
IGP-as-a-Backup for Robust SDN Networks

Olivier Tilmans Stefano Vissicchio
Université catholique de Louvain

olivier.tilmans@student.uclouvain.be stefano.vissicchio@uclouvain.be

Abstract—One of the main concerns on SDN is relative to its
ability to quickly react to network failures, while limiting both
the control-plane overhead and the additional forwarding state
kept by data-plane devices. Despite its practical importance, this
concern is often overlooked in OpenFlow-based proposals.

In this paper, we propose a new architecture, called IBSDN, in
which a distributed routing protocol flanks OpenFlow to improve
network robustness, reaction to failures, and controller scalability.
In deeply exploring this idea, we complement our architecture
with data-plane triggered mechanisms that improve its efficiency.
We prove that the resulting solution ensures robustness for any
combination of topological failures, and quickly reduces the path
stretch. Finally, experimenting with a prototype implementation,
we show that our approach is practical and overcomes the main
limitations of previous work.

I. INTRODUCTION

For years, distributed protocols have been typically used
to manage and operate computer networks. Contrary to this
practice, the emerging Software-Defined Networking (SDN)
paradigm proposes network logic centralization. In particular,
SDN is based on a clear separation between the control-plane,
to be moved to a logically-centralized controller, and the data-
plane, to be kept on network devices (e.g., routers). By exploit-
ing this separation, SDN promises to ease the deployment of
multiple capabilities such as network virtualization [1], flexible
access control [2] and fine-grained traffic engineering [3].
These capabilities, along with the growing support for SDN
protocols like OpenFlow (OF) [4], have recently attracted the
interest of many operators. Even device vendors are proposing
SDN protocols [5] and promising their support in a short time.

Despite such an interest, SDN deployments are still limited
in number, likely because of a variety of technical, economical,
and organizational reasons [6]. Among the former ones, a ma-
jor concerns is about robustness and failure recovery. Indeed,
proposed OpenFlow-based solutions to improve robustness of
SDN networks suffer intrinsic limitations that can make them
unpractical, especially in geographically-distributed networks
like those of large enterprises or Internet providers. Namely,
previous proposals either need to add a huge number of backup
entries to devices’ Forwarding Information Basis (FIBs), or to
fully rely on the centralized controller for failure recovery.
The former proactive approach (e.g., [7]) requires much more
powerful and expensive hardware than currently available
OpenFlow switches [8], and does not arbitrarily scale (e.g.,
with respect to the number of simultaneous failures). The latter
reactive approach (e.g., [9]) poses severe efficiency and scal-
ability challenges to the controller implementation, demands
for a very fast and reliable connection between devices and
controller, and does not cover control-plane failures.

S. Vissicchio is a postdoctoral researcher of the Belgian fund for scientific
research (F.R.S.-FNRS)

Abstractly, the main limitation of prior proposals derives
from the fact that only static forwarding rules can be specified
in OpenFlow. Since massive forwarding changes may be
needed in the case of failures, relying on OpenFlow leads to
difficult trade-offs between robustness, performance, and scal-
ability. In contrast, distributed routing protocols enrich devices
with the ability to autonomously and quickly [10] synchronize
among them and locally re-route traffic. This enables effective
and scalable solutions for (fast) failure recovery.

Following this high-level analysis, this paper proposes and
evaluates a hybrid SDN architecture that employs a logically-
centralized controller for long-term optimization and relies
on distributed protocols for short-term reaction to failures. In
particular, the controller uses OpenFlow to configure arbitrary
forwarding paths (e.g., overcoming restrictions of distributed
protocols) during normal operation. Moreover, it configures
per-node local agents to exchange routing information and
build backup paths via a distributed Interior Gateway Protocol
(IGP). Upon network failures, local agents use IGP information
to quickly re-establish connectivity. In the following, we refer
to this architecture as IGP-as-a-Backup SDN or IBSDN.

After introducing some background in Sec. II, we develop
several contributions. First, in Sec. III, we provide details
on the IBSDN architecture. Moreover, we describe how the
controller and the IGP control-plane co-exist, both during
normal operation and upon failures. Second, in Sec. IV, we
identify and explain main performance issues of naive IBSDN
implementations, which range from software-based forwarding
to post-failure path stretch. We then describe a procedure to
be run by local agents which significantly reduces or fully
avoids those performance issues. Third, in Sec. V, we prove
desirable properties of IBSDN. Notably, it provably guarantees
maximal robustness, since the IGP enables recovery from
any combination of failures in the data-plane (devices and
links), even when coupled with control-plane (e.g., controller)
failures. This actually makes IBSDN an effective alternative
both to (i) implementations of the controller as a distributed
system (like [11]), used to improve control-plane robustness;
and (ii) more complex control-plane designs (like [12]) aimed
at supporting safe controller updates. In addition, we show that
possible IBSDN performance issues are successfully removed
in a (short) bounded time. Fourth, in Sec. VI, we describe
an IBSDN prototype implementation that we used to confirm
its ability to avoid packet losses upon failures, while quickly
converging to a limited post-failure path stretch. Our prototype
demonstrates that IBSDN can be implemented in current Open-
Flow devices with minimal modifications. Fifth, in Sec. VII,
we qualitatively and experimentally compare IBSDN with
previous solutions, showing that it overcomes shortcomings of
prior work. Finally, we discuss main benefits and limitations
of IBSDN in Sec. VIII, and we conclude in Sec. IX.

II. BACKGROUND

A communication network basically consists of interme-
diate systems (switches, routers, etc.), which we refer to as
nodes, and interconnections or links between them. Nodes are
responsible to forward user traffic. Depending on the traffic
flow to which they belong, user packets are generally for-
warded through different sequences of nodes, i.e., forwarding
paths. To forward packets, nodes rely on a data structure called
Forwarding Information Base (FIB).

