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Abstract—One of the significant challenges on performance
monitoring of an n-tier system is the “response delay propaga-
tion”, in which a response delay in a component server is prop-
agated to other component servers due to the invoking relations
among request types in different component servers of the system.
It leads the operations manager of the system to misdiagnose the
location of source delays and results in wasting time to investigate
the root cause. We developed a response delay monitoring system
that helps the operations managers distinguish the source delays
from many other propagated delays. The system is able to build
a model of invoking relations among request types in different
component servers and use the model to diagnose the response
delay propagation and pin-point the location of source response
delays. To obtain such invoking relations among request-types
from black-box component servers in an n-tier system, we propose
a novel invoking relation estimation method which can achieve
high accuracy of true invoking relation among request types by
eliminating the negative influence of two spurious correlation
factors through partial correlation analysis. We implemented the
response delay monitoring system and evaluated the effectiveness
of our invoking relation estimation method on a real in-company
n-tier system which has thousands of request-types in each tier.
The result (over 90% in precision) confirms our estimation
method can effectively capture invoking relations in an n-tier
system.

Keywords—N-tier system; Performance diagnosis; Response
delay; Correlation analysis; Invoking relation; Operations manager

I. INTRODUCTION

In datacenters, operation managers continuously monitor
the QoS (quality of service) of enterprise applications to keep
good QoS of them. In many cases, such enterprise applications
consist of multiple component servers, each of which has
a different role. A typical one is a web-facing three-tier
system which consists of web servers to process end-users’
HTTP requests, application servers to process computational
workload generated by the requests, and database servers
to keep consistency of the data for the application. Since
the multiple tiers cooperate with each other to process each
client request, it is challenging for an operations manager to
correctly diagnose the root cause when the system encounters
unexpected performance.

One significant challenge of monitoring an n-tier system
is the propagation of response delays among tiers (Fig. 1).

Through invoking relations among request-types in different
tiers, a response delay of a request-type in a downstream
tier causes a response delay of its invoker request-type in an
upstream tier since the processing of the request-type in the
upstream tier needs to wait a reply from the downstream tier.
To distinguish the two types of response delays (the source
ones and the propagated ones) is not easy when the number of
request-types becomes large. For example, in the case of our
in-company n-tier system used in the evaluation, there are a
few thousand request-types in the system (see Section IV-A).
In this case, how to effectively distinguish the two types of
response delays becomes important in order to quickly identify
the root cause of performance degradation.

If we can obtain the invoking relations among request-types
in an n-tier system, it is possible to precisely diagnose response
delay propagations among request-types and distinguish the
source delays from the propagated delays. In real, however,
it is difficult to obtain such invoking relations since they are
dynamically determined in the source code of the application,
reading and understanding a large amount source code is a
time-consuming task, and further many applications disallow
revealing their source code to a third party. An alternative
way to obtain the invoking relations among request-types is to
estimate them through black-box observations from outside of
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Fig. 1: Response delay propagation in an n-tier system



the target system. For instance, Hu et al. [9] proposed a method
to estimate invoking relations among VMs in a virtualized
datacenter by using a correlation analysis on the statistic of
their networking.

However, there are two technical problems which decrease
the accuracy of such an estimation if we use the simple correla-
tion analysis technique for collecting invoking relations among
request-types in an n-tier system. First, the request-frequency
of each request-type is correlated with the total number of
client accesses to the system. Thus, even though two request-
types have no invoking relation, they may have a certain
(spurious) correlation because they share a similar frequency
changing trend (the total number of client accesses). Second,
there is a case that some multiple request-types are frequently
invoked simultaneously by a client. Concretely, a web browser
issues HTTP requests for multiple URLs simultaneously to
obtain one web page which consists of multiple frames. In
that case, such a simultaneous invoking of multiple request-
types makes a spurious correlation when we apply a correlation
analysis on their request-frequency, and decreases the accuracy
of invoking relation estimation.

The main contribution of the paper is an accurate esti-
mation technique of invoking relations between two request-
types executed in different tiers in an n-tier system, based on a
correlation analysis between the request-frequency time-series
of one request-type and that of the other request-type (Sec-
tion II). The technique adopts partial correlation analysis to
eliminate the influences of the above two spurious correlation
factors, and achieves a high accuracy on the estimation. Our
experimental evaluations with a real large1 in-company n-tier
system show the precision of estimation is 91.0%.

