
DFVisor: Scalable Network Virtualization for QoS
Management in Cloud Computing

Lingxia Liao, Victor C.M. Leung, and Panos Nasiopoulos
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada

liaolx@ece.ubc.ca, vleung@ece.ubc.ca, panos@ece.ubc.ca

Abstract—Increasingly cloud-based virtual networking envi-
ronments are required to provide fine-grained Quality of Service
(QoS) management without sacrificing scalability. However, no
single approach currently can meet these requirements simul-
taneously. This paper introduces a layered concept that uses a
common overlay mechanism to virtualize networks and enable
fine-grained QoS management through resource slicing. Based
on this mechanism, a fully distributed network virtualization
platform called Distributed FlowVisor (DFVisor) is proposed. It
uses a layered overlay to improve the network addressing space,
reduce flow setup latency, and remove the single point of failure
in the network - the central slice controller. Through a distributed
synchronized two-level database, DFVisor incorporates a push-
based flow setup and statistics collecting mechanism using a
dedicated data channel to address the scalability issues caused
by the current pull-based mechanism and the limited control
channel bandwidth shared by both control flows and network
statistics. The potential issues in DFVisor implementation and
evaluation are discussed for future research.

Index Terms—OpenFlow, cloud computing, network virtual-
ization, QoS

I. INTRODUCTION

With the rapid development of cloud computing, more and
more applications are migrating to the cloud to take advantage
of its elastic resource pool and pay-as-you-go charging model.
The large number of applications that belong to different
tenants of a cloud data center may have different Quality
of Service (QoS) requirements, which creates a big challenge
for cloud virtualization environments to provide fine-grained
network QoS management while maintaining scalability. Cur-
rently, there is no single approach that can achieve these goals
simultaneously. The most commonly used approach of cloud
network virtualization is overlay, and in current research fine-
grained QoS management is often based on flow switching
through OpenFlow protocol.

Overlay uses tunneling techniques to enable network vir-
tualization. It nicely addresses scalability in large scaled
network environments with complex network topologies, and
has been adopted to enable multi-tenant network virtualization
environments in current cloud data centers. However, current
overlay implementations are mostly based on the existing
network protocol stack, which makes it difficult to support
fine-grained QoS management. OpenFlow based flow switch-
ing is a mechanism that has been studied recently to enable
fine-grained QoS management for OpenFlow network fabric.
An OpenFlow supporting switch can differentiate flows and
hence support fine-grained QoS management. This mechanism

(referred as resource slicing in this paper) has been explored to
provide virtual networks with different QoS to different tenants
[1]. Using this mechanism, each virtual network is defined
as a slice such that two slices are logically isolated through
the slice controller, and the flows of a slice are forwarded
according to the flow entries. Therefore, it facilitates a multi-
tenant network virtualization environment with information
isolation at network nodes. It nicely addresses the issue of
the lack of fine-grained QoS management support in overlay
techniques. However, this mechanism depends highly on the
OpenFlow protocol and the centralized slice controller model,
and has the following limitations: 1) the address space of the
12-bit virtual local area network (VLAN) identity is limited;
2) the current pull-based flow setup procedure supported by
Openflow switch specification creates flow setup latency; 3)
sharing of limited control channel bandwidth between a switch
and its controller by both control and network statistics flows
limits the flow setup rate; 4) the statistics gathering latency
caused by current pull-based statistic gathering procedure is
not able to support some global flow schedulers [2]; 5) the
centralized slice controller used in the current resource slicing
approach such as FlowVisor adds more flow setup latency;
6) a centralized slice controller represents a single point of
failure in the network. Current research shows that these six
limitations can cause a big scalability issue in a cloud data
center. Finding an approach for a cloud network to provide
fine-grained QoS management without sacrificing scalability
is significant in both research and practice.

This paper introduces a layered overlay concept that con-
structs multiple OpenFlow overlays on top of a common
overlay. Through combining tunneling and resource slicing
virtual network techniques, it ensures that only selected slices
and the selected flows in a slice are forwarded using flow
based switching, such that problem (1) can be solved by the
mature overlay techniques, and problems (5) and (6) can be
lessened through devolving the functions of the centralized
slice controller to a local Virtual Network (VN) slicer module
in each switch and enabling the control traffic to bypass the
conventional switch data path. Based on this concept, we
present the Distributed FlowVisor (DFVisor), a scalable cloud
network virtualization platform for a cloud provider with an
Openflow enabled Cloud network to support fine-grained QoS
management. In addition to the layered overlay, the proposed
DFVisor also introduces a distributed synchronized two-level
database system including a distributed global database and



Fig. 1. The Layered Overlay Mechanism.

multiple local databases for each switch and switch con-
troller based on Apache Zookeeper [3], a high-performance
coordination service for distributed applications. Through its
watch service, the data of global and local databases can
be kept synchronized without invoking any other protocol.
Our proposed DFVisor platform not only maintains a global
network view to simplify the whole network configuration and
management but also enables a push-based flow setup and
statisticadditive white Gaussian noise at the BS and the k-
th eavesdropper, the reces gathering approach to improve the
network scalablity that has so far been limited by flow setup
and statistics gathering latency. It also creates a dedicated data
channel for network configuration and statistics collection such
that the whole OpenFlow control channel between a switch
and its controller can be used for flow controlling. In this way,
our proposed DFVisor eases the network scalability issues
caused by problems (2), (3), and (4).

