
Cloud Overbooking Through Stochastic Admission
Controller

Merve Unuvar, Yurdaer N. Doganata, Asser N. Tantawi and Malgorzata Steinder

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

{munuvar,yurdaer,tantawi,steinder@us.ibm.com}

Abstract—Cloud providers apply overbooking to increase
utilization of data center resources, which is associated with the
risk of overloading cloud resources. In this paper, we study an
admission control technique that permits cloud overbooking with
bounded probability of resource over-utilization. The objective is
to achieve a specified quality-of-service related to the probability
of resource over-utilization in an uncertain loading condition,
while maintaining high resource utilizations. Our method relies
on estimating the probability of over-utilization based on approx-
imating the probability distribution of the total resource demand
on hosts as Beta. We perform a qualitative study to investigate the
efficiency of using our method on Google Compute Cluster where
we disclose some empirical observations on how well the resource
utilization can be estimated as Beta Distribution. We also report
results on the performance of the stochastic admission controller
by estimating the mean and the standard deviation of the usage
data.

Keywords—admission control, cloud management, dynamic de-
mand, performance comparison, policies, virtual machines

I. INTRODUCTION

In a Cloud system, managing the utilization of physical
resources with effective admission control policies is essential.
Admission control policies ensure that sufficient resources
are available in a cluster to provide fail-over protection and
to ensure that virtual machine resource reservations are re-
spected [1].

The most commonly used admission policy admits a virtual
machine (VM) into the Cloud if its full resource request can
be reserved on some physical machine (PM) in the Cloud.
As VM resource requests often greatly exceed the actual VM
time-varying demand, such policy leads to Cloud resources
being under-utilized. Cloud providers want to take advantage
of that unused capacity by resource overbooking. Overbooking
allows the sum of virtual machine resource requests to exceed
the capacity of the Cloud. The choice of placing a VM on a
particular PM is a decision of the Placement Controller, which
is not the subject of this paper. The placement decision usually
involves many factors, including load balancing, reliability,
availability, and networking. Here we are concerned with the
decision to admit a VM once its suggested host PM is made.

Overbooking carries with it the risk that the actual demand
of VMs placed on a PM will exceed that PM’s usable capacity
leading to VM interruption or poor performance. Admission
control policies that permit overbooking must therefore be
selected such that the risk of PM overload is minimized.

Each resource is described by the stochastic properties of
its utilization. The probability density function (pdf) of the
utilization of a resource is the convolution of all resource
demands of the accepted requests that utilize that resource.
In such aggregation of independent resource demands, the
probability that the aggregate utilization will reach the sum of
the peak demand is infinitesimally small. Using the pdf of the
aggregated resource utilization in admission criteria provides
for probabilistic guarantees. In mathematical terms, resource k
is stable if its utilization, Uk, satisfies the following constraint,

P (Uk > Uok ) ≤ εo (1)

where Uo is the over-utilization threshold and εo is the
probabilistic bound on over-utilization.

In this study, we approximate the pdf of the aggregated
resource utilization using the first and second moments as
a Beta distribution. Then, we employ (1) as the admission
criterion to decide if the statistical properties of an arriving
VM request will likely to drive the physical machine into
over-utilization. Thus, we enforce an admission criterion that
guarantees a bound on the probability of over-utilization. We
evaluate our technique using Google Compute Cluster usage
data. The Google Cluster data discloses resource usage by
millions of tasks running on a set of machines hosted in racks
and connected by a high bandwidth network. Our aim is to
verify the Beta Distribution assumption by aggregating usage
of different number of tasks and check if we can fit a Beta
Distribution to the actual resource utilization distribution. We
also compare the over-utilization probability that we estimate
using the Beta assumption with the actual resource over-
utilization in Google Cluster data.

The paper is organized as follows. We introduce a math-
ematical representation for the arriving resource requests
and the associated distribution for the resource demand in
section II. The details of stochastic admission controller is
presented in section III. Our numerical results for Google
Compute Cluster are presented in section IV. We summarize
the conclusion and future work in section V.

II. FORMULATION

Consider p homogenous PMs subjected to a stream of
homogenous requests with a Poisson arrival process with
rate λ and a generally distributed lifetime with mean τ . A
PM has K different resource types, each having capacity
Ck, k = 1, 2, · · · ,K. A request has a demand Dk for re-
source k that is generally distributed with distribution function



FDk
(dk) = Pr[Dk ≤ dk], where dk ∈ [Dmin

k , Dmax
k ].