As the second contribution of the paper, we developed
a response delay monitoring system for an n-tier system
which monitors response delays of each request-types and
visualize the propagations among them (Section III). It can
reduce redundant alerts for response delays caused as the
result of response delay propagations from downstream tiers,
by diagnosing such delay propagations using the invoking
relations pre-generated by our estimation technique.

The remainder of this paper is structured as follows. Sec-
tion II introduces the highly accurate estimation technique of
invoking relations between request-types. The overall response
delay monitoring system which uses the obtained invoking
relations for delay propagation diagnosis is presented in Sec-
tion III. In Section IV, experimental evaluations with a real
in-company two-tier system show how accurately our invoking
relation estimation method can extract invoking relations be-
tween request-types. Related works are summarized in Section
V, and Section VI concludes the paper.

II. ESTIMATION OF INVOKING RELATIONS

In this section, we show our novel estimation method of
invoking relations among request-types in every two consecu-
tive tiers of an n-tier system. The obtained invoking relations
are used for diagnosing response delay propagation as we will
present in Section III.

1It means “large” in function number wise and source code size wise. The
large number of functions (menus) in the system generate such a large number
of request-types.
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Fig. 2: Estimation of an invoking relation between request-
types by applying correlation analysis on their request-
frequency time-series.

Correlation analysis is a typical way to extract a hidden
relation between two sets of samples. It is further used to
estimate the hidden relationship among component servers
inside a distributed system [9]. We adopted the same approach
to estimate invoking relations, which applies a correlation
analysis between each pair of request-types, each of which
is from a different tier in an n-tier system. In the case of
an illustrative example in Fig. 2, the request-type D1 in the
database server tier is estimated as invoked by the request-type
A1 in the upstream application server tier since the frequency
of the two request-types in continuous time windows show
high correlation. This methodology is based on an assumption
that the request-frequency time-series data of two request-types
which are in an invoking relation should have high correlation
while that of two request-types without an invoking relation
should show very low correlation

However, in practice, the request-frequency time-series
data of two request-types which are not in an invoking re-
lation frequently still show a certain amount of correlation
due to two factors that we will show in Section II-A. Such
spurious correlation leads to many false positives in process
of estimating invoking relations among request-types from
different tiers resulting in low accuracy on the estimation. The
Section II-B and Section II-C show how our invoking relation
estimation method eliminates the two spurious correlation
factors, respectively. Finally, how to test the correlation is
presented in Section II-D.

A. Two Problems of Applying Correlation Analysis for Invok-
ing Relation Estimation

The first factor of spurious correlation is the influence
of overall request-frequency trend. Since the overall request-
frequency of all request-types in a tier has a time trend (e.g.
the overall request-frequency shows a steep rise at the start of a
business day) and the request-frequency of every request-type
in each tier follows the same time trend, so it is natural that
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Fig. 3: Spurious correlation caused by the influence of the
overall request-frequency time trend.
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Fig. 4: Spurious correlation caused by the influence of coin-
voked request-types.

two request-types from two different tiers follow the overall
time trend and thus have certain correlation between them even
though they have no invoking relation (see Fig. 3). We call this
type of correlation as spurious correlation since there is no real
invoking relation between the two request-types.

The second factor of spurious correlation is the existence
of coinvoked request-types. In the case of request-types in the
top most tier in an n-tier system, it happens that two request-
types are frequently invoked simultaneously by a client. For
example, two different HTTP request-types can be coinvoked
by a client (see Fig. 4) because each of them is invoked from
the respective frame in one web page. In such a case, a spurious
correlation happens between a request-type W2 in an upstream
tier and a request-type A1 in its adjacent downstream tier

invoked from a request-type W1 in the upstream tier which is
coinvoked with W2 from clients since their request-frequency
time-series obviously have a certain amount of correlation.