This paper presents a research work in process with three
major contributions: 1) we introduce a layered overlay concept
to support fine-grained QoS management and scalability at
switches; 2) we propose maDFVisor, a network virtualization
platform which features a fully distributed architecture based
on a distributed synchronized two-level database to support the
implementations of the layered overlay and distributed slice
controller module in each switch to address the six scalability
issues mentioned above; 3) we analysis the potential issues in
the implementation and evaluation of DFVisor.

The rest of this paper is organized as follows. We introduce
the layered overlay concept in Section II, and then propose
F)the DFVisor platform in Section III. We discuss the potential
issues in DFVisor implementation and evaluation in Section IV
and summarize the related research in Section V. Conclusions
are drawn in Section VI.

II. LAYERED OVERLAY MECHANISM

The current resource slicing approach uses a centralized
slice controller, which is situated between the network con-
trollers and the switches to monitor and manage the flows. This
added middle box ensures the information isolation among
virtual networks.

It has been identified that the current resource slicing net-
work virtualization approach lacks a native network addressing
mechanism and causes scalability issue in large-scaled cloud
networks with complex network topologies. However, not all
the flows in a cloud virtual network need fine-grained QoS

support. Simply using resource slicing mechanism to facilitate
both virtual network and fine-grained QoS management is
inefficient. Managing all the flows of a virtual network with
fine-grained QoS is not only unnecessary but also wastes
resources. Based on these observations, we introduce a layered
overlay concept. By combining the common overlay and
resource slicing mechanisms, our approach decouples network
virtualization and fine-grained QoS management by using the
common overlay for network virtualization and the OpenFlow
overlay to support fine-grained QoS management. This ap-
proach has the ability to selectively provide fine-grained QoS
support to the needy slices or the flows in a slice to effectively
use the switch resources.

As shown in Figure 1, our layered overlay constructs
multiple OpenFlow overlays on top of a common overlay that
is used to virtualize a network for each cloud tenant. The
OpenFlow overlays on top of the common overlay isolate
the flows with different QoS requirements within each virtual
network. This mechanism is based on one-to-one matching of
a virtual network to a tunnel and then a tunnel to a slice. It can
be realized in an enhanced OpenFlow switch supporting with
three features: hybrid data forwarding (conventional switching
and OpenFlow based flow switching), tunneling, and resource
slicing. The first feature can be simply provided by using
OpenFlow enabled switches; the second feature, tunneling, can
be explicitly supported by extending the OpenFlow switch
specification (version 1.3) to avoid the limited addressing
space or vendor specific issues existing in current approaches
[5]. Specifically, Generic Routing Encapsulation (GRE) tun-
neling can be enabled at the switch level through adding GRE
en/decode module into the switch data plane and extending the
OpenFlow switch specification. Specically, we can add OXM
OF GRE TUNNEL field into the current flow match fields
to support GRE package matching and add GRE Key/Header
Push and Pop actions into current OpenFlow actions to facili-
tate GRE encoding/decoding in each switch. The third feature
can be supported by devolving the centralized slice controller
such as FlowVisor [1] controller to a VN slicer module within
a switch.

Using this realization, the GRE header stack, the key of
GRE, and the slice QoS level can be identified firstly, and
then the switch can decide to use the conventional switching
for those flows that only need best effort QoS without flow
matching and save the flow table and process resources for
the flows with more specific QoS requirements. In this way,
it supports fine-grained QoS management for the selected
flows without sacrificing scalability to support a large number
of applications. This approach fits the cloud virtual network
environment, in which a large number of tenants physically
share logically isolated network infrastructure through a virtual
networking mechanism and a large number of the applications
with varied QoS requirements are running on top of it.



Fig. 2. The DFVisor network virtualization platform architecture.