Traditionally, distributed routing protocols are used by
each network node to compute forwarding paths. In particular,
routing protocols enable nodes to exchange the information
needed to compute the best forwarding path according to some
(configurable) metric. IGPs are the protocols employed for
intra-domain routing, i.e., to compute forwarding paths be-
tween each source and each destination in the same network. In
their basic configuration, IGPs implement simple abstractions.
For example, link-state IGPs enable nodes to exchange the
network topology, i.e., a map of the network where links
are weighted, so that each node computes forwarding paths
running the Dijkstra algorithm on the shared topology. In this
paper, we restrict to link-state IGPs as they are widely used.

By definition, IGPs do not allow the computation of
arbitrary forwarding paths, e.g., hampering minimization of
resource consumption and realization of source- or application-
based policies. Moreover, because of their distributed nature,
configuring routing protocols and fine-tuning their behavior are
difficult management tasks for network operators. One of the
promises of the SDN proposal is to overcome those difficulties
by logic centralization of forwarding path computation.

For this purpose, many SDN proposals are based on the
OpenFlow (OF) protocol. Contrary to IGPs, OF provides a
set of commands for external software to read and write
FIB entries of the nodes. This way, it enables to physically
separate packet forwarding (i.e., data-plane actions) from end-
to-end path computation (i.e., control-plane decisions), with
the former function kept on the nodes and the latter moved
to a centralized controller. Moreover, OF rules can match any
field in traversing packets and perform a wide set of actions
(among which packet field rewriting) on them, while IGP only
controls the next-hop on computed forwarding paths and only
implements destination-based matching.

Conceptually, IGP and OF realizes heterogeneous ap-
proaches to compute and install forwarding paths. Conse-
quently, they have very different features. IGPs are good at
finding available paths in a network, and recompute them
dynamically when the topology changes. OF simplifies the
implementation of complex policies for the selection of very
specific and optimized paths, e.g., dynamically mapping new
flows to less congested paths. In general, both those abilities
are needed. In the following, we show how IBSDN profitably
combines IGP and OF to solve different networking problems.

III. IBSDN BASICS

In this section, we describe the IBSDN architecture
(Sec. III-A), and we illustrate its basic operation, detailing the
interaction between its control- and data-plane (Sec. III-B).

Primary'Policies' LEGEND&
$Admin'instruc2ons'
$OpenFlow'commands'
$IGP'configura2on'

Fig. 1. Architecture of an IBSDN network.

A. IBSDN architecture

The high-level architecture of an IBSDN network is de-
picted in Fig. 1. Its main components are the IBSDN controller,
network nodes, and per-node local agents. In the figure, the
IBSDN controller is represented by the computer icon on the
top middle of the figure, network nodes by the square icons in
the bottom part of the figure, and local agents by router icons
above each node. Node and local agent icons are one on top
of the other to convey the information that local agents act
as routing daemons on top of each OF-capable nodes. Finally,
the IBSDN network administrator is represented by the human
icon on the top left of the figure. Links between nodes are
omitted in the figure for readability.

The main interactions between IBSDN components are also
shown on Fig. 1. The administrator specifies to the IBSDN
controller the policies to be enforced during normal network
operation, i.e., in the absence of failures. We refer to those poli-
cies as primary policies. Given a set of primary policies, the
IBSDN controller computes compliant forwarding paths, and
uses OF to install them on the nodes. Since they reflect primary
policies, we refer to OF-controlled FIB entries as OF rules or
primary rules. Note that the usage of OpenFlow allows for
arbitrary forwarding behavior during normal operation (e.g.,
source-based or non shortest-path routing). Hence, IBSDN
normal-operation capabilities (e.g., for traffic engineering)
exceed those of IGP-based solutions (see, e.g., [13]).

Moreover, the controller instructs all local agents to run a
link-state IGP (e.g., OSPF or IS-IS). By relying on a minimal
IGP configuration (even just defining IGP links and weights),
IGP forwarding paths for every pair of network nodes are
then computed by local agents, independently from the IBSDN
controller. However, those paths are not straightforwardly
reflected in the FIB of any node. Rather, routing information is
kept in the local agent software memory, and used only when
a failure occurs. For this reason, we indicate IGP information
as backup rules. Also, we refer to packets forwarded using
IGP information as IGP-forwarded packets, and we assume
that IGP-forwarded packets are univocally identifiable, e.g.,
through a specific tag which we call IGP tag.

In addition to (primary and backup) forwarding rules, the
IBSDN controller always provides each node with a group
of special OpenFlow rules which we call control rules. In
particular, pre-installed control rules consists of (i) next-hop
control rules, i.e., a set of rules that are applied if the next-
hop on a given port is not reachable (e.g., in the case of link or
node failure); and (ii) IGP-path control rule, i.e., a rule which
matches IGP-forwarded packet. In both cases, the control rules
instruct the node to use IGP information to forward packets.

1
1

1

1
1 1

h1

r2

r1

r3

r5r6

r4

h2

(a) Normal operation

h1$

r2$

r1$

r3$

r5$r6$

r4$

h2$

(b) Reaction to a failure

Fig. 2. IBSDN enables packet rerouting without involving the network controller.

Note that the number of control rules, specifically needed in the
IBSDN approach, is very limited, since one next-hop control
rule per port and one IGP-path control rule in total needs to be
added to each node. We provide more details on how to specify
those rules with the current OpenFlow protocol in Sec. VI.

B. IBSDN operation

During normal operation, only primarily rules are directly
installed in the node FIBs, and traffic flows over OF-defined
forwarding paths. Assuming the correctness of the IBSDN
controller, this directly implies that primary policies are en-
forced. Conversely, to avoid traffic losses in the case of failures,
flows traversing the disrupted OpenFlow paths are partially
moved to backup paths, built using backup IGP rules. Thanks
to the control rules configured on each node, the transition
from normal operation paths to backup ones does not need
involvement of the IBSDN controller and it is virtually lossless.
Indeed, the nodes adjacent to a failed link or node can locally
detect the failure, e.g., by relying on liveness mechanisms
like [14]. As soon as a failure is detected, directly impacted
nodes start to use their respective next-hop control rules, and
to re-reroute incoming packets that primary rules would send
to the failed resource, according to IGP rules. By matching
IGP-path control rules on the other routers, those packets then
follow the IGP path until their destination.

