
Unsupervised Classification and Characterization of
Honeypot Attacks

Philippe Owezarski⇤†
⇤CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

†Université de Toulouse, LAAS, F-31400 Toulouse, France

Abstract—Monitoring communication networks and their
traffic is of essential importance for estimating the risk in
the Internet, and therefore designing suited protection systems
for computer networks. Network and traffic analysis can be
done thanks to measurement devices or honeypots. However,
analyzing the huge amount of gathered data, and characterizing
the anomalies and attacks contained in these traces remain
complex and time consuming tasks, done by network and security
experts using poorly automatized tools, and are consequently slow
and costly. In this paper, we present an unsupervised method for
classification and characterization of security related anomalies
and attacks occurring in honeypots. This as automatized as
possible method does not need any attack signature database,
learning phase, or labeled traffic. This corresponds to a major
step towards autonomous security systems. This paper also shows
how it is possible from anomalies characterization results to
infer filtering rules that could serve for automatically configuring
network routers, switches or firewalls.

Keywords—Honeypot attack detection, Anomaly classification,
unsupervised machine learning, autonomous security systems.

I. INTRODUCTION

Monitoring communication networks and their traffic is an
important advance for protecting computers systems. Several
methods exist. For example, using monitoring devices at the
interconnection points of networks allows the analysis of all
incoming and outgoing flows. Another method consists in
installing honeypots in the network. Honeypots provide more
or less emulated services (according to the expected interaction
level with the attackers), and allows supervising the use of
the provided services by attackers. Thus, gathered data allows
security experts on one hand to detect and analyze computer
systems weaknesses, and on the other hand to collect useful
information on the attacker activities that allows the analysis of
their attacking methods, objectives, and strategies. Estimating
and analyzing the risk related to illegitimate activities on the
Internet are essential for security experts to design and develop
adapted and efficient defense and protection systems with
regard to the actual risk.

Characterizing and classifying current anomalies and at-
tacks of the Internet are very complex and time consuming
tasks, done by experts. Such tasks are therefore slow and
costly. The main difficulty related to the identification and anal-
ysis of the different classes of illegitimate traffic is their fast
evolution, amplification, and renewing capabilities. Designing
autonomous classification and characterization processes is
crucial for easy to deploy and to use defense systems. Hence,
modern classification systems must not rely on human expert
knowledge, and must be able to autonomously adapt to the

evolution of all traffic components, be they legitimate or
not (this paper obviously focuses on illegitimate ones). For
this purpose, we propose to take advantage of unsupervised
machine learning techniques that do not require the help of
any human expert. In this paper we then present an unsuper-
vised method for classifying and characterizing anomalies and
attacks contained in traffic gathered on honeypot networks.
This method does not take advantage of any attack signature,
learning stage, or labeled traffic, what constitutes a major
advance towards autonomous security systems. This approach
uses robust clustering techniques, as sub-space clustering,
density-based clustering, and evidence accumulation for clas-
sifying flow ensembles in traffic classes, and builds easily
understandable associated signatures. This method was first
proposed in our previous work [1] that aims at detecting,
classifying and characterizing anomalies in the full network
traffic. This method has been adapted and extended in order
to cope with the specific honeypot network traffic. Indeed, hon-
eypot network traffic only contains illegitimate traffic (attacks,
anomalies, intrusion attempts, ...) what significantly changes
the way classification and characterization can be done. This
paper mainly deals with taking into account the illegitimate
nature of traffic to be analyzed, and designing adapted and
optimized classification and characterization algorithms.

These algorithms are illustrated by the analysis of honeypot
traffic gathered at the University of Maryland, at the Netflow
format [2]. The University of Maryland put measurement de-
vices on routers at the border of the honeypots networks. This
allows the capture of the traffic exchanged between honeypots
and the Internet by monitoring only very few network devices.
We nevertheless do not have the communication traces between
the honeypots of the same network. The traffic traces we have
been working on have been captured on a duration of more
than one year.

The rest of the paper is as follows: section II presents re-
lated work in the domain of attack and anomalies detection and
characterization, covering the full set of approaches from sig-
nature to statistical profile based, and finishing with approaches
based on data mining and machine learning, especially un-
supervised ones. This section also presents supervised and
semi-supervised classification methods. Section III presents
our previous unsupervised anomaly detection algorithm. This
algorithm has already been published in [1]. We nevertheless
add a presentation of this algorithm in this paper to make it
self-contained. Interested readers can find an extended version
of the algorithms description in [3]. However this algorithm
originally works on full traffic, i.e. normal traffic on Internet
links, and the objective is then to detect anomalies and attacks.

Given the nature of the traffic we are considering in this paper
- i.e. traffic between honeypots and the Internet - we know
that it is completely illegitimate. This is a strong hypothesis
that can help going further for characterizing and classifying
the different component of this illicit traffic, and estimating the
risk in the Internet. This section III then presents the sub-space
clustering approach that aims at increasing the robustness
of clustering algorithms, limiting its sensitivity, etc. It also
presents the recombination mechanisms based on evidence
accumulation and inter-clustering associations. As a strong
improvement of the previous algorithm, section IV describes
how we can show correlation existing between clusters in
different subspaces, these correlations exhibiting that such
clusters could correspond to the same attack or anomaly.
This is a strong help for more accurately and completely
identifying and characterizing all attacks contained in the hon-
eypots traffic. Section V then proposes a way to automatically
characterize the identified anomalies and attacks. It relies on
the clustering and correlation results. Section VI proposes a
method for ranking the risk an attack represents. Such ranking
is aimed at helping security experts or network operators to
prioritize their work, focusing first on the most dangerous
ones. Section VII illustrates the results of this characterization
algorithm by showing a set of attacks and anomalies that have
been identified in the real traffic traces of the University of
Maryland, and the characterizing signatures that have been
issued. Last, section VIII concludes this paper.