Without loss of generality we assume that Dmin
k = 0 and

Dmax
k > 0. We denote the mean and standard deviation of the

demand for resource k by µDk
and σDk

, respectively. Hence,
the mean offered load for the kth resource is given by

ρk = λ τ µDk
. (2)

Let Znk denote the sum of n independent kth resource de-
mands, i.e. Znk = nDk. Thus, the mean of Znk is E[Znk ] =
n µDk

, the variance is V [Znk ] = n σDk
2, and the probability

distribution, denoted by FZn
k

(zk), is the n-fold convolution.

III. STOCHASTIC ADMISSION CONTROLLER

An admission controller admits a request into the Cloud
based on some policy P(φ), with a set of parameters φ used
in admission criteria.

A request is admitted if the admission policy allows it
given the current state of the system, otherwise it is rejected.
The resulting request rejection probability δ, and the mean
utilization of kth resource Uk are related as

Uk =
(1− δ) ρk
p Ck

(3)

where ρk is the offered load for the resource k and Ck is the
capacity for the resource k. Admission based on a probabilistic
bound over-utilization can be denoted by P(U∗

k , ε, µk, σk),
where U∗

k is the utilization threshold, εk is the probabilistic
bound on the over-utilization probability for resource k such
that the probability of over-utilization being above U∗

k is
limited to εk, and µk and σk are the mean and standard
deviation of the utilization for resource k, respectively.

In this probabilistic admission policy, the dynamic nature of
resource demand is represented by its mean, µDk

, and standard
deviation, σDk

. The utilization of resource k, Uk, is a random
variable between [0,1]. It is characterized by its mean and
standard deviation, µk and σk, respectively.

The admission criterion is given by

FZn
k

(U∗
k ) ≥ (1− εk), (4)

otherwise the request is rejected.

The key to implementing the stochastic admission con-
troller is thus the knowledge of FZn

k
(U∗

k ). We approximate
the probability distribution function (pdf) of Uk as a Beta
distribution. The Beta Distribution is a family of continuous
probability distributions defined on the interval [0,1] by two
positive shape parameters, denoted by α and β. Hence, we
characterize the utilization Uk with two parameters, αk and
βk, associated with the first and second moments of Uk. The
values of αk and βk are computed from the estimated mean
and variance values of the utilization of resource k in the PM
as:

αk = R̄k

(
R̄k(1− R̄k)

S̄2
k

− 1

)
, (5)

βk = (1− R̄k)

(
R̄k(1− R̄k)

S̄2
k

− 1

)
, (6)

where R̄ and S̄ are estimates of µk and σk, respectively.
Hence the cumulative distribution function FZn

k
(Uk) for the

utilization of resource k is expressed as:

FZn
k

(Uk, αk, βk) = B(Uk, αk, βk)/B(αk, βk), (7)

where B is the Beta function. P does not need to be adjusted
as the workload characteristics change, since it is dynamically
adjusted with the measured statistical properties of resource
utilization. The predefined parameters U∗

k and εk are set by the
Cloud manager depending on the specifications of the physical
machine. More detailed theoretical explanation can be found
in [2].

IV. NUMERICAL RESULTS

We use Google Compute Cluster data, which is available
online1, to support our assumption on representing resource
utilization by Beta Distribution, and to estimate the mean and
the standard deviation of real workloads to experiment the
performance of stochastic admission controller. The detailed
explanation on Google Compute Cluster data can be found in
[3].

A. Fitting sample usage data to beta distribution

In this section, we explain the method of calculating the
CPU utilization from the sample usage data and using this
utilization data to fit a Beta Distribution. In order to calculate
the utilization of a resource, the machine resource capacities
need to be known exactly. Since Google did not publish
the exact machine capacities but published the normalized
values, we cannot use that information directly to calculate
the resource utilization. Rather, we take the maximum resource
usage throughout the 29 days of time span and set that level of
utilization to be 90% for the CPU utilization. Google reports
that not all of the resource capacity is available to the tasks
therefore 10% of the machine is assumed to be reserved for
the cluster scheduler and operating system [4]. For example,
for the same sample (average of 17 jobs involving 18 tasks
running on machine ID= “351618647”), the maximum CPU
usage over 29 days is 3.97 core-hours. We set the usage of
3.97 core-hours to be 90% utilization and normalize the rest
of the usage data by dividing to 3.97/0.9. Since actual resource
consumption is done by the tasks, we ony use the number of
tasks rather than number of jobs through the rest of the paper.