Fig. 2 illustrates failure reaction in IBSDN through a
simple example. The same graphical convention of Fig. 1
is adopted to indicate nodes and local agents. The network
administrator and the IBSDN controller are not included in
the figure, because they play no active role in the reaction
to failures. In addition, (orange) arrows represent OF rules.
Dashed (blue) segments between local agents and numbers
next to them respectively depict IGP links established by local
agents, and their respective weight. Globally, they represent
the IGP configuration installed by the IBSDN controller on
the local agents. Such configuration generates the backup IGP
rules. Light (gray) solid segments between nodes, like the one
between r1 and r6, represent physical links not used by OF.

In particular, Fig. 2 shows the forwarding paths from host
h1 to host h2 before and after a link failure. Packets are
represented in the figure by small filled rectangles, and the
forwarding path followed by those packets is represented by
the sequence of solid arrows. Note that the internal color
of the rectangles indicates the rules (i.e., primary or backup
ones) used for the corresponding packet forwarding rather than
a modification of the packets themselves. In Fig. 2(a), all

network links are active and the forwarding path is entirely
dictated by OpenFlow rules. Hence, the considered traffic flows
over path (h1 r1 r2 r3 r4 r5 h2). Assume now that the link
between r1 and r2 suddenly fails, as highlighted by the cross
icon in Fig. 2(b). In this case, the primary path is disrupted,
as highlighted by the dashed and dotted orange arrows in
Fig. 2(b). As soon as r1 detects the failure, incoming packets
match the r1’s next-hop control rule relative to its r2-facing
interface. This rule induces r1 to locally use its IGP forwarding
entry instead of the original OF one, hence making r1 avoid
the disrupted OpenFlow path. Consequently, the traffic from
h1 to h2 is re-routed over the (h1 r1 r6 r5 h2) backup path.

IV. ENSURING POST-FAILURE FORWARDING EFFICIENCY

This section describes the techniques that we propose to
ensure efficient forwarding over post-failure paths. In partic-
ular, Sec. IV-A describes efficiency issues of a naive IBSDN
realization, and Sec. IV-B presents our proposal to solve them.

A. Inefficiencies in vanilla IBSDN

In the naive IBSDN implementation described in Sec. III,
packets (partially) following IGP paths are not forwarded at
line-card speed. Indeed, IGP routes are stored by local agents,
i.e., in software. This choice is deliberately made not to
increase the size of node FIBs, which are critical and expensive
resources. However, it involves that IGP-forwarded packets are
inefficiently processed in software on network nodes. In the
following, we refer to this issue as slow local forwarding.

To visualize a slow local forwarding case, consider the
example in Fig. 2. In the failure reaction illustrated in Fig. 2(b),
r1 applies the next-hop control rule to locally re-route packets
according to the IGP. Hence, before being forwarded to the
next-hop of r1, the packets need to be internally processed
by the r1’s local agent. This can significantly impact the time
taken by packet forwarding as well as node CPU usage and
local agent scalability. Moreover, although r1 is the only router
applying a local re-route, r6 and r5 also need to process
packets in software, because of the IGP-path control rule. In
other terms, the slow local forwarding applies to the entire part
of the post-failure forwarding path managed by IGP.

Forwarding inefficiency over post-failure paths is even
exacerbated by the fact that physical failures can cause packets
to bounce back to already traversed nodes. In the following,
we refer those packet bounces as packet returns.

h1

r2

r1

r3

r5r6

r4

h2

Fig. 3. Post-failure paths can incur significant stretch in vanilla IBSDN.

Consider again the IBSDN network example in Fig. 2(a),
and assume that the link between r3 and r4 fails, as in Fig. 3.
Referring again to the flow of packets from h1 to h2, the first
node that can detect the given link failure is r3. It then plays
the same role as r1 in Fig. 2(b): Upon failure detection, r3
starts using a next-hop control rule, and locally forwarding
according to IGP information. In turn, IGP automatically
recomputes the only possible path from r3 to h2 in the new
topology. As a result, data packets are forwarded from r3 back
to r2. By matching its IGP-path control rule, r2 also uses its
own IGP next-hop. Ultimately, packets of the considered flow
follow the forwarding path (h1 r1 r2 r3 r2 r1 r6 r5 h2). That
is, packet returns occur at r2 and r1, as those nodes receives
back (from r3 and r2 resp.) IGP-forwarded packets already
processed according to primary rules.

Two relevant observations should be immediately made on
packet returns. First, they never disrupt connectivity. Indeed,
thanks to the IGP-path control rule installed on all nodes,
packet returns never cause any packet to loop indefinitely in
IBSDN. A proof of this statement is reported in Sec. V. Second,
packet returns causes post-failure path stretch. In Fig. 3, for
example, the h1�h2 flow unnecessarily traverses links (r1, r2)
and (r2, r3) in both directions, stretching the post-failure
forwarding path by 4 hops. This unfortunately can induce
performance degradation, e.g., non-negligibly increasing delay,
especially when combined with slow local forwarding.

B. Efficient IBSDN with local computation

To overcome IBSDN potential inefficiencies, we rely on a
packet return removal procedure. This procedure is based on
providing local agents with enough intelligence to locally opti-
mize forwarding decisions. This means that packet returns can
be efficiently removed without the need for any coordination
with the IBSDN controller.

The packet return removal procedure is based on a FIB
update algorithm triggered by data-plane packets. Indeed, the
reception of an IGP-forwarded packet can be interpreted by
any node as an implicit notification of a network failure.
Local agents can then deduce that the IGP has to be used
for the incoming flow to which the IGP-forwarded packets
belong. Hence, they can update the FIB of their corresponding
nodes by replacing the primary rule matching the affected flow
with a new OF rule reflecting the IGP information. To avoid
inconsistent forwarding on other nodes, the new OF rule must
identify the matching packets as IGP-forwarded.