B. Eliminating the Influence of Overall Time Trend

We adopt partial correlation analysis to eliminate the influ-
ence on correlation analysis caused by the request-frequency
trend of all request-types in a tier. The key concept in partial
correlation analysis is the partial correlation coefficient rxy.z
between variables x and y, eliminating the influence of a
third variable z. The partial correlation coefficient rxy.z can be
calculated from the pairwise values of the correlation between
variables x , y , and z (rxy, ryz, rxz) as follows:

rxy.z =
rxy − rxzryz√

1− rxz2
√
1− ryz2

(1)

For example, let variables x, y and z be 8-element vectors as
follows:

x = (1, 2, 5, 6, 7, 1, 5, 3),

y = (3, 4, 8, 15, 14, 8, 10, 6),

z = (11, 19, 53, 69, 56, 36, 49, 31).

Here, correlation coefficients rxy, ryz, rxz are 0.853, 0.937,
0.873, respectively. It seems like variable x and variable y
are highly correlated judging from the high correlation coef-
ficient value 0.853 between them. However, after eliminating
the influence of variable z using (1), the partial correlation
coefficient between x and y becomes 0.205 as follows, which
is no longer high correlation:

rxy.z =
0.853− 0.937 ∗ 0.873√
1− 0.9372

√
1− 0.8732

= 0.205

Considering the correlation coefficient between the request-
frequency time-series data of a request-type U1 in an upstream
tier U (u1) and that of a request-type D1 in a downstream tier
D (d1), there are two factors which influence the correlation
coefficient and thus necessary to be eliminated; the request-
frequency time-series of all request-types in the tier U (uall)
and that in the tier D (dall). Further, the overall trend uall
influences the overall trend dall since all of the request-types in
the tier D are invoked by request-types in the tier U. Therefore,
we first need to eliminate the influence of the overall trend uall
using correlation coefficients (ru1d1

, ru1dall
, rd1dall

, rualldall
)

among u1, d1, uall, and dall ((2), (3) and (4)).

ru1d1.uall
=

ru1d1
− ru1uall

rd1uall√
1− ru1uall

2
√

1− rd1uall
2

(2)

ru1dall.uall
=

ru1dall
− ru1uall

rdalluall√
1− ru1uall

2
√

1− rdalluall
2

(3)

rd1dall.uall
=

rd1dall
− rd1uall

rdalluall√
1− rd1uall

2
√
1− rdalluall

2
(4)

Finally, the correlation coefficient between u1 and d1
eliminated the influences of uall and dall can be derived as
follows: 2

ru1d1.uall.dall
=

ru1d1.uall
− ru1dall.uall

rd1dall.uall√
1− ru1dall.uall

2
√
1− rd1dall.uall

2
(5)

2Such a partial correlation coefficient is calculated for every pair of two
request-types between two tiers in the n-tier system for the processes in the
next section.



C. Eliminating the Influence of Coinvoked Request-Types

To eliminate the influence of coinvoked request-types,
which is illustrated in Fig. 4, from the correlation between
the request-frequency time-series data of a request-types U1
(u1) and that of a request-types D1 (d1), the first step is
selecting the candidates of influencing the two request-types.
Since the following processes require a high amount of calcu-
lation, the number of candidates need to be limited to small.
We again adopt partial correlation analysis to eliminate the
influence of coinvoked request-types, and Equation 1 shows the
delta between a partial correlation coefficient and the original
correlation coefficient become negligible when both of the
correlation coefficients rxz and ryz are small (that is, the third
variable have small correlation with the two target variables).
Thus, the candidates of influencing request-type can be limited
to those which request-frequency time-series have a certain
amount of correlation with either u1 or d1 described as follows:

Tcandidate = {ti | ti ∈ Tall ∧
(has corr(ti, U1) ∨ has corr(ti, D1)) ∧
(tier(ti) is upper than tier(D1))} (6)

where Tall is the set of all request-types in the n-tier system,
has corr(t1, t2) shows the request-frequency time-series data
of the request-type t1 have correlation with that of the request-
type t2 3, and tier(t) shows the tier of the request-type t.

The second step is calculating the partial correlation coef-
ficient between u1 and d1 by removing the influence of each
candidate request-type one by one. As the initial correlation
coefficients (Rinitial) among the target request-types U1, D1
and all the candidate request-types (Tinitial), the correlation
coefficients obtained in the previous section are used.