II. RELATED WORK

The problem of network anomaly detection has been exten-
sively studied during the last decade. Most of the approaches
analyze statistical variations of traffic volume (e.g. number of
packets, bytes or new flows) and/or traffic features (e.g. IP
addresses and ports), using either single-link measurements or
network-wide data. A non-exhaustive list of standard methods
includes the use of signal processing techniques (e.g. ARIMA
- Autoregressive Integrated Moving Average - modeling,
wavelets-based filtering) on single-link traffic measurements
[4], [5], PCA (Principal Component Analysis) for network-
wide anomaly detection [6]–[8], and Sketches applied to IP-
flows [9], [10].

The simultaneous detection and characterization of traffic
anomalies has also received quite a lot of attention in the past,
but results are few and present important limitations, either
because they rely on some kind of training data and/or anomaly
signatures, or because they do not provide meaningful and
tractable information to a human network operator, who has to
take the final decision about the nature of the detected problem.
Authors in [6] characterize network-wide anomalies in highly
aggregated traffic (Origin-Destination flows or OD flows for
short), using PCA and the sub-space approach [7]. An impor-
tant limitation of this approach is that the information obtained
from OD flow data is too coarse-grained to provide meaningful
information to the network operator. Papers like Lakhina et al.
[8] and Biang et al. [10] detect and characterize anomalies
using finer-grained traffic information, basically applying the
same PCA approach to the sample entropy of the empirical
distribution of specific traffic features. One clear limitation
of these approaches is that the information they provide is
not immediately usable and easy-to-understand by the network
operator, who may not even be familiar with concepts distant

from his tasks such as sample entropy. Besides, the PCA
approach is highly sensitive to noise when used for anomaly
detection [11], [12], requiring in practice a fine-tuning and
data-dependent calibration step to work.

UNADA (Unsupervised Network Anomaly detection Al-
gorithm) [13] falls within the unsupervised anomaly detection
domain, a novel research area that has drawn quite a lot of
interest in the research community, but that still represents
a rather immature field. Most work on unsupervised network
anomaly detection has been devoted to the IDS field, generally
targeting the detection of network intrusions in the very well
known KDD’99 dataset. The great majority of the detection
schemes proposed in the literature are based on clustering tech-
niques and outliers detection, being [14]–[16] some examples.
The objective of clustering is to partition a set of unlabeled
patterns into homogeneous groups of “similar” characteristics,
based on some similarity measure. Outliers detection consists
in identifying those patterns that do not belong to any of
these clusters. In [14], authors use a simple single-linkage
hierarchical clustering method to cluster data from the KDD’99
dataset, based on the standard Euclidean distance for inter-
pattern similarity. Eskin et al. [15] reports improved results in
the same dataset, using three different clustering algorithms:
the Fixed-Width clustering algorithm, an optimized version
of the k-NN algorithm, and the one class SVM algorithm.
Leung and Leckie [16] present a combined density-based
and grid-based clustering algorithm to improve computational
complexity, obtaining similar detection results.

Previous work of our own permits to automatically charac-
terize network traffic anomalies [17], but using a-priori well-
defined anomaly signatures. Closer to our current work, au-
thors in [18] present URCA (Unsupervised Root Cause Anal-
ysis), a two-steps algorithm to characterize network anomalies
in an unsupervised fashion. URCA uses as input the traffic in
the anomalous time slots detected by any generic time-slot-
based detection algorithm [19]. In the first step, it identifies
the anomaly by iteratively removing from the anomalous time
slots those flows that seem normal. In the second step, the
algorithm uses a hierarchical clustering method to character-
ize the particular flows identified as anomalous. We identify
some serious drawbacks and omissions in URCA: authors
claim that the approach is unsupervised, which is not true,
simply because it uses previously labeled anomalous events
for the characterization. As in previous works, the algorithm
uses difficult-to-interpret traffic descriptors for the clustering
step (e.g. sample entropy of the distribution of IP addresses,
aggregated at different levels), obscuring the comprehension
of the network operator. Finally, the algorithm removes those
flows that seem normal before the characterization step, which
drags possible errors to the clustering step.

Our Unsupervised Anomaly Detection and Characteriza-
tion algorithm [1] presents several advantages w.r.t. current
state of the art. First and most important, it works in a
completely unsupervised fashion, which means that it can
be directly plugged into any monitoring system and start to
work from scratch. Secondly, we perform anomaly detection
based not only on outliers detection, but also by identifying
small-clusters. This is achieved by using different levels of
traffic aggregation, both at the source and destination of
the traffic; this additionally permits to discover low-intensity

and distributed anomalies. Thirdly, we avoid the lack of
robustness of general clustering approaches, by combining the
notions of Sub-Space Clustering [20] and multiple Evidence
Accumulation [21]. In particular, our algorithm is immune to
general clustering problems like sensitivity to initialization,
specification of number of clusters, or structure-masking by
irrelevant features. Fourthly, the algorithm performs cluster-
ing in low-dimensional feature spaces, using simple traffic
descriptors like number of source IP addresses or fraction
of SYN packets. This simplifies the characterization of the
anomaly, and avoids well-known clustering problems when
working with high-dimensional data [22]. Our algorithm ranks
the multiple evidence of an anomaly detected in different sub-
spaces, combining the most relevant traffic descriptors into a
compact and easy-to-interpret signature that characterizes the
problem. This permits to reduce the time spent by the network
operator to understand the nature of the anomaly. Finally,
this algorithm is designed to work in an on-line fashion,
analyzing traffic from consecutive time slots in near real time.
This is possible even when working with large number of
traffic descriptors, because the sub-space clustering and the
evidence accumulation algorithms are perfectly adapted for
parallelization (see [1]).