Unfortunately, the OpenFlow rule to be updated is not
straightforward to identify from an IGP-forwarded packet. In-

1: process igp packet(pkt, tags2dests)

2: if pkt is not destined to this router then
3: tag extract matching tag(pkt)
4: installed rule get OF rule(matching tag=tag)
5: dest tags2dests(tag)
6: igp nhs get IGP rib(dest)
7: new rule create OF rule(matching tag=tag,set IGP tag && fwd to

igp nhs)
8: change OF rule(rule,new rule)
9: end if

Fig. 4. Local packet return removal algorithm implemented by local agents.

deed, OpenFlow rules can match any field in the packet. Hence,
the destination-based lookup implemented by IGP does not
guarantee the correct identification of the rule used by OF for
the same packet. As a workaround, local agents may simulate
the packet matching process performed by nodes. Beyond
being time and space consuming, this workaround is not even
correct if packets are modified en route along primary paths,
e.g., to support advanced features like middleboxing [15].

To enable correct and fast identification of the rule to be
updated, we propose that the IBSDN implementation relies
on a specific packet tagging technique. Namely, the controller
configures ingress nodes of each flow to add a special tag to
each forwarded packets. This tag, which we call ingress tag, is
used by all network nodes to match packets, and must be never
modified by traversed nodes (except the egress node, which can
remove it). The role of the ingress tag is to uniquely identify
the treatment (forwarding path, possible field rewriting, etc.)
to be applied to incoming packets. During normal operation,
ingress tags can be used to accommodate primary policies in
an efficient way. That is, the IBSDN controller can configure
ingress nodes to apply the same ingress tag to packets be-
longing to multiple flows if they require similar processing
(i.e., to follow the same forwarding path and undergo the
same field changes). This would allow FIB simplification and
compression on the internal nodes. Moreover, since they are
never overwritten along the forwarding path, ingress tags also
enable easy identification of the rule to be updated when an
IGP-forwarded packet is received, irrespectively of possible
modifications previously applied to it.

The full algorithm that is run by local agents within the
packet return removal procedure in the presence of ingress
tags is reported in Fig. 4. We call it local packet return
removal algorithm. The algorithm takes as input a traversing
data packet and a mapping between ingress tags and network
destinations. Since ingress tags are computed by the IBSDN
controller, this mapping can be provided to local agents by the
controller itself. Since the algorithm is run by local agents,
it does not apply to packets forwarded on primary paths.
Moreover, no action is taken for packets directed to the node
itself, like IGP control-plane packets (line 2). For all the other
packets (i.e., IGP-forwarded packets for a remote destination),
the algorithm extracts the ingress tag (line 3), and relies on
it to determine both the OF rule to be replaced and the IGP
next-hops to be used (lines 4-6). Based on this information,
a new OF rule is computed (line 7) and pushed to the node
FIB (line 8). The algorithm can be easily implemented in an
efficient way, as both primary (OF) and backup (IGP) rules can
be represented by associative maps with constant time access.

r2

r1

r3

(a) Traffic forwarding immediately after the failure
shown in Fig. 3

r2

r1

r3

(b) Traffic forwarding after r2 runs the local
packet return removal procedure (Fig. 4)

r2

r1

r3

(c) Traffic forwarding after r1 runs the local
packet return removal procedure (Fig. 4)

Fig. 5. Application of the packet return removal procedure to the example in Fig. 3.

Note however that, after updating a given FIB entry, any local
agent must keep it synchronized with IGP information, e.g.,
to ensure that the final IGP next-hop is actually used if some
time is needed for IGP to converge to the final backup path.

Fig. 5 shows an example of application of the packet
return removal procedure when local agents implement Fig. 4
algorithm. The example refers to the case depicted in Fig. 3.
Data packets are represented by filled rectangles, split in two
when an ingress tag is present on them. Note that r1 adds a
green ingress tag to the beginning of traversing packets, since it
is the ingress point for the considered h1�h2 flow. The ingress
tag is not modified by any other node. The packet returns raised
by the unavailability of the primary path at r3 and reported
in Fig. 5(a) are removed as soon as the first IGP-forwarded
packet is processed by r1. Few packets, traversing r1 before
it completes such an algorithm, can follow the path illustrated
in Fig. 5(b). The final state is depicted in Fig. 5(c). Solid
arrows representing backup rules (i.e., between r2 and r1 and
from r1, resp.) highlights in Figs. 5(b) and 5(c) that slow local
forwarding issues are quickly solved on r2 and r1 respectively.
Since they run the packet return removal procedure, nodes
between r1 and h2 also update their FIB entries according
to IGP. In other words, a good side effect of our packet return
removal procedure is to avoid slow local forwarding.

Generally speaking, our packet return removal procedure
has several desirable properties. First, it removes any packet
return in a finite time proportional to its length. Second, it
quickly avoids slow local forwarding. Note that rapidly solving
efficiency problems mitigates the risk of congesting local
agents with line-speed forwarded traffic. Nevertheless, such a
risk can be completely avoided only through an appropriate
node implementation, e.g., limiting the number of packet
redirected to local agents (at the cost of re-introducing some
packet loss) or ensuring fast FIB updates. Finally, the packet
return removal procedure preserves packet delivery guarantees.
Formal proofs of those properties are reported in Sec. V.

V. IBSDN GUARANTEES

To prove IBSDN properties, we introduce few notation. We
denote the forwarding path at time t between a source s and
a destination d as ⇡t(s, d). Accordingly, we define a packet
return L as a sub-path of some forwarding path ⇡(s, d), such
that L = (v0 . . . vk v0), with k � 1.

We now show that IBSDN is safe, guarantees maximal
robustness and efficiently avoids previously-described forward-
ing inefficiencies. In the following, we refer to the complete
realization of IBSDN including the packet return removal

procedure defined in Sec. IV. Vanilla IBSDN can be considered
as a special case, for which performance guarantees do not
hold. In both cases, IBSDN features the following properties.

Property 1: Nodes adjacent to a failure rely on IGP to re-
route packets from primary paths disrupted by the failure.