Next, we calculate the shape parameters for Beta Dis-
tribution from the mean and the standard deviation of the
sample as described in section III. The mean CPU utilization
and the standard deviation for the 500 sample are 0.49 and
0.14 respectively. By substituting the calculated mean and the
standard deviation to Equation 5 and 6, we estimate Beta
Distribution shape parameters as follows: α = 5.76, β = 5.93.
Figure 1 depicts the Q-Q plot showing how well this estimation
is, based on our sample. Q-Q plot is a probability graph that
graphically compares two probability distributions by plotting
their quantiles against each other, [5]. If the two distributions
being compared are similar, the plotted points in the Q-Q plot
will approximately lie on y = x line. As Figure 1 shows, the
estimation of the parameters are fitting to y = x line indicating
that the estimated parameters are well chosen.

1http://code.google.com/p/googleclusterdata/



Fig. 1: CPU Utilization for average of 18 tasks fit to Beta
Distribution parameters

Fig. 2: Histogram of actual CPU Utilization for average of 18
tasks and fitted Beta Distribution

We use Kolmogrov-Smirnov test to compare the fit of
actual CPU utilization sample to estimated Beta Distribution
sample. The K-S test is one of the most useful and general
nonparametric methods for comparing the empirical distribu-
tion functions, [7]. K-S test measures a distance between these
empirical distributions by drawing samples from the same null
distribution of the desired statistics, defined in null hypothesis.
We state our null and alternative hypothesis as:

H0 : The sample follows a Beta Distribution
Ha : The sample does not follow a Beta Distribution.

K-S test result is as follows: D value is 0.084, p−value is
0.002 and the significance level, α is 0.05. As the computed
p − value is lower than the significance level α = 0.05, one
should reject the null hypothesis H0, and accept the alternative
hypothesis Ha for this particular test. The risk to reject the
null hypothesis H0 while it is true is lower than 0.05%. This
result indicates that Beta Distribution is not a good fit for the
average of 18 tasks worth of usage data. This may be caused
by the lack of representative usage sample. In other words, the
convolution of the usage distribution of 18 tasks did not fit to a
Beta Distribution. In order to minimize the uncertainty caused
by the smaller subsets, we increase our task sample size to
49, 88 and 154. We show that as we sample the usage data
from more tasks uniformly, the resource utilization fits to Beta
Distribution better. The results of larger samples are described
in the next section.

B. Effect of sample size on Beta fitness test

Even though the utilization distribution for 18 task usage
on average graphically looked like an “almost” good fit to Beta
Distribution, the fit, however, did not pass the K-S test at 0.05
significance level. We believe this is caused by the random
selection of 18 tasks, which was not representative enough for
the general workload to convolute as Beta Distribution. In this
section, we perform the Beta fit method described above on
3 different samples separately. We randomly, on average, first
select 49 then 88 and finally 154 tasks over 29 days to see if
higher sample sizes would fit utilization to Beta Distribution
better. We aggregate the usage of the tasks at each day over
29 days for every sample. We again set the maximum usage
level over 29 days to be 90% resource utilization to leave 10%
of the capacity for cluster management & operating systems.

By using the calculated mean and standard deviation values
for each samples, we estimate the shape parameters. The
estimation of shape parameters for samples of 49, 88 and 154
tasks is more accurate than 18 task sample. Table I lists the
estimated and actual values for mean, variance, skewness and
kurtosis for 3 samples.

TABLE I: Statistics estimated on the input data and computed
using the estimated parameters of the Beta Distribution

Experiment Statistics Data Parameters
49 tasks Mean 0.500 0.495

Variance 0.029 0.028
Skewness (Pearson) 0.202 0.012
Kurtosis (Pearson) -0.674 -0.543

88 tasks Mean 0.504 0.490
Variance 0.023 0.023
Skewness (Pearson) 0.340 0.021
Kurtosis (Pearson) -0.415 -0.461

154 tasks Mean 0.516 0.500
Variance 0.020 0.020
Skewness (Pearson) 0.374 0.000
Kurtosis (Pearson) -0.274 -0.416

Figure 3 shows the Q-Q plot, distribution of the actual
CPU utilization and the estimated Beta Distribution for 154
samples. As Figure 3 shows, the Q-Q plot is almost on y = x
line, indicating that the shape parameter estimations are very
accurate for the largest sample size. Further, Figure 3 depicts
the actual data distribution and the Beta Distribution in the
form of histogram.

Even though the Figure 3 supports the Beta Distribution fit
graphically, we still perform the K-S test to see how well the
Beta Distribution fit to our samples. Table II shows the results
for the sample of 49, 88 and 154 tasks. K-S supports that the
fit gets better as the sample size increases.