To the best of our knowledge, there is no paper in the
literature on the use of unsupervised classification and char-
acterization algorithms on honeypot traffic, or for intrusion
or attacks characterization on big data sets of attack traces.
Some very recent work exists, especially by Symantec and the
TRIAGE project (Data Analytics Framework for Intelligence
Analysis) that aims to use autonomous data mining techniques
for the analysis of all the gathered traces of attacks. However,
TRIAGE aims at designing visualization techniques for the
experts to make decision, while in this paper we propose to
autonomously apply countermeasures for cheaper and faster
defense.

III. UNSUPERVISED ANOMALY DETECTION

Our anomaly detection works on single-link packet-level
traffic captured in consecutive time-slots of fixed length �

T

.
The first analysis stage consists in change detection. At each
time-slot, traffic is aggregated in 9 different flow levels l

i

.
These include (from finer to coarser-grained resolution): source
IPs (l

1

: IPsrc), destination IPs (l
2

: IPdst), source Network
Prefixes (l

3,4,5

: IPsrc/24, /16, /8), destination Network Pre-
fixes (l

6,7,8

: IPdst/24, /16, /8), and traffic per Time Slot
(l
9

: tpTS). Time series Zli
t

are built for basic traffic metrics
such as number of bytes, packets, and IP flows per time slot,
using the 9 flow resolutions l

1...9

. Analyzing honeypot traffic
at multiple aggregation levels permits to detect both single
source-destination and distributed attacks of very different
intensities.

The unsupervised anomaly detection stage takes as input
all the flows in the time slot flagged as anomalous, aggregated
according to one of the different levels used in the first stage.
An anomaly will generally be detected in different aggregation
levels, and there are many ways to select a particular aggrega-
tion to use in the unsupervised stage; for the sake of simplicity,
we shall skip this issue, and use any of the aggregation levels in
which the anomaly was detected. Without loss of generality,
let Y = {y

1

, ..,y
F

} be the set of F flows in the flagged

time slot, referred to as patterns in more general terms. Each
flow y

f

2 Y is described by a set of A traffic attributes
or features. In this paper, we use a list of common traffic
attributes. The list includes A = 9 traffic features: number of
source/destination IP addresses and ports, ratio of number of
sources to number of destinations, packet rate, ratio of packets
to number of destinations, and fraction of ICMP and SYN
packets. According to our previous work on signature-based
anomaly characterization [17], such simple traffic descriptors
permit characterization of general traffic anomalies in easy-to-
interpret terms. The list is therefore by no means exhaustive,
and more features can be easily plugged-in to improve results.
Let x

f

= (x
f

(1), .., x
f

(A)) 2 RA be the corresponding vector
of traffic features describing flow y

f

, and X = (x
1

; ..;x
F

) the
complete matrix of features, referred to as the feature space.

The unsupervised detection algorithm is based on cluster-
ing techniques applied to X. The objective of clustering is to
partition a set of unlabelled patterns into homogeneous groups
of similar characteristics, based on some measure of similarity.
Table I explains the characteristics of each anomaly in terms
of type, distributed nature, aggregation type and netmask used,
and impact on traffic features. On one hand, a SYN DDoS
which targets one machine from a high number of hosts located
in several /24 addresses will constitute a cluster if flows are
aggregated in l

3

. In fact, each of these /24 addresses will
have traffic attributes values different from the ones of normal
traffic: a high number of packet, a single destination and many
SYN packets. It is the whole set of these flows that will create
a cluster. On the other hand, if flows are aggregated in l

6

, the
only destination address will be an outlier characterized by
many sources and a high proportion of SYN packets.

Our particular goal is to identify and to isolate the different
flows that compose the anomaly flagged in the first stage, both
in a robust way. Unfortunately, even if hundreds of clustering
algorithms exist [22], it is very difficult to find a single one that
can handle all types of cluster shapes and sizes, or even decide
which algorithm would be the best for our particular problem.
Different clustering algorithms produce different partitions of
data, and even the same clustering algorithm provides different
results when using different initializations and/or different al-
gorithm parameters. This is in fact one of the major drawbacks
in current cluster analysis techniques: the lack of robustness.

To avoid such a limitation, we have developed a divide
and conquer clustering approach, using the notions of clus-
tering ensemble [23] and multiple clusterings combination. A
clustering ensemble P consists of a set of N partitions P

n

produced for the same data with n = 1, .., N . Each of these
partitions provides a different and independent evidence of
data structure, which can be combined to construct a global
clustering result for the whole feature space. There are different
ways to produce a clustering ensemble. We use Sub-Space
Clustering (SSC) [20] to produce multiple data partitions,
applying the same clustering algorithm to N different sub-
spaces U

n

⇢ X of the original space.

A. Clustering Ensemble and Sub-Space Clustering

Each of the N sub-spaces U
n

⇢ X is obtained by selecting
R features from the complete set of A attributes. The number
of sub-spaces N hence is equal to R-combinations-obtained-
from-A. To set the sub-space dimension R, we take a very

TABLE I. FEATURE USED FOR THE DETECTION OF DOS, DDOS, NETWORK/PORT SCANS, AND SPREADING WORMS. ANOMALIES OF DISTRIBUTED NATURE 1-TO-N OR
N-TO-1 INVOLVE SEVERAL /24 (SOURCE OR DESTINATIONS) ADDRESSES CONTAINED IN A SINGLE /16 ADDRESS.

Anomaly Distributed nature Aggregation type Clustering result Impact on traffic features

DoS (ICMP _ SYN) 1-to-1 IPsrc/⇤ Outlier nSrcs = nDsts = 1, nPkts/sec > �1, avgPktsSize < �2,
IPdst/⇤ Outlier (nICMP/nPkts > �3 _nSYN/nPkts > �4).