Property 2: Packets from any source s to any destination
d are tagged as IGP-forwarded by the first node x 2 ⇡(s, d)
that relies on IGP information to forward packets.

Property 3: Any node forwards any IGP-forwarded packet
that it receives to its IGP next-hop.

Properties 1 and 2 are ensured by the next-hop control
rules, while Property 3 holds by definition of the IGP-path
control rules. Note that the validity of the properties is not
impacted by the packet return removal procedure since packets
forwarded using IGP are also tagged as IGP-forwarded by the
OF rules installed by the procedure (see line 7 in Fig. 4).

Those properties ensures the following theorem.

Theorem 1: In IBSDN, connectivity is re-established upon
any combination of failures that does not partition the physical
network, without any action of the controller.

Proof: Consider an IBSDN network subject to any com-
bination of failures that does not induce network partitions.
Since all local agents run an IGP, they also compute a new
IGP path for each source-destination pair. Let t be any time
after new IGP path computation terminates on local agents.
We now prove that at t, packets are delivered from any
source s to any destination d. Consider any primary path
P = (s . . . d). If P contains no failed link, only primary rules
are used along P by definition of IBSDN and the statement
directly follows. Otherwise, let (x, y) be a failed link such that
P = (s . . . x y . . . d) and no other failed links exist in the sub-
path of P between s and x. We define r 2 P as the node,
closest to s in P , that uses IGP to forward packets from s to
d. Node r must exist, since Property 1 guarantees that at least
one node, i.e., x, would use IGP if it receives packets from
s to d. By Properties 2 and 3, the IGP path is then followed
from r until d, which proves the statement.

Corollary 1: Packets never loop indefinitely in IBSDN.

Corollary 2: IBSDN ensures maximal robustness.

In addition, packet returns are removed and slow local
forwarding is avoided in a short time after failures. To provide
an upper bound of the time needed for those operations, we
define the delay �(P) over a path P = (v0 . . . vk) as the
sum of the delays introduced by each node vi 2 P , e.g., to

process packets, and each link (vi vi+1) traversed by P , e.g., to
transmit packets on the link. In particular, the delay �(L) over
a packet return L is the sum of the processing delay on each
node and link belonging to L. For the sake of simplicity, we
assume that IGP has already converged on post-failure paths.

Theorem 2: IBSDN successfully removes any packet re-
turn L in a time which is bounded by the delay over L.

Proof: Consider an IBSDN network subject to an arbitrary
set of failures. Let L be a packet return generated at time t0

and affecting traffic from any source s to any destination d.
By definition of packet return, ⇡t0(s, d) must traverse all the
nodes of the packet return. Let x 2 L be the node such that
the sub-path of ⇡t0(s, d) from s to x contains no other node in
L. That is, ⇡t0(s, d) = (s . . . l0 . . . lk l0 f . . . d), where li 2 L

8i = 0, . . . , k, l0 = x, and f is the IGP next-hop of x. By
Theorem 1, packets traverse all the nodes in ⇡t0(s, d) and reach
d. This means that packets forwarded over ⇡(s, d) will traverse
x twice, the second time being tagged as IGP. By Alg. 4, after
receiving the first IGP-forwarded packet of the s � d flow, x
will update its FIB to directly send packets of this flow to f .
Let t1 and t2 be the times at which x respectively receives the
first packet of the s � d flow and updates the corresponding
FIB entry. Then, ⇡t2(s, d) = (s . . . l0 f . . . d) does not contain
the L packet return. The statement follows by noting that x

will update its next-hop as soon as it receives the first IGP-
forwarded packet, that is, at time t2 = t1 + �(L).

Theorem 3: IBSDN removes slow local forwarding in a
time which is bounded by the delay over the network path
with the maximum number of nodes.

Proof: Consider an IBSDN network subject to an arbitrary
set of failures, and let s � d be a source-destination pair
such that the primary path between them is disrupted by such
failures. Upon the failures, at time t0, ⇡t0(s, d) must be a
concatenation of two paths P and Q, where P (resp. Q) is
determined by primary (resp. backup) rules. By Theorem 1,
packets traverse all the nodes in ⇡t0(s, d) and reach d. More-
over, each node on Q suffers the slow local forwarding issue
at t0. By definition of Alg. 4, each time a node in Q receives
an IGP-forwarded packet, it updates the OF rule that applies
to the s�d flow. Hence, when the first packet of the flow sent
after t0 is delivered to d, all the nodes in Q have updated their
FIB. This directly yields the statement.

VI. IMPLEMENTATION AND EVALUATION

This section describes the implementation and evaluation
of IBSDN. Sec. VI-A overviews our running prototype. We
used this prototype to evaluate IBSDN in two settings, namely,
(i) a micro-benchmark consisting of a small synthetic topology
designed to explore corner cases; and (ii) a macro-benchmark
targeted to evaluate the efficiency of IBSDN (with and without
the packet returns removal procedure) in realistic networks. We
focused on single link failures as they are the most frequent
failures in large networks [16]. Sec. VI-B and Sec. VI-C
respectively discuss micro- and macro-benchmark results.

A. IBSDN prototype

We prototyped all components of the IBSDN architecture
shown in Fig. 1. Namely, we implemented IBSDN nodes as

Linux hosts whose forwarding is controlled by Open vSwitch
(OVS) [17]. We relied on the BIRD routing daemon1 for local
agent realization. The IBSDN controller is based on the Ryu2

framework. However, we extended the latter framework so
that the controller both installs OF rules on the nodes by
communicating with OVS and configures local agents to run
OSPF. Finally, we relied on User Mode Linux to create virtual
IBSDN networks.

In our prototype, we implemented IGP tags and ingress
tags, respectively needed for identifying IGP-forwarded pack-
ets and flows to which packets belong (see Sec. III), as follows.
The IGP tag corresponds to a specific value (i.e., 32) of the
type of service (tos) IP header field. This value has to be
considered as reserved in our IBSDN prototype, i.e., it cannot
be used for other purposes. Moreover, since OF rules match
only the IP destination of traversing packets and nodes do
not overwrite any packet field in our experiments, we used
destination and source IP addresses and ports as ingress tags.
Our prototype exemplifies how IBSDN-specific tags may be
defined as unused or unmodified packet header fields.