III. THE DFVISOR NETWORK VIRTUALIZATION
PLATFORM

As shown in Figure 2, our DFVisor consists of three main
components: the enhanced OpenFlow enabled switches, the
enhanced VN controllers, and the distributed synchronized
two-level database system. The layered overlay mechanism
is implemented in the enhanced OpenFlow enabled switches
by adding a local VN slicer and tunneling module. The
enhanced VN controller is a normal switch controller for a
virtual network with enhanced OpenFlow protocol to sup-
port the tunneling. The distributed synchronized two-level
database system consists of a global database and multiple
local databases in switches and VN controllers. It stores
the network configuration and information and and can be
implemented in Apache Zookeeper by taking the advantage of
its watch service, which basically allows each local database
to put watchers on the global database and receive a watcher
notice when the data in the global database gets updated.
Therefore, the local database can aware the data changed
in the global database and take actions to keep the data
synchronization. This two-level database system also creates
a dedicated data channel, where the network information pre-
defined or -stored in the global database such as network
configuration, topologies, QoS policies, and network statistics
can be delivered to each switch and VN controller without
invoking any other protocols. Therefore, each VN controller
can pre-load its slice and flowspaces information from the
global database and construct the flow entry for the traffic in
each flowspace within a virtual network (slice) without waiting
for a switch to generate a packet-in message when a new
flow received; and each VN controller also can periodically
updates the network statistics through the synchronization
from the global database, to which the switch collects the
network statistics and send them periodically. In this way, our
proposed DFVisor platform maintains a synchronized global
and local network view, which not only simplifies the network
configuration and management but also facilitates a push-
based flow setup and network statistics collecting mechanism
without modifying the current OpenFlow protocol using a
dedicated data channel. In this way, our proposed DFVisor
platform advances the state of the arts by improving the system
scalability limited by problems (2), (3), and (4).

Fig. 3. Enhanced OpenFlow enabled switch structure.

Figure 3 shows the logical structure of the enhanced Open-
Flow switch, where a local VN slicer module is added to man-
age the VN slices through a flow control channel. The switch
also maintains a local database, which stores the local network
configuration and statistics to facilitate a fast data processing.
This local database is also connected with the global database
through a database client and a dedicated data channel, which
enables data synchronization in both directions. Meanwhile,
each VN controller also maintains a local database, which is
synchronized with the global database through its global client
using the synchronization mechanism presented above. In this
way, our DFVisor forms a fully distributed virtual network
architecture and solves the six major scalability problems in
current resource slicing approaches. It changes the situation
that only pull based flow setup and statistic gathering mech-
anism is supported in current OpenFlow switch specifications
and protocols, and facilitates a push-based mechanism without
modifying current OpenFlow switch specification and protocol
for flow setup and statistic collecting to reduce the flow setup
and statistic gathering latency; it also increases the real flow
control bandwidth by using another dedicated data channel for
network configuration and statistics, such that the scalability
issue caused by problems (2), (3), and (4) can be overcome.

Our DFVisor is an end to end network virtualization solu-
tion. When a flow initiated by an application inside a virtual
machine comes to its access virtual switch, the flow gets GRE
encapsulation and is matched to a slice whose configuration
and topology have been defined in the global database and
synchronized to the related local databases; the tunneled flow
is then sent to its next hop according to the virtual network
topology. At each hop the flow follows the same routine:
de-capsulating, flow matching, and encapsulating until it hits
the end virtual switch, where the flow is finally decapsulated
and sent to the destination machine. Our DFVisor is a fully
distributed architecture that does not add any new single point
of failure. It is scalable and flexible. The fine-grained QoS
management can be developed as a module on top of a normal
switch controller, and the whole system can be implemented
based on open source network building blocks.

IV. ISSUES AND RESEARCH DIRECTIONS

Our work presented in this paper is based on our preliminary
research. Three major issues remain in terms of how DFVisor
performs and how it is best implemented, which will be
addressed in our ongoing and future research.



The performance of the DFVisor can be highly affected by
the performance of the enhanced OpenFlow enabled switch.
The enhanced Openflow switches have the overhead caused
by the VN slicer module and the tunnel module. Since the
current centralized FlowVisor controller is very lightweight
[4], a local VN slicer that only deals with the flows of a
virtual network should not impose much overhead on the
CPU of a switch. However, finding a way to reduce the
resource consumption of the VN slicer control module without
sacrificing its performance is the main goal in its current
implementation. Developing some mechanism to provision the
virtual network while balancing the traffic for each switch is
the first research problem for the future.

The DFVisor is developed based on a distributed synchro-
nized two-level database system, which can be implemented
on the Apache Zookeeper and its watch service can be
used for the two level databases synchronization. This watch
based synchronization mechanism creates latency for database
synchronization. It may impose longer latency for a switch
to receive a flow entry and a VN controller to update the
network statistics. However, they are push-based, which means
that all the flow entries and statistics are pre-loaded. As long
as they can be completed before actually needed, the slightly
longer latency shouldn’t impact the system performance and
scalability. The synchronization between the databases may
also increase the network traffic, but we can solve it by
forming a dedicated network to manage database synchro-
nization. With the growing of the virtual network scalability,
the information inside the global database and the number
of watchers added on the global database can grow huge,
it creates a big overhead for the global database. However,
Apache Zookeeper itself is a clustered structure, adding more
physical nodes to this cluster should solve this problem.
Analyzing the synchronization mechanism and evaluating its
performance is the second research problem for the future.