DDoS (ICMP _ SYN) N-to-1
IPsrc/24 (l3) Cluster nDsts = 1, nSrcs > ↵1, nPkts/sec > ↵2, avgPktsSize < ↵3,

to several @IP/24 IPsrc/16 (l4) Outlier (nICMP/nPkts > ↵4 _ nSYN/nPkts > ↵5).
IPdst/⇤ Outlier

Port scan 1-to-1 IPsrc/⇤ Outlier nSrcs = nDsts = 1, nDstPorts > �1, avgPktsSize < �2,
IPdst/⇤ Outlier nSYN/nPkts > �3.

Network scan to 1-to-1
IPsrc/⇤ Outlier

nSrcs = 1, nDsts > �1, nDstPorts > �2, avgPktsSize < �3,
several @IP/24 IPdst/24 (l6) Cluster

nSYN/nPkts > �4.
IPdst/16 (l7) Outlier

Spreading worms to 1-to-N
IPsrc/⇤ Outlier

nSrcs = 1, nDsts > ⌘1, nDstPorts < ⌘2, avgPktsSize < ⌘3,
several @IP/24 IPdst/24 (l6) Cluster

nSYN/nPkts > ⌘4.
IPdst/16 (l7) Outlier

useful property of monotonicity in clustering sets, known as
the downward closure property: “if a collection of points is a
cluster in a d-dimensional space, then it is also part of a cluster
in any (d � 1) projections of this space” [24]. This directly
implies that, if there exists any evidence of density in X, it
will certainly be present in its lowest-dimensional sub-spaces.
Using small values for R provides several advantages: firstly,
doing clustering in low-dimensional spaces is more efficient
and faster than clustering in bigger dimensions. Secondly,
density-based clustering algorithms provide better results in
low-dimensional spaces [24], because high-dimensional spaces
are usually sparse, making it difficult to distinguish between
high and low density regions. We shall therefore use R = 2
in our SSC algorithm, which gives N = CA

R

= A(A � 1)/2
partitions.

B. Combining Multiple Partitions

Having produced the N partitions, we now explore differ-
ent methods to combine these partitions in order to build a sin-
gle partition where anomalous flows are easily distinguishable
from normal-operation traffic: the classical Evidence Accumu-
lation (EA) and the new Inter-Clustering Result Association
(ICRA) method.

1) Combining Multiple Partitions using Evidence Accumu-
lation: A possible answer is provided in [21], where authors
introduced the idea of multiple-clusterings Evidence Accumu-
lation (EA). By simple definition of what it is, an anomaly may
consist of either outliers or small-size clusters, depending on
the aggregation level of flows in Y (cf table I). EA then uses
the cluster ensemble P to build two inter-pattern similarity
measures between the flows in Y. These similarity measures
are stored in two elements: a similarity matrix S to detect
small clusters and a vector D used to rank outliers. S(p, q)
represents the similarity between flows p and q. This value
increases when the flows p and q are in the same cluster many
times and when the size of this cluster is small. These two
parameters allows the algorithm to target small clusters. D(o)
represents the abnormality of the outlier o. This value increases
when the outlier has been classified as such several times and
when the separation between the outlier and the normal traffic
is important. As we are only interested in finding the smallest-
size clusters and the most dissimilar outliers, the detection
consists in finding the flows with the biggest similarity in S and
the biggest dissimilarity in D. Any clustering algorithm can
then be applied on the matrix S values to obtain a final partition
of X that isolates small-size clusters of close similarity values.
A variable detection threshold over the values in S is also able

to detect small-size cluster. Concerning dissimilar outliers, they
can be isolated though a threshold applied on the values in D.

2) Combining Multiple Partitions using Inter-Clustering
result Association: However, by reasoning over the similarities
between patterns (here flows), EA introduces several potential
errors. Let us consider two pattern sets P

i

and P
j

, if the
cardinality of these pattern sets is close and if they are present
in a similar number of sub-spaces, then EA will produce a very
close (potentially the same) similarity value for both flow sets.
They will then likely be falsely considered as belonging to the
same cluster. This possibility has to be considered very seri-
ously as it can induce a huge error: different anomalies will be
merged together and will then likely be wrongly identified and
characterized. Another source of potential error when using a
clustering algorithm over S values is the algorithm sensitivity
to wrong parameters. Furthermore, the use of a threshold over
S and/or D can decrease the system performance in case of a
wrong value used.

In order to avoid the previously exposed sources of error,
we introduce a new way of combining clustering results ob-
tained from sub-spaces: Inter-Clustering Results Association.
The idea is to address the problem in terms of cluster of
flows and outlier of flow similarity instead of pattern (or flow)
similarity. Hence, we shift the similarity measure from the
patterns to the clustering results. The problem can then be split
in two sub-problems: correlate clusters through Inter-CLuster
Association (ICLA), and correlate outlier through Inter-Outlier
Association (IOA).

In each case, a graph is used to express similarity between
either clusters or outliers. Each vertex is a cluster/outlier from
any sub-space U

n

and each edge represents the fact that
two connected vertices are similar. The underlying idea is
straightforward: identify clusters or outliers present in different
sub-spaces that contain the same flows. To do so, we first
define a cluster similarity measure called CS between two
clusters C

r

and C
s

: CS(C
r

, C
s

) = card(Cr\Cs)

max(card(Cr),card(Cs)
,

card being the function that associates a pattern set with
its cardinality, and C

r

\ C
s

the intersection of C
r

and C
s

.
Each edge in the cluster similarity graph between two C

r

and C
s

means CS(C
r

, C
s

) > 0.9, being this an empirically
chosen value. The value 0.9 guarantees that the vast majority
of patterns are located in both clusters with a small margin of
error. IOA uses an outlier similarity graph built by linking
every outlier to every other outlier that contains the same
pattern. Once these graphs are built, we need to find cluster
sets where every cluster contains the same flows. In terms of

vertices, we need to find vertex sets where every vertex is
linked to every other vertex. In graph theory, such vertex set
is called a clique. The clique search problem is a NP-hard
problem. Most existing solutions use exhaustive search inside
the vertex set which is too slow for our application. We then
make the hypothesis that a vertex can only be part of a single
clique. A greedy algorithm is then used to build each clique.
Anomalous flow set are finally identified as the intersection of
all the flow sets present in the clusters or outliers within each
clique.