We used those tags, along with OpenFlow NORMAL port
and fast failover groups, to express control rules on each
node, and define which packets need to be forwarded to local
agents. The NORMAL port represents the traditional non-
OpenFlow pipeline of the switch. By default, OVS behaves
as a Layer-2 learning switch when packets are sent to the
NORMAL port. We patched OVS to push packets to the
host’s kernel networking stack and be processed according
to IGP information, when the NORMAL port is specified as
output port. We then implemented the IGP-path control rule by
sending data packets to the NORMAL port when matching the
IGP tag. To enable IGP communication between local agents
on different nodes, we also used the NORMAL port as output
for IGP control-plane messages. Fast failover groups enable to
specify the rule to be used in the presence of a failure on a
node interface. Hence, for each node, next-hop control rules
are implemented configuring one fast failover group for each
interface and specifying the NORMAL port as output of the
rule applied in the case of failure on that interface.

Our prototype shows that IBSDN can be implemented with
minimally-modified switches compliant with any OpenFlow
standard version higher than or equal to 1.1.0 [4].

B. Micro-benchmarking IBSDN effectiveness

We run our IBSDN prototype on a simplistic network
topology. To model corner cases for IBSDN, we consider a
topology similar to the one depicted in Fig. 2(a), except for
the addition of vertical links between r2 and r6, and between
r3 and r5. We add those links to create more paths between
h1 and h2, and verify that IBSDN post-failure paths coincide
with the shortest ones in the post-failure topology.

We perform multiple experiments, varying the number of
h1� h2 flows between 10 and 1, 000. In each of those exper-
iments, we simulate the failure of the penultimate link in the
primary path, that is, (r4, r5) in Fig. 2(a). The failure impacts
all the flows, as shown in Fig. 2(a). Since we configured

1see http://bird.network.cz/
2see http://osrg.github.io/ryu

−5 0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

path stretch

C
D

F
 o

f
p

a
th

s

1221
1239
1755
3257
3967
6461

Fig. 6. The number of additional hops (path stretch) of IBSDN paths with
respect to the corresponding IGP paths is likely limited on realistic networks.

vertical links with high IGP weights, the simulated failures
cause IBSDN to react as in Fig. 3. In each experiment, we
also monitor forwarding paths and packet losses by sending
probe packets of each flow every 0.05 seconds.

Our experiments confirmed that IBSDN would lead to no
packet loss in our micro-benchmark setting, independently
of the number of configured flows. This is partially due to
the fact that the IGP is already converged to its post-failure
paths (because of the IGP weights), when the failure occurs.
Indeed, IGP convergence is known to be a potential source of
packet losses [18]. However, commercial devices are reported
to complete the IGP convergence in sub-seconds, even in
very large networks [10]. Moreover, fast re-route techniques
(e.g., [19]) can be used to avoid IGP convergence problems.

C. Macro-benchmarking IBSDN efficiency

To evaluate the efficiency of IBSDN on realistic large
networks, we simulate single link failures in the Rocketfuel
topologies3 [20]. We considered the case in which a forwarding
path needs to be installed for any source-destination pair in the
network. For the sake of simplicity, primary and backup paths
are both computed as the shortest paths, on the original and
post-failure topologies respectively.

Fig. 6 shows that the path stretch is very limited in the vast
majority of our experiments on all Rocketfuel topologies. In
particular, the plot contains one curve per topology, and each
curve represents the cumulative distribution (CDF) of IBSDN
paths having at most a given stretch. The stretch is calculated
as the difference in the number of hops between the IBSDN
path (after packet return removal) and the post-failure IGP
path (which is the shortest path in the new topology). For all
the Rocketfuel topologies, the stretch is 0 for more than 50%
of the post-failure paths, and it is at most 1 in more than
70% of the cases. In addition, the 95-th percentile of the path
stretches respectively ranges from 2 (in AS 1221) to 4 (in
ASes 1755 and 3967), and the 98-th percentile varies between
2 (in AS 1221) and 6 (in AS 1755). The remaining outliers
are so few that static backup entries can be used for them (if
the corresponding stretch absolutely needs to be avoided), i.e.,
as an exception to the IBSDN behavior. Observe that the path

3publicly available at http://www.cs.washington.edu/research/projects/
networking/www/rocketfuel

stretch has a negative value in few cases, in which a primary
path brings the packets up to a node which is very close to
the destination in the post-failure topology.

The limited path stretch induced by IBSDN is partially
due to our packet return removal procedure. Across all ex-
periments, this procedure eliminates at least one packet return
in a number of post-failure paths ranging from about 10%
to about 25%. Without this procedure, packet returns would
have contributed to increase path stretches by values varying
between 2 and 13. Note that the majority of removed packet
returns have limited size, and are quickly eliminated by the
packet return removal procedure (see Theorem 2).

VII. COMPARISON WITH RELATED WORK

Previous approaches to react to failures in SDN networks
can be classified in two main categories: proactive and reactive.

Proactive approaches, like [7], have very high hardware
requirements, since they are based on pre-installing backup
entries on each node for each failure. This asks for the
availability of a huge amount of FIB entries on each node
if connectivity has to be preserved for any failure. Indeed,
the number of additional FIB entries needed by proactive
approaches is proportional to the number of both installed
flows and the number of possible failures. As an illustration,
Fig. 7(a) plots as CDFs the number of FIB entries per node
needed in the proactive approach versus those required by
IBSDN to ensure robustness of Rocketfuel topologies for any
single link failure. We computed primary paths as the shortest
paths in the original topologies. For plot readability, we only
show the best (i.e., 1221) and the worst (i.e., 1239) case in
terms of backup entries per node. The plot highlights that the
proactive approach generally needs one order of magnitude
more FIB entries than IBSDN.

