0342AC622FC2F291EFD807C09
9BB4A6879CADC53CC6445E53E03D5FDF >]

There is a payload of 14 bytes

 This message follows a NG specific format, where address-
es are 128 bits hashing codes [4] plus a debug tag at the end.
The –delivery command delivers a name binding, while the –
info --payload contains the NLN of the content being carried in
the message. The –message --type is used to differentiate user
messages from NG protocols. The –scn --ack has two SCNs:

one to acknowledge a previous successful processed message
and other for current message integrity check. The next log
shows the POXA parsing a message subscribed from PSS with
the POXAFile1.txt file inside.

ng -msg --cl 0.1 [< 1 string
88BD829D1F5C067304351EB0014AB174_POXA_PID > < 1 string
BDC352CC8A0B650739B1997F3D3A903C_Core_BID > < 1 string
BDC352CC8A0B650739B1997F3D3A903C_Core_BID >]
ng -run --evaluate 0.1 []
ng -scn --seq 0.1 [< 1 string
BFAED45F3919479EF0A3761E32A94308 >]
 -msg --cl 0.1
 -msg --cl 0.1
 -run --evaluate 0.1
 (Aware of the Application 0)

(HID = 76B3622BE503236CF03F55CB32860108_HID)
(OSID = 7251FC2E62B8AF6C9B5969FC611FB90C_OSID)
(PID = 6C7C2B32CBE39452B07EA3812C4E4D9A_RMA_PID)
(BID = 9FDB455D86A9691C2F41268964417375_Core_BID)
(4. Check subscriptions)
(Testing subscription 0)
(Subscription status is processing required)
(The publisher is already known and has the index 0)
(HID = 76B3622BE503236CF03F55CB32860108_HID)
(OSID = 7251FC2E62B8AF6C9B5969FC611FB90C_OSID)
(PID = 6C7C2B32CBE39452B07EA3812C4E4D9A_RMA_PID)
(BID = 9FDB455D86A9691C2F41268964417375_Core_BID)
(Checking the file received from the peer with name POXA-
File1.txt)
(File extension = txt)

 (Command sent to OpenFlow: #�wf#######1)
 (Status received from OpenFlow: OK)

 (Deleting the subscription with index = 0)

 The next log shows the POX processing of the message
received by the POXA.
no message

Wait...

\x01\x88\x77\x66\x03\x04\x05\x00\x01\x02\x03\x04\x06\x31

DEBUG:ng.pox_agent:installing flow

 The log below shows the message transmitted with OF pro-
tocol, requesting the action at the SWITCH-OF. To conclude
the experimental results, after the flow entry creation, we
checked the flow creation status using the 'dpctl dump-flows'
command line again. It is possible to see now that there is a
new flow entry created in the SWITCH-OF. This log demon-
strates that we successfully integrated NG and POX, enabling a
RMA to create flows inside a Wi-Fi Access Point via OF.
dpctl dump-flows tcp:127.0.0.1:6634

stats_reply (xid=0xc5da1d53): flags=none type=1(flow)

cookie=0, duration_sec=125s,

duration_nsec=649000000s,table_id=1,priority=32768,

n_packets=0,n_bytes=0,idle_timeout=0,

hard_timeout=0,dl_src=00:01:02:03:04:06,

dl_dst=88:77:66:03:04:05,actions=output:1

VI. CONCLUSION
This paper proposes an approach to reduce the gap between

SDN and SOA. It proposes the concept and reports the imple-

mentation of a proxy/gateway/controller for OpenFlow re-
sources named POXA. The POXA represents a Python OF
controller inside the NovaGenesis architecture. This control-
ler-as-a-service (CaaS) approach enables the exposition, nego-
tiation, contracting, and releasing of OpenFlow capabilities
inside the NG cloud. The POXA receives NG messages con-
taining the desired physical network configurations from a re-
source management agent (RMA) and maps these configura-
tions to POX commands, making the required changes via OF
protocol.

The obtained solution merges NovaGenesis SOA with OF-
based SDN to create a new paradigm that we named service-
defined architecture (SDA). Therefore, this paper contributes
for advancing SDN technology by proposing integrative SDN
and SOA abstractions, such as name-based exposition, control-
ler-as-a-service, SLA-based orchestration of SDN exposed
resources, and PGC-based interoperability. The consistency of
distributed states is provided by a common view of configura-
tions that is distributed using NovaGenesis published/subscribe
service. The exchange of ASCII messages will be replaced in
future versions by a public cryptography approach already de-
signed for NovaGenesis.

Although the distributed nature of POXA is one of the main
contributions of this paper, there are several other contributions
inherited from NovaGenesis that we have experimentally
demonstrated: name-based content and services orchestration,
contract-based and proxy-oriented management and control, as
well as OF resources exposition. Future work includes a full
scalability and performance evaluation of several POXA+POX
instances, as well as the implementation of NG services that
can dynamically explore OF-based SDN resources.

ACKNOWLEDGMENT
We would like to thanks CNPq and INATEL for supporting

POXA design and development.

REFERENCES
[1] Singh D. "Developing an Architecture: Scalability, Mobility, Control,

and Isolation on Future Internet Services", Second International
Conference on Advances in Computing, Communications and
Informatics (ICACCI-2013), Mysore, India, pp.1873-1877, 2013.

[2] https://www.opennetworking.org, Accessed on April 20th, 2014.
[3] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus

Networks,” SIGCOMM Computer Communications Review, vol. 38, nº
2, March 2008, pp. 60-69.

[4] http://www.inatel.br/novagenesis, Accessed on April 20th, 2014.
[5] https://github.com/noxrepo/pox, Accessed on April 20th, 2014.
[6] https://openwrt.org/, Accessed on April 20th, 2014.
[7] Alberti, A. M., “A Conceptual-Driven Survey on Future Internet

Requirements, Technologies, and Challenges”. Journal of the Brazilian
Computer Society, v. 19, p. 291-311, 2013.

[8] Alberti, A. M., “Searching for Synergies among Future Internet
Ingredients”, International Conference on Convergence and Hybrid
Information Technology, pp.61-68, 2012.

[9] https://github.com/CpqD/ofsoftswitch13, Accessed on April 20th, 2014.
[10] Papazoglou M., Traverso, P., Dustdar, S., Leymann, F., “Service-

Oriented Computing: State of the Art and Research Challenges,”
Computer 40 (2007) 38 –45.

[11] Jacobson, V. et al. “Networking Named Content,” CoNEXT ’09, ACM,
New York, NY, USA, 2009, pp. 1–12.