IV. CORRELATING ANOMALOUS TRAFFIC CLASSES

A. Address related correlation

Thanks to previous algorithm, we can detect several classes
of illegitimate traffic, but these classes can appear in different
aggregation levels. We know that such classes present at
different levels can be related to each other. Indeed, two
traffic classes in two different aggregation levels are related for
example when their flows come from the same sources and go
towards the same destinations. For a better characterization of
traffic classes, it is then important to link classes corresponding
to the same single anomaly. Correlating illegitimate traffic
classes is a solution for that purpose; it is able to determine
the similarity between classes at each aggregation level, for
possibly grouping them if they belong to the same anomaly.

For estimating the similarity between two illegitimate
traffic classes on two different aggregation levels, we use a
comparison function. It relies on IP addresses comparison [1].
The comparison method then uses the IP source and destination
addresses of the different traffic classes a

1

and a
2

. It then
compares source IP addresses with each other, and destination
IP addresses with each other, using function (1).

Sim
@

(@
1

,@
2

) =
|@

1

\@
2

|
max(|@

1

|, |@
2

|) (1)

where @
n

is a set of IP addresses, and |@
n

| the number of
addresses in this set.

It exists a similarity between two illegitimate traffic classes
if equation (2) is true. tTSAddrSims is a threshold to be
defined.

Sim
src

(@
1

,@
2

) > tTSAddrSims ^ Sim
dest

(@
1

,@
2

)

> tTSAddrSims (2)

This method as defined in our previous work [1] has some
lacks, and especially because it does not consider time. It
appears when testing this method on the Maryland data that
some flows of the same class are separated in time by several
months. It is then clear that it is not satisfactory to consider
only IP addresses. For example, illegitimate traffic classes
detailed in tables II and III are completely different from a
behavior point of view. For the first class, the number of sent
packets in each flow is around 54, whereas it is around 4 in
the second class. In addition, the time difference between these
sendings is around two months. The only similarity between
these two classes is related to their source IP addresses (saddr),
and destination IP addresses (daddr). In this case the similarity
value between the two classes with the previous function is
66%, what is significantly high, and would indicate a strong

link between them. Given the time at which they happened it
is certainly not true, and malware infecting the machines are
certainly not the same. As a consequence, we added temporal
features to the correlation function.

Let us consider two illegitimate traffic classes a
1

and a
2

.
T
1

and T
2

are the set of time intervals in which traces of a
1

and a
2

appear. @n

1

and @n

2

are the set of source and destination
IP addresses of classes a

1

and a
2

for the interval t
n

2 T
1

. The
new similarity function is then defined as:

SimTime
@

=
X

t2T1

Sim
@

(@t

1

,@t

2

)

max(|@t

1

|, |@t

2

|) (3)

However, if it exists time intervals between two classes,
the similarity function equals a value very close from zero,
whereas these two classes can be highly similar for other
features. We then still need to keep in the computing of the
similarity function the IP addresses of the anomaly classes a

1

and a
2

. But the addresses must be computed intependentely
from any temporal feature.

SimGlobal
@

=
Sim

@

(@
1

,@
2

)

max(|@
1

|, |@
2

|) (4)

We then obtain the simlarity function defined by equation
(5).

SimAnomalies(a1, a2) = (SimTime
Src

(a
1

, a
2

) > �
1

)

^ (SimTime
Dest

(a
1

, a
2

) > �
1

)

^ (SimGlobal
Src

(a
1

, a
2

) > �
2

)

^ (SimGlobal
Dest

(a
1

, a
2

) > �
2

) (5)

The result of this function is a boolean value which is true
if a

1

and a
2

are similar.

B. Time related correlation

Let’s take again the examples of classes detailed in tables
II and III. It is clear that there is no link between these two
classes because they happened at very different times. Let’s
apply equation (5). Let’s consider IP addresses of the first
class on February 1st at 2h40 am. Source IP addresses are
192.168.0.1 and 192.168.0.2. At that time, the second class
is empty (it happened on April 10th to 13th). The similarity
is then correctly estimated as false. By continuing with other
times and the same method, we always obtain a false value for
the similarity. The new similarity function then correctly does
not find any similarity between these two illegitimate traffic
classes.

Nevertheless, it is required with this new method to fix
correct threshold values. If thresholds are not well selected
returned values could be erroneous. With a small �

1

value,
each time a small temporal similarity will appear between
two illegitimate classes, it will be the global similarity value
that will determine the final similarity result between the two
classes. If �

1

is high, the two classes will be considered as
similar if they sent packet almost at the same time, from the
same source and to the same destinations. This is a strong

month day hour min saddr daddr nPkts nBytes nSyn/nPkts
02 01 02 4 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 54 4726 0.1481481
02 01 03 40 192.168.0.1, 192.168.0.3 172.16.4.16, 172.16.4.21 54 4869 0.1481481
02 01 18 05 192.168.0.1, 192.168.0.3 172.16.4.16, 172.16.4.21 53 3996 0.0754717
02 01 19 55 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 54 4545 0.1481481
TABLE II. FIRST EXAMPLE OF AN ILLEGITIMATE TRAFFIC CLASS (IP ADDRESSES HAVE BEEN ANONYMISED)

month day hour min saddr daddr nPkts nBytes nSyn/nPkts
04 10 01 30 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 5 20 1
04 11 01 30 192.168.0.1, 192.168.0.3 172.16.4.16, 172.16.4.21 4 160 1
04 12 01 30 192.168.0.1, 192.168.0.2 172.16.4.16, 172.16.4.21 5 20 1
04 13 01 30 192.168.0.1 172.16.4.16, 172.16.4.21 4 160 1

TABLE III. SECOND EXAMPLE OF AN ILLEGITIMATE TRAFFIC CLASS (IP ADDRESSES HAVE BEEN ANONYMISED)

constraint and forbids any time difference in the sendings. The
global similarity will then be of less importance. Based on
our experience with the traces of University or Maryland, we
empirically recommend to select for �

1

a low threshold value,
between 10% and 30%, and for �

2

a threshold value greater
than 25%.