Tinitial = {ti | ti ∈ Tcandidate ∪ {U1, D1}} (7)
Rinitial = {rtxty | tx, ty ∈ Tinitial} (8)

For a request-type tr ∈ Tcandidate, the adjusted correlation
coefficients after eliminating the influence of the request-
frequency time-series of the request-type tr are shown as
follows:

Tadjusted = {ti|ti ∈ Tinitial ∧ ti 6= tr} (9)
Radjusted = {rtxty.tr |tx, ty ∈ Tadjusted,

rtxty.tr =
rtxty − rtxtrrtytr√

1− rtxtr2
√
1− rtytr2

,

rtxty , rtxtr , rtytr ∈ Rinitial} (10)

After repeating this elimination ((9) and (10)) until Tcandidate
becomes empty, the adjusted correlation coefficient between
the target request-types U1 and D1, eliminated the influence
of all request-types in Tcandidate, can be obtained in Radjusted.

D. Correlation Testing

The final step of the invoking relation estimation is the
correlation testing on the adjusted correlation coefficient ob-
tained through the previous two sections to judge whether the
two target request-types U1 and D1 can be accepted as an

3For this condition, we test the partial correlation coefficient obtained in
the previous section with a relatively low significance level α=0.10 since this
testing just aims to reduce the amount of calculation.

invoking relation or not. 4 In the case the two request-types
have correlation with a high significance level α=0.01, they
are determined as having an invoking relation.

A value of correlation coefficient can be tested strictly
using Student’s t-distribution (Student’s t-test) [10]. The fol-
lowing equation briefly explains the Student’s t-test:{

Accept as correlated : (r >= t√
dof+t2

)

Reject (uncorrelated) : (otherwise)
(11)

where r is the correlation coefficient to test, dof is the degree
of freedom (which equals the sample number n −2), t is the
test statistic for Student’s t-test derived by a function which
includes dof as a variable. It is noted here that the right-
hand member of the above conditions becomes small when
the number of samples increases. For example, with the sample
number of 1000 and the significance level α = 0.01 (this is the
value used in our implementation), the minimum correlation
coefficient to be accepted is only 0.081421.

The following provides the reasoning why we adopt such
a strict testing for our invoking relation estimation. The main
assumption of our method is that the request-frequency time-
series of a request-type and that of another request-type should
show high correlation if the two request-types are in an invok-
ing relation. 5 In practice, however, the correlation coefficient
between two request-types stays in small values closer to zero
rather than one even the two request-types are in an invoking
relation. There are mainly two reasons which explain such low
positive correlation cases. First, a request-type can be invoked
by multiple request-types in upstream tiers. For example, an
SQL request-type in a database server tier can correspond
to multiple HTTP request-types in an web/application server
tier. Second, there are cases that a request-type is irregularly
invoked by a request-type in an upstream tier. In both cases,
the correlation coefficients become much lower than one and
closes to values for no correlation cases. In order to correctly
extract invoking relations from such low correlation coefficient
cases, the strict correlation testing with such a high significance
level is required as described in this subsection.

III. RESPONSE DELAY MONITORING SYSTEM

Using the invoking relations collected in the previous
section, we developed a response delay monitoring system
for an n-tier system, which can detect response delays of
each request-type and can diagnose the invoking relations
among detected delayed request-types to visualize propagation
relations among the delays. Fig. 5 shows the overview of
the developed monitoring system. The system consists of
two phases, which are the monitoring phase for real-time
monitoring of a target n-tier system and the learning phase
to generate two types of models used in the monitoring phase.

The learning phase consists of two types of modeling.
One is the response time modeling which provides the border

4Although these consecutive subsections only explain the detailed steps to
judge the invoking relation between an example pair of request-types U1 and
D1, it is needless to say the same steps are necessary for each pair of request-
types in the target n-tier system.

5Moreover, if a request-type in a downstream tier is invoked only by a single
request-type in an upstream tier and the invoker always invokes the request-
type, the correlation coefficient between their request-frequency time-series
should close to one.
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Fig. 5: Overview of the response delay monitoring system

between normal and delayed for the response time of each
request-type based on its usual statistical trend. The other
is the invoking relation modeling which provides invoking
relations among request-types. The invoking relations help
judging whether a delayed long response time of a request-
type in a tier is the result of delay propagation of its invoking
request-type in a downstream tier.