DFVisor is designed for a large-scale cloud network, but
it is difficulty to measure its scalability order since building
a large-scale network test bed in a lab is hardly practical.
We plan to use network emulator: MININET to emulate a
large-scale network for DFVisor prototyping, and use open
source network simulator: NS-3 for DFVisor performance and
scalability evaluation. Designing test scenarios with consider-
ing the variety in network structures, performance parameters,
and the risky situation caused by un-synchronized databases,
enhancing the NS-3 simulator to enable the scalability order
testing is the third research problem for the future.

V. RELATED WORK

Our layered overlay is close to the vertical forward mech-
anism introduced in [5]. Both concepts use OpenFlow and
address the same issue that the current OpenFlow specification
has not standardized the approach for tunneling. However,
the vertical forward is used to facilitate the data migration
between network layers in a telecom network domain while
our layered overlay is used to isolate the flows among overlays
for the Internet domain. Other solutions that support tunneling

at a switch either lack scalability or are vendor specific [6].
FlowVisor’s limitation in functionality has been improved by
AdVisor[7] and VeRTIGO[8], but the scalability issue is left
unsolved. Our DFVisor uses the same resource slicing mech-
anism in a distributed way and employs the layered overlay
mechanism to improve the scalability. Our DFVisor platform
is similar to DIAM [9] in using local intelligent control for
each switch to improve scalability and avoid single points of
failure, but DIAM is focused on network management while
our DFVisor targets an end to end network virtualization solu-
tion. Midokura[10] and Nicira also provide similar distributed
network virtualization solutions, but Midokura uses a common
overlay technique for none OpenFlow network fabrics while
Nicira uses layer-2 overlay based on VLAN with clustered
control plane and a lightweight control agent for each switch.

VI. CONCLUSIONS

This paper has addressed the issue that current cloud
network virtualization techniques lack capability to provide
fine-grained QoS management without sacrificing scalability
by introducing a layered overlay concept and a new network
virtualization platform called DFVisor based on the enhanced
OpenFlow switch structure and a distributed synchronized
two-level database system. The proposed DFVisor network
virtualization platform nicely solves the six problems that
cause the scalability issue. We have introduced the layered
overlay mechanism, and present the DFVisor with a push-
based flow setup and statistics gathering mechanism. We have
explained how the six issues can be solved by using layered
overlay and the distributed synchronized two-level database
system in DFVisor platform. The potential issues in DFVisor
implementation and evaluation are also discussed.

REFERENCES

[1] R. Sherwood, et al. ”Flowvisor: A network virtualization layer.” Open-
Flow Switch Consortium, Tech. Rep (2009).

[2] Curtis, Andrew R., et al. ”DevoFlow: scaling flow management for high-
performance networks.” In ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 254-265. ACM, 2011.

[3] Apache. ”Apache ZooKeeper Programmers Guide”, Internet:
http://zookeeper.apache.org/doc/zookeeperProgrammers.html.

[4] R. Sherwood, G. Gibb, et al. ”Can the Production Network Be the Test
Bed?” in Proceedings of the10th USENIX Conference on Operating
Systems Design and Implementation (OSDI 10), pp.114.

[5] G. Hampel, M. Steiner, T. Bu, ”Applying software-defined networking to
the telecom domain”, In Computer Communications Workshops (INFO-
COM WKSHPS), 2013 IEEE Conference on (pp. 133-138) IEEE.

[6] J. Kempf, B. Johansson, S. Pettersson, et al. ”Moving the mobile evolved
packet core to the cloud”, Wireless and Mobile Computing, Networking
and Communications (WiMob), 2012 IEEE 8th International Conference
on. IEEE, 2012 pp: 784-791.

[7] Salvadori, Elio, et al. ”Generalizing virtual network topologies in
OpenFlow-based networks”, Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE. IEEE, 2011.

[8] Doriguzzi Corin, R., et al. ”VeRTIGO: network virtualization and be-
yond”, Software Defined Networking (EWSDN), 2012 European Work-
shop on. IEEE, 2012.

[9] Banjar, Ameen, et al. ”DAIM: a Mechanism to Distribute Control
Functions within OpenFlow Switches”, Journal of Networks 9, no. 01
(2014): 1-9.

[10] Akane Matsuo, ”Introduce to Network Virtualization for IaaS
Clouds”, LinuxCon Japan 2013, Japan, May 31, 2013. Internet:
http://events.linuxfoundation.org/sites/events/files/cojp13 matsuo0.pdf.