Illegitimate traffic classes that appear as different after the
sub-space clustering phase can then be grouped, as it is shown
that they correspond to the same anomaly.

V. AUTOMATIC CHARACTERIZATION OF ANOMALIES

At this stage, the global traffic from and towards honeypots
has been decomposed into traffic classes that exhibit different
behaviors. Classification techniques of the Internet traffic have
now to identify the type of each of these traffic classes, the
generating application, or the type of attack or anomaly, each
of these clusters is related to. Most advanced classification
techniques, i.e. semi-supervised techniques, take advantage of
signatures that specifically identify one of the possible traffic
families, applications, or attacks. These signatures come either
from a previous knowledge or expertise in this domain, either
on a training stage on a known traffic, whose application
components have already been labeled. This is obviously a
strong requirement for classification purposes, but it remains
a severe limit for designing a fully autonomous method.

However, in this work, at the opposite of what has been
already done in the research area of autonomous traffic clas-
sification, this constraint does not exist because of the traffic
nature that we have to analyze: illegitimate traffic. It is thus not
needed to perfectly identify the anomaly kind (or attack), or to
name it. Indeed, all traffic classes that have been isolated by
the sub-space clustering algorithm, and evidence accumulation
are anomalies or attacks. Therefore, the computing to be
performed for each traffic anomaly or attack, in fine, consists in
discarding them, after having identified any necessary feature
required for instance for estimating the risk they represent in
the Internet.

We then propose for this purpose to automatically generate
the rules characterizing the anomaly classes. Based on these
rules, it is easy to understand the anomalies characteristics and
to infer the countermeasures to be performed (and of course,
this can be done by a computer process).

At this stage, the sub-space clustering / evidence accumu-
lation / correlation algorithm has identified several correlated
anomalies containing a set of traffic flows in Y far out the rest

of the traffic. The following task is to produce the appropriate
filtering rules to correctly isolate and characterize each of these
anomalies.

In order to produce filtering rules, the algorithm selects
those sub-spaces U

n

where the separation between the consid-
ered anomalous flows and the rest of the traffic is the biggest.
We define two different classes of filtering rule: absolute rules
FR

A

(Y) and relative rules FR
R

(Y). Absolute rules do not
depend on the separation between flows, and correspond to
the presence of dominant features in the considered flows. An
absolute rule for a certain feature j characterizing a certain
flow set Y

g

has the form

FR
A

(Y
g

, a) = {8y
f

2 Y

g

⇢ Y : x
f

(a) == �}.

For example, in the case of an ICMP flooding attack, the
vast majority of the associated flows use only ICMP pack-
ets, hence the absolute filtering rule {nICMP/nPkts == 1}
makes sense. On the contrary, relative filtering rules depend
on the relative separation between anomalous and normal-
operation flows. Basically, if the anomalous flows are well
separated from the normal cluster in a certain partition P

n

,
then the features of the corresponding sub-space U

n

are good
candidates to define a relative filtering rule. A relative rule has
the form

FR
R

(Y
g

, a) = {8y
f

2 Y

g

⇢ Y : x
f

(a) < � _ x
f

(a) >
�}.

We shall also define a covering relation between filtering
rules: we say that rule f

1

covers rule f
2

, f
2

(Y) ⇢ f
1

(Y).
If two or more rules overlap (i.e., they are associated to the
same feature), the algorithm keeps the one that covers the rest.

In order to construct a compact signature of the anomaly,
we have to devise a procedure to select the most discriminant
filtering rules. Absolute rules are important, because they
define inherent characteristics of the anomaly. As regards
relative rules, their relevance is directly tied to the degree of
separation between anomalous and normal flows. In the case of
outliers, we select the K features for which the Mahalanobis
distance to the normal-operation traffic is among the top-K
biggest distances. In the case of small-size clusters, we rank
the relatives rules according to the degree of separation to the
normal anomaly using the well-known Fisher Score (FS) which
uses the variance in each cluster (normal and anomalous). To
finally construct the signature, the absolute rules and the top-
K relative rules are combined into a single inclusive predicate,
using the covering relation in case of overlapping rules.

Fig. 1. The different filtering rules for sub-spaces (nSyn/nPkts,
nDiffDestAddr)

What follows gives a real example of the generation of
filtering rules based on an anomaly characterization. It is
depicted on Figure 1. Clusters 2 and 3 have their value
nSyn/nPkts always equal to 1. It then exists for them an
absolute rule {nSyn/nPkts == 1}.

On Figure 1, there exists a relative rule between cluster 1
and cluster 4. For generating it, we draw the median between
clusters 1 and 4. Based on this median value, we can create
the relative rule {nDiffDestAddr < 9}.

VI. RISK BASED ANOMALIES RANKING

Estimating the risk related to an anomaly can help a
security expert, in the general case, selecting the traffic classes
that require to be computed in priority. In our specific case
where all traffic classes identified are illegitimate, it can help to
distinguish for instance between anomalies that are real attacks
from scanning which in general just serves for preparing a
possible future attack. In that case, the risk ranking can help
superposing relative filtering rules, targeting in priority the
most risky one.