Reactive approaches, like [9], fully rely on the centralized
controller to update forwarding paths in the case of failure.
That is, when a failure occurs, a special message is sent to the
controller, which has to identify the affected flows, recalculate
feasible (or optimal) forwarding paths, and update the FIB of
the impacted nodes accordingly. To study the overhead and
control-plane scalability challenges posed by this approach,
we simulated single link failures on Rocketfuel topologies,
with shortest routing used to compute one primary and one
backup path per node pair. Fig. 7(b) plots the number of
OF rule updates to be pushed by a centralized controller
in the reactive approach. Whiskers represent maximum and
minimum values, the borders of each box correspond to the
75-th and the 25-th percentiles, and the thick lines in the
boxes identify median values. For all topologies, the median
of OF rule updates is between 100 and 1, 000, with maximum
values of more than 30, 000 rule updates in the worst case (for
AS 1239). Even if the updates are pre-computed and quickly
retrieved by the controller, transferring and installing them to
nodes (possibly while guaranteeing the absence of transient
problems [21]) requires an extremely performant connection
between controller and nodes, creates spikes of control mes-
sage overhead, and possibly overloads the controller during
failure recovery. Moreover, if a reactive approach is adopted,
failures of the connection between the controller and the nodes
or of the controller itself make the network unable to react to

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of FIB entries per node (log scale)

C
D

F
 o

f
n

o
d

e
s

100 1k 10k 100k

1221−bck
1221−nobck
1239−bck
1239−nobck

(a) CDF of the number of FIB entries needed in
the proactive approach (bck) versus the IBSDN
and reactive (nobck) ones.

1221 1239 1755 3257 3967 6461

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

Topology

R
u

le
 u

p
d

a
te

s
p

e
r

si
n

g
le

 li
n

k
fa

ilu
re

(b) Number of FIB entries to be updated (e.g.,
by a reactive SDN controller) in case of single
link failures.

1 2 3 4 5 6 7 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probe round

D
e
liv

e
re

d
 p

a
ck

e
ts

(c) Contrary to IBSDN, reactive approaches
show non-negligible packet losses after a
failure in our micro-benchmark topology.

Fig. 7. Our experiments expose intrinsic limitations of approaches alternative to IBSDN.

any other event. In contrast, the number of rule updates shown
in Fig. 7(b) is practically split among local agents in IBSDN,
and no involvement is needed from the controller.

We also used our micro-benchmark to estimate the impact
of such a number of rule updates on user traffic in the presence
of a non-negligible delay in the connection between the con-
troller and nodes (as in geographically-distributed networks).
Fig. 7(c) shows the results of an experiment in which i) a
single link fails, ii) a single node has to be updated to reroute
1, 000 traversing flows, iii) the controller pre-computes OF
rule updates, iv) the connection between the controller and
the nodes induces a delay of 100 milliseconds, and v) packet
probes are sent on all impacted flows, in rounds, every
0.05 seconds. The plot highlights that the reactive approach
can produce significant disconnections, even in the best-case
scenario (small topology, rule update pre-computation, single
node to updated, etc.) that we considered. It also underlines the
criticality of the controller-node connections for the reactive
approach. Also, it suggest the difficulty to reroute traffic in
an arbitrary short time. By relying on the distributed IGP
for failure reaction, IBSDN exhibits no packet loss in the
micro-benchmark scenario, and can rely on IGP fast reroute
techniques to avoid losses in the general case. Note that IBSDN
holds the same advantages also with respect to reactive ap-
proaches of IGP-based autonomic management systems [22].

Contrary to IBSDN, problems of proactive and reactive
approaches are exacerbated if additional failure scenarios (e.g.,
single node or multiple link failures, as for Shared Risk Link
Groups) are considered. This also hampers the applicability of
variations of prior approaches. For example, the practicality of
proactive approaches relying on a software FIB are still limited
by the number of needed backup entries.

To avoid intrinsic limitations of OF-based solutions, IB-
SDN leverages the presence of two control-planes, imple-
mented by the controller and IGP-running local agents respec-
tively. The simultaneous usage of IGP and OpenFlow has also
been proposed in [23]. Contrary to [23], IBSDN runs the IGP
directly on the nodes (rather than just on the controller to
compute forwarding paths), hence benefiting from IGP failure
recovery abilities. In the context of traditional networks, the
idea of relying on multiple control-planes running different
instances of a distributed protocol has also been exploited
by few other works, for purposes ranging from fast failure

recovery [24] to pre-deployment configuration evaluation [25]
and network reconfigurations [26], [27]. IBSDN uses multiple
control-planes to combine SDN and IGP, introducing tailored
techniques to efficiently ensure network robustness. According
to [6], IBSDN is a service-based hybrid SDN architecture. As
such, beyond possibly being a desirable long-term design (as
we argued in this paper), it can also provide incentives and
enable specific strategies to transition to SDN.

VIII. DISCUSSION

IBSDN splits the problem of computing forwarding paths
into (i) a long-term optimization problem, tackled by a cen-
tralized controller, and (ii) a short-term feasibility problem, in
which a distributed algorithm ensures connectivity in the case
of failures. This problem breakdown has several consequences.

On one hand, the usage of distributed algorithms for con-
nectivity preservation has multiple advantages. First, it allows
a clear separation between optimization (traffic engineering,
delay minimization, etc.) and robustness goals, and the solu-
tion of the corresponding sub-problems with the networking
paradigm (centralized or distributed) which is respectively
more suitable. This separation leads to a simplification of
both the controller (which can rely on an IGP module for
robustness) and the IGP configuration (since advanced features
like traffic engineering extensions and careful weight tuning
are unnecessary). It also makes the SDN controller more
scalable, as it does not have to directly manage many (possibly
transient) events. Note that the peculiar usage of IGP made by
IBSDN avoids known problems, e.g., due to the presence of
BGP [28], affecting internal routing re-optimization in tradi-
tional networks. Second, IBSDN ensures maximal robustness
(see Sec. V) with an extremely limited number of additional
FIB entries (i.e., for the control rules) per router. Previous
IGP work (e.g., [19]) can be leveraged to transform IBSDN
robustness into a proven ability to quickly reroute traffic.
Third, IBSDN minimizes the impact of controller failures, and
provide operators with means to debug and operate the network
independently of controller misbehaviors.