The inputted data of both the two phases are provided by
a passive trace monitoring tool SDT [1] as shown below.

Learning Phase: The phase requires a sequence of proto-
col messages collected by SDT during a certain
period of time as a training data set.

Monitoring Phase: The phase requires a data stream of
protocol messages supplied by SDT. Specifically,
the protocol messages collected in a given length
of time window (e.g., 1 minute) are inputted into
this phase, and its output shows the response delay
situation in the target n-tier system at that time
window.

The passive trace monitoring tool SDT is introduced in
Section III-A, while the details of the two modeling in the
learning phase are explained in Section III-B and III-C re-
spectively, and finally Section III-D explains the monitoring
phase.

A. Data Collection: Passive Trace Monitoring Tool “SDT”

To collect accurate message interactions among multiple
tiers in a target n-tier system, we use the passive trace
monitoring tool SDT developed by FUJITSU FSAS [1]. The
processing of SDT includes the following three steps as shown
in Fig. 6: 1) Collecting all IP packets sent and received in
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Target n-tier system

Web
servers

N/W
switch

Captured 
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messages
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request-class
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Fig. 6: Passive trace monitoring tool “SDT”

the target n-tier system by using port mirroring function of
network switches; 2) Translating the captured IP packets to
protocol messages (e.g., HTTP, MySQL, and so on) exchanged
between component servers; and 3) Extracting identification
information from each protocol message (e.g., URL for an
HTTP request) so as to classify it into several tens (or
hundreds, thousands) of request-types.

There are several merits to use such a passive trace moni-
toring tool to monitor an n-tier system instead of typical agent-
based or logging-based monitoring tool deployed or installed
into each server of the system. First, its monitoring overhead is
negligible since the monitoring system is physically separated
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Fig. 7: Example to illustrate how the response time modeling
derives the upper limit of response time for a request-type from
the scattergram of load and response time for the request-type.

from the target system. Second, it requires no modification to
the application (or server) source code.

B. Response Time Model

The response time model provides the border between
normal and delayed in response time of each request-type,
based on its usual statistical trend. One model is provided for
every request-type in each tier of the target n-tier system.

The upper limit of adequate response time for a request-
type changes depending on the instantaneous load of the server.
In general, under the situation that no hardware resource is
fully saturated, the response time of a request-type in a server
increases near-linearly as the load in the server increases due to
waiting time for the concurrent requests. Fig. 7 illustrates how
the upper limit of response time for a request-type is decided
during the response time modeling. In this figure, each point
represents a pair of load and response time aggregated in a
small time window (e.g., 1 second in our implementation),
meanwhile the solid line shows the linear approximation of
the points. The upper limit of response time is derived as the
upper limit of the confidence interval of the points shown as
the dotted line in the figure.

C. Invoking Relation Model

The invoking relation model provides invoking relations
between request-types in the target n-tier system. Specifically,
an invoking relation model is provided for every request-type
in each tier except the upmost tier, providing all request-types
in upstream tiers which invoke the target request-type. Since
there is no explicit information to distinguish such invoking
relations in transaction messages exchanged among tiers 6,
we obtain the model by estimating such relations through
correlation analysis as described in Section II.

6For example, there is no information to connect an HTTP message received
on a web server with a subsequent SQL message sent from the web server to
a database server even the two request-types are in the same transaction.

D. Response Delay Monitoring Phase

The monitoring phase takes a data stream of protocol
messages supplied by SDT as its input while outputs all the
request-types on which response delay is detected in each time
window, using the two types of models pre-generated in the
learning phase. The monitoring phase consists of the following
two steps.

At the first step, response delay of each request-type is
examined. For the examination, the average response time
of each request-type and the average number of concurrent
processes in the server are aggregated in the time window t. For
every request-type in each tier, response delay of the request-
type is examined by corresponding with the response time
model for the request-type. Each response time model is a
linear function of the load in the server and the response time
of the request-type, providing the upper limit of response time
which is determined as normal according to the instantaneous
load value at that moment. For each time window t, the request-
types detected as delayed are recorded for the next step.