The way our risk ranking is done depends on the amount of
communication; the more communication in an anomaly or at-
tack, the more risky. In addition, anomalies that appear in many
sub-spaces are considered as more dangerous than the ones
appearing in a single or on very few sub-spaces. Three features
are considered for estimating the risk related to an anomaly.
The first one is the number of packets of the anomaly, because,
if there are many packets exchanged between the attacking and
the victim machines, there exist potentially machines infected
by a virus, or a flooding attack attempt. The second feature is
the amount of bytes exchanged in the anomaly, because, even if
the number of exchanged packets is reduced, a large amount of
bytes could have been exchanged. This may correspond to the
download of information from a victim machine by an attacker,
or the upload of viruses on several victim machines from the
attacker machine. Last, the third feature is the communication
duration between the attacker and a target machine. The longer
the communication duration, the more probable an attacker

performing a download, or having an open shell on the victim
machine.

The formula used for the risk estimation is:

risk = C ⇤ (log(nPkts)+ log(nBytes)+ log(duration+1))
(6)

where C is the number of sub-spaces in which the anomaly
appears, nPkts is the number of exchanged packets in the
anomaly, nBytes is the number of exchanged bytes, and
duration is the duration of the anomaly. +1 appears in
log(duration+1) for avoiding some errors as duration 2 R

+

whereas (nPkts, nBytes) 2 R⇤
+

. The communication dura-
tion can be assimilated as zero because it can be so small that
measurement devices can measure it as zero. On the other side,
the number of packets or bytes are necessarily greater or equal
to 1.

VII. EXPERIMENTAL EVALUATION IN REAL TRAFFIC

We run the algorithm described in this paper on the
honeypot traffic traces gathered at the University of Maryland.
For obvious privacy reasons, as well as space limit, we will
not present the complete set of attacks evidenced. But we
will show on an example how the algorithm behaves, and
how it succeed in classifying attacks and anomalies, how it
builds the anomaly classes characteristics based on sub-space
clustering, evidence accumulation, and anomaly correlation. It
also presents the filtering rules that have been autonomously
generated and that can serve for automatically configuring
security devices as filtering functions of routers, or firewalls.

This section starts by showing the complete behavior of the
algorithm applied on a single anomaly (designated as anomaly
[224]). Figure 2 shows 5 sub-spaces in which anomalies
mentioned in this section appear (all sub-spaces in which the
anomaly appears are not depicted on figure 2 for space limit
reason). On each of these sub-spaces, clusters clearly appear,
each corresponding to different anomalies. Figure ?? shows
the cliques that have been built for correlating the clusters
found in different sub-spaces, and then linking the ones that
correspond to the same anomaly or attack.

Anomaly [224] appears in Figure 2 on subspaces (c) and
(e), on the red cluster with nRst

n

Pkts = 0.

Finally, the algorithm generated the following signature
that fully characterizes anomaly [224]:

Characteristics of attack [224]:

(avgSport > 51209.3738990333) ^
(avgSport < 42107.1671947005) ^
(bgstDestPortTcp

t

NbOccuDestPortTcp < 262.25) ^
(destPortTcpMax < 291) ^ (destPortTcpMin <
291) ^ (nBytes > 19187.5) ^ (nBytes < 118272) ^
(nBytes

n

Flow > 843.428571428571) ^ (nBytes
n

Flow <
1425.16666666667) ^ (nDiffDestPort = 1) ^
(nDiffSrcAddr = 1) ^ (nDiffSrcPort <
40.5)^(nPkts > 198)^(nPkts < 1200.5)^(nPktsIcmp =
0) ^ (nPkts

n

Flow > 21.5) ^ (nPkts
n

Flow <
11.3333333333333) ^ (nPktsUdp = 0) ^ (nRst

n

Pkts =
0) ^ (nSyn

n

Pkts > 0.115691489361702) ^ (nSyn
n

Pkts <
0.183333333333333) ^ (nSynTcp

n

PktsTcp <
0.291666666666667) ^ (srcPortTcpMax < 61502) ^

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

testl1−26: eps=10 MinPts=5

nSyn_nPkts

nP
kt
sT
cp

(b)
0.0 0.2 0.4 0.6 0.8 1.0

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

testl1−36: eps=5 MinPts=5

nSyn_nPkts

nB
yt
es
_n
Fl
ow

(c)
0.0 0.2 0.4 0.6 0.8 1.0

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

testl1−41: eps=5 MinPts=5

nRst_nPkts

nB
yt
es
_n
Fl
ow

(d)
0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

testl2−20: eps=1 MinPts=5

nDiffDestAddr

nR
st
_n
Pk
ts

(e)
0.0 0.2 0.4 0.6 0.8 1.0

0
20
00

40
00

60
00

80
00

10
00
0

testl2−41: eps=5 MinPts=5

nRst_nPkts

nB
yt
es
_n
Fl
ow

Fig. 2. Sub-spaces in which anomalies [44], [224], and [327] appear. These sub-spaces correspond to different IP address aggregation levels and different
temporal granularities

Fig. 3. Two levels of cliques appearing when correlating anomalies in different sub-spaces

(srcPortTcpMax > 34033.5) ^ (srcPortTcpMin <
61502) ^ (srcPortTcpMin > 34033.5)

Anomaly [327] appears in Figure 2 on subspaces (d) with
the blue cluster, and (e), with the green cluster corresponding
to nRst

n

Pkts = 0.5.

Finally, the algorithm generated the following signature
that fully characterizes anomaly [327]:

Characteristics of attack [327]:

(nBytes
n

Flow < 93.6666666666667) ^
(nBytes

n

Flow > 74) ^ (nDiffSrcAddr =

1) ^ (nFin
n

Pkts = 0) ^ (nFinTcp
n

PktsTcp =
0) ^ (nPkts = 2) ^ (nPktsTcp = 2) ^ (nRst

n

Pkts =
0.5) ^ (nSyn

n

Pkts = 0.5) ^ (nSynTcp
n

PktsTcp = 0.5)

Anomaly [44] appears in Figure 2 on subspaces (b) with
the black cluster corresponding to nSyn

n

Pkts = 1 and (c),
with the pink cluster corresponding to nRst

n

Pkts = 1.