TABLE II: Kolmogorov- Smirnov Test

Test Result 49 tasks 88 tasks 154 tasks
D 0.055 0.051 0.048
p− value 0.098 0.150 0.196
α 0.05 0.05 0.05

The above analysis showed that the quality with which the
Beta distribution fits the distribution of Uk depends on the
number of request random variables included in the comvo-
lution. In practical terms, this means that in a system where



(a) CPU Utilization fit to Beta Distribution
parameters for average of 154 tasks

(b) Histogram of actual CPU Utilization and
fitted Beta Distribution for average of 154
tasks

(c) CPU Utilization fit to Beta Distribution for
average of 154 tasks

Fig. 3: Q-Q plot, CPU utilization & Beta Distribution fit and observed & theoretical utilization for 29 days for usage of 49, 88
and 154 tasks

a physical compute node can host a large number of tasks
simultaneously, the Beta distribution is a good representation
of the utilization generated by the comvolution of these tasks.

C. Estimation Error for Stochastic Admission Controller

From the fitted distribution in Figure 3, one can calcu-
late the over-utilization probability. For example, if the over-
utilization threshold is set to 0.8 by the user, the probability
of over-utilization -regardless of the admission controller-
is estimated as P (UCPU ≥ 0.8) = 0.024. The stochastic
admission controller bounds the over-utilization probability to
a user selected parameter, the probabilistic bound, by rejecting
the arrivals that would potentially increase the likelihood of
over-utilization beyond the selected parameter.

As an example, with estimated Beta Distribution for the
usage data, stochastic admission controller ensures that the
probability of over-utilization (over-utilization being 0.8) as
2.4%. This can be verified by equation (4). The actual dis-
tribution of CPU, however, is higher than the over-utilization
threshold 4.4% of the time. Hence, the stochastic admission
controller under-estimates the over-utilization by 2.0% for the
154 task sample. Table III shows that as the beta fit gets better
(higher p − value in K-S test), the error in estimating over-
utilization probability decreases.

TABLE III: Error in estimating P (UCPU ≥ 0.8)

Sample size p− value Actual prob. Estimated prob. Error
18 tasks 0.002 0.066 0.026 0.040
49 tasks 0.096 0.054 0.031 0.023
88 tasks 0.15 0.042 0.016 0.028
154 tasks 0.196 0.044 0.024 0.020

This result shows that we can expect considerable im-
provement in over-utilization probability, compared to a system
with no controller, the the orver-utilization probability will
remain higher that the theoretical goal. On the other hand,
the controller is unlikely to reject workloads unnecessarily.

We implemented the stochastic admission controller on
Google Compute Cluster. We detailed the advantages of using
a stochastic admission controller and the percent of time when

the system over-utilization could be avoided if the admission
controller was used in Google Compute Cluster in [3].

V. CONCLUSION AND FUTURE WORK

There are certain conveniences in assuming that the aggre-
gated resource usage distribution in a Cloud machine follows
a Beta Distribution. Beta is a family of distributions with
two parameters where the parameters are associated with the
first and the second moments of the resource usage. Thus,
it covers a wide range of usage distribution possibilities.The
stochastic admission control policy that we introduce in section
III bounds the specified over-utilization probability to a user
selected level.

Our experiment with Google Cluster data showed that the
resource distribution consistently fits to Beta Distribution when
the number of tasks running on a single machine is above
50 and the stochastic admission controller bounds the over-
utilization probability better. Our future work will focus on
statistical analysis of the Google Cluster data to determine
the conditions around the number of tasks running in a single
machine to justify the Beta assumption.

REFERENCES

[1] Vmware vsphere R© high availability 5.0 deployment best prac-
tices. [Online]. Available: www.vmware.com/files/pdf/techpaper/vmw-
vsphere-high-availability.pdf

[2] M. Unuvar, N. Y. Doganata, and A. N. Tantawi, “Configuring cloud
admission policies under dynamic demand,” Modeling, Analysis, Simu-
lation of Computer and Telecommunication Systems (MASCOTS), 2013
IEEE 21st International Symposium on. IEEE, 2013.

[3] M. Unuvar, Y. N. Doganata, A. N. Tantawi, and M. Steinder, “Cloud
overbooking through stochastic admission controller,” IBM T. J. Watson
Research Center, 1101 Kitchawan Rd. Yorktown Heights, NY, Tech. Rep.
RC25469, May 2014.

[4] Google, “https://docs.google.com/file/d/0b5g07t grdg9njznsjztzzrfbmm/edit.”
[5] G. Blom, Statistical estimates and transformed beta variables,. John

Wiley and Sons, 1958.
[6] H. Pham, Handbook of Engineering Statistics. Springer, 2006.
[7] N. Smirnov, “Table for estimating the goodness of fit of empirical

distributions,” Annals of Mathematical Statistics, vol. 19, pp. 279–281,
1948.