On the other hand, relying on IGP for failure recovery
has some intrinsic limitations. Primarily, IGP has not the
same expressive power as SDN protocols like OpenFlow.
For example, IGP is limited to destination-based forwarding.
Hence, backup paths compliant with primary policies may

not be enforced. Moreover, depending on the combination of
occurring failures, IGP may need to converge. This process
is not harmless in general [18]. However, it has been shown
that IGP convergence is fast in real, even large networks [10]
and its negative side effects can be strongly mitigated by
relying on fast reroute techniques. Third, IBSDN requires some
form of coordination between the controller and local agents,
especially to avoid unsafe overwriting of OF rules on nodes
(e.g., when the usage of the controller has to be restored). For
this purpose, the IBSDN controller should always have higher
writing priority to the FIB with respect to local agents. This
way, the controller would be responsible for overwriting the
FIB entries installed by local agents for failure recovery with
new entries for post-failure normal operation. Finally, by ex-
changing IGP messages, local agents also create control-plane
communication overhead. However, the wide deployment of
IGP testify how this is practically not a major issue.

Globally, those limitations can make IBSDN unsuitable in
some cases. However, ensuring basic connectivity (at least,
for the majority of flows) upon failures is a classic network
requirement. IBSDN facilitates to achieve this goal within an
SDN-based architecture. For the cases in which IBSDN does
not totally fit, our proposal can be combined with previously-
proposed reactive or proactive approaches, while improving
their scalability, e.g., by restricting the pre-installed OF rules
to the few most critical flows with peculiar requirements.

IX. CONCLUSIONS

In this paper, we presented IBSDN, a hybrid SDN ar-
chitecture in which long-term optimization goals (e.g., for
fine-grained traffic engineering) are assigned to a centralized
SDN controller while a distributed IGP is used for short-term
forwarding path computation (e.g., for failure reaction). Within
our proposal, we described techniques to reroute packets,
defined mechanisms that ensure data-plane performance when
failures occur, and proved maximal robustness and efficiency
of IBSDN. By means of a prototype implementation and
simulations on realistic topologies, we confirmed the practi-
cality and effectiveness of our architecture, especially when
compared with alternative OF-based approaches.

Our results suggest that a deeper investigation of the
spectrum between completely centralized (e.g., OF-based) and
completely distributed (e.g., IGP) solutions can be an interest-
ing research direction. By improving SDN robustness, IBSDN
exemplifies how centralized and decentralized approaches can
mutually benefit from being used simultaneously, for different
networking problems. In future work, we plan to bring this
argument one step further, by studying which combination
(e.g., flow-based) of IBSDN, OF-based approaches and IGP
techniques leads to the best trade-offs between minimizing FIB
entries and ensuring fast packet rerouting.

ACKNOWLEDGEMENTS

This work has been supported by the ARC grant 13/18-054
from Communauté française de Belgique.

REFERENCES

[1] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed?”
in OSDI, 2010.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Trans. Netw., vol. 17, no. 4, pp. 1270–1283, 2009.

[3] R. Wang, D. Butnariu, and J. Rexford, “Openflow-based server load
balancing gone wild,” in Hot-ICE, 2011.

[4] Open Networking Foundation, “Openflow switch specification, version
1.1.0,” white paper, 2011.

[5] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N. Weiden-
bacher, “OpFlex Control Protocol,” Internet Draft, 2014.

[6] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” Comput.
Commun. Rev., vol. 44, no. 2, Apr. 2014.

[7] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative
Fault Tolerance for Software-defined Networks,” in HotSDN, 2013.

[8] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch
models for software-defined network emulation,” in HotSDN, 2013.

[9] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “A
demonstration of fast failure recovery in software defined networking,”
in TRIDENTCOM, 2012.

[10] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” ACM Comput. Commun.
Rev., vol. 35, no. 3, pp. 33–44, 2005.

[11] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in WREN, 2010.

[12] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rexford, “HotSwap:
Correct and Efficient Controller Upgrades for Software-defined Net-
works,” in HotSDN, 2013.

[13] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols,
and Architectures. Morgan Kaufmann Publishers Inc., 2007.

[14] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),”
RFC 5880, 2010.

[15] Z. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-
fying Middlebox Policy Enforcement Using SDN,” in SIGCOMM, 2013.

[16] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” Trans. on Netw., vol. 16, pp. 749–762, 2008.

[17] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in HotNets, 2009.

[18] P. Francois and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1280–1932, 2007.

[19] C. Filsfils, P. Francois, M. Shand, B. Decraene, J. Uttaro, N. Leymann,
and M. Horneffer, “LFA applicability in SP networks,” RFC 6571, 2012.

[20] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in SIGCOMM, 2002.

[21] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[22] X. Liu, P. Juluri, and D. Medhi, “An experimental study on dynamic
network reconfiguration in a virtualized network environment using
autonomic management,” in IM, 2013.

[23] C. Rothenberg, M. Nascimento, M. Salvador, C. Corrêa, S. de Lucena,
and R. Raszuk, “Revisiting routing control platforms with the eyes and
muscles of software-defined networking,” in HotSDN, 2012.

[24] A. Kvalbein, A. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast
IP Network Recovery Using Multiple Routing Configurations,” in
INFOCOM, 2006.

[25] R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a network
management primitive,” in SIGCOMM, 2008.

[26] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Seamless Network-Wide IGP Migrations,” in SIGCOMM, 2011.

[27] S. Vissicchio, L. Vanbever, C. Pelsser, L. Cittadini, P. Francois, and
O. Bonaventure, “Improving network agility with seamless BGP re-
configurations,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 990–1002,
2013.

[28] L. Vanbever, S. Vissicchio, L. Cittadini, and O. Bonaventure, “When the
Cure is Worse than the Disease: the Impact of Graceful IGP Operations
on BGP,” in INFOCOM, 2013.