Finally, the algorithm generated the following signature
that fully characterizes anomaly [44]:

Characteristics of attack [44]:

(bpp = 40) ^ (nBytes
n

Flow = 40) ^
(nDiffDestAddr = 1) ^ (nPkts = 1) ^ (nPkts

n

Flow =
1)^(nPktsTcp = 1)^(nRst

n

Pkts = 1)^(nSyn
n

Pkts = 0)

VIII. CONCLUSION

This paper presents an unsupervised algorithm for clas-
sifying illicit traffic. This algorithm has several advantages
compared to previous work: (i) it works in a completely
unsupervised manner, what makes it able to work on top of any
monitoring system, and directly usable, without preliminary
configuration or knowledge. (ii) It combines robust clustering
techniques to avoid classical issues of clustering algorithms,
e.g. sensitivity to initial configuration, the required a priori
indication of teh number of clusters to be identified, or
the sensitivity of results when using less pertinent features.
(iii) It automatically builds simple and small signatures fully
characterizing attacks; theses signature can then be used in a
filtering security device. (iv) It is designed to run in real time
by making possible to take advantage of the parallelism of our
clustering approach.

This algorithm thus opens new perspectives for performing
a risk analysis in the Internet - taking advantage of honeypot
traffic - and automatically configuring related filtering rules on
routers, switches, or firewalls.

ACKNOWLEDGEMENTS

The author sincerely thanks Michel Cukier and Bertrand
Sobesto for providing the traffic traces gathered on the honey-
pots of the University of Maryland. The author thanks Johan
Mazel and Pedro Casas who have been first involved in the
research work on the sub-space clustering algorithm applied to
the full Internet traffic. The author also thanks Richard Turc
who started this work on the analysis of the honeypot traffic
during his master internship at LAAS. This work is supported
by the ONTIC project, funded by the European commission
under grant FP7-ICT-2013-11/619633.

REFERENCES

[1] J. Mazel, P. Casas, Y. Labit, and P. Owezarski, “Sub-space clustering,
interclustering results association & anomaly correlation for unsuper-
vised network anomaly detection,” in 7th International Conference on
Network and Service Management (CNSM 2011), CNSM’11, october
2011.

[2] R. Berthier, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder, and
D. Sheleheda, “Nfsight: Netflow-based network awareness tool,” in
Proceedings of the 24th international conference on Large installation
system administration (LISA’10), 2010.

[3] J. Mazel, “Unsupervised network anomaly detection,” in PhD thesis of
INSA Toulouse, 2011.

[4] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proc. ACM IMW, 2002.

[5] J. Brutlag, “Aberrant behavior detection in time series for network
monitoring,” in Proc. 14th Systems Administration Conference, 2000.

[6] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-
wide anomalies in traffic flows,” in Proc. ACM IMC, 2004.

[7] A. Lakhina, C. Diot, and M. Crovella, “Diagnosing network-wide traffic
anomalies,” in Proc. ACM SIGCOMM, 2004.

[8] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” in Proc. ACM SIGCOMM, 2005.

[9] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proc. ACM IMC,
2003.

[10] X. Li, F. Biang, M. Crovella, C. Diot, R. Govindan, G. Iannaccone, and
A. Lakhina, “Detection and identification of network anomalies using
sketch subspaces,” in Proc. ACM IMC, 2006.

[11] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of pca for
traffic anomaly detection,” in Proc. ACM SIGMETRICS, 2007.

[12] P. Casas, S. Vaton, L. Fillatre, and I. Nikiforov, “Optimal volume
anomaly detection and isolation in large-scale ip networks using coarse-
grained measurements,” in Computer Networks, vol. 54, pp. 1750-1766,
2010.

[13] P. Casas, J. Mazel, and P. Owezarski, “Unada: Unsupervised network
anomaly detection using sub-space outliers ranking,” in IFIP Network-
ing conference, 2011.

[14] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled
data using clustering,” in Proc. ACM DMSA Workshop, 2001.

[15] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric
framework for unsupervised anomaly detection: Detecting intrusions in
unlabeled data,” in Applications of Data Mining in Computer Security,
Kluwer Publisher, 2002.

[16] K. Leung and C. Leckie, “Unsupervised anomaly detection in network
intrusion detection using clustering,” in Proc. ACSC05, 2005.

[17] G. Fernandes and P. Owezarski, “Automated classification of network
traffic anomalies,” in Proc. SecureComm’09, 2009.

[18] F. Silveira and C. Diot, “Rca: Pulling anomalies by their root causes,”
in Proc. IEEE INFOCOM, 2010.

[19] G. Cormode and S. Muthukrishnan, “What’s new: Finding significant
differences in network data streams,” in IEEE Trans. on Networking,
vol. 13 (6), pp. 1219-1232, 2005.

[20] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high
dimensional data: a review,” in ACM SIGKDD Expl. Newsletter, vol.
6 (1), pp. 90-105, 2004.

[21] A. Fred and A. K. Jain, “Combining multiple clusterings using evi-
dence accumulation,” in IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27 (6), pp. 835-850, 2005.

[22] A. K. Jain, “Data clustering: 50 years beyond k-means,” in Pattern
Recognition Letters, vol. 31 (8), pp. 651-666, 2010.

[23] A. Strehl and J. Ghosh, “Cluster ensembles - a knowledge reuse
framework for combining multiple partitions,” in Journal on Machine
Learning Research, vol. 3, pp. 583-617, 2002.

[24] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
subspace clustering of high dimensional data for data mining applica-
tions,” in Proc. ACM SIGMOD, 1998.