Then the second step determines in which request-types
their response delays are affected by the response delays
happened in downstream tiers through response delay prop-
agation via invoking relations. In the diagnosis, the invoking
relation model which corresponds to each delayed request-type
is referenced to check whether there is any invoking relations
between the request-type and another delayed request-type in
an upstream tier. If two request-types have an invoking relation
and both of which are detected as delayed at the same time
window t, it is determined that the response delay of the
request-type in the upper tier is caused by that of the other
request-type in the lower tier. In that case, an alert for response
delay is issued to the operations manager of the target n-tier
system only for the request-type in the lower tier, reducing
unnecessary alerts issued to the operations manager.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our method by using a real
in-company two-tier system as the target system. First of all,
the target system is introduced in Section IV-A. Then the ac-
curacy of our invoking relation estimation method is evaluated
by compared with manually extracted invoking relations in
Section IV-B.

A. Target n-Tier System for the Evaluations

As the target n-tier system to evaluating our invoking
relation estimation method, we selected an in-company two-
tier system summarized in Table I. The system is an employee
information system including an attendance management, a
traveling expense management, and so on, for the whole
employee of our company, which has over 100,000 users and
averagely 2,300 concurrent users on weekdays. The system
has anomalous two-tiers, the first tier consists of three load-
balanced web/application servers while the second tier consists
of one application server and two database servers. 3075
request-types are executed in the web/application servers with
a workload of about 17 thousand requests per minute, while
1102 request-types are executed in the database servers with a
workload of about 70 thousand requests per minute. We have
manually extracted the invoking relations of the system with
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(a) Our estimation method
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(b) Our estimation method without elimi-
nating coinvoked requests influence
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(c) Normal correlation analysis (as a typi-
cal existing method)

Fig. 8: Distribution of the correlation coefficients in the invoking relations obtained by our estimation method with(8a)/without(8b)
eliminating the influence of coinvoked requests, compared with a typical existing method (8c). This comparison clarify the
significant effect of our two techniques (shown in Section II-B and II-C respectively) on improving estimation accuracy.

TABLE I: Target in-company two-tier system for the experi-
mental evaluations

Tier Server role Protocol # of
node

# of
request-
types

Request
rate
(req/min)

1 Web/Appli-
cation

HTTP 3 3075 17k

2 Application IIOP 1 26 6k
2 Database Symfo-

WARE
2 1102 70k

TABLE II: Precision and recall of the estimated invoking
relations comparing with manually extracted invoking relations

Type Precision Recall Recall
(frequency
weighted)

Our estimation method 90.6% 49.8% 88.2%
Our estimation method
w/o eliminating coin-
voked requests influence

73.9% 47.7% 87.4%

Correlation analysis (as
an existing method)

56.2% 47.8% 87.5%

the help of our previously developed other tools. This manually
extracted invoking relations are used as baseline for the true
invoking relations through the evaluation.

B. Accuracy of Invoking Relation Estimation

Table II presents the result of accuracy evaluations on the
invoking relations obtained by our method, on that obtained
by our method without eliminating the influence of coinvoked
requests (described in Section II-C), and on that obtained by
just correlation analysis and correlation testing without the two
techniques described in Section II-B and II-C, by comparing
with the manually extracted invoking relations as correct

answers. The data used in these evaluations were collected
from the target system during 7 hours (9:00am–4:00pm) on
March 5th 2012, and aggregated into 25200 time windows of
one second length each, that is, the request-frequency of each
request-type is aggregated in every time window. Thus, there
are maximally 25200 samples in the correlation analysis which
enables a very small correlation coefficient value of less than
0.1 to be be accept as “correlated” in a correlation testing.

Here, we calculate the recall and the precision as follows:

recall =
|Restimated ∩Rmanual|

|Rmanual|
, (12)

precision =
|Restimated ∩Rmanual|

|Restimated|
, (13)

Restimated : the set of estimated invoking relations,

Rmanual : the set of manually extracted invoking relations.

The table has two types of recall, one is just as the above
definition while the other is weighted by the request-frequency
of each request-type, in order to reflect the condition that
invoking relations for rarely executed request-types have less
importance for the delay propagation analysis in our response
delay monitoring system.

The result in the table clearly shows the effectiveness of
our techniques for invoking relation estimation which decrease
spurious correlation cases caused by the two factors addressed
in this paper and increase the precision of estimation. The
second and the third cases in Table II further show each of the
two techniques in our estimation method correctly performs
their roles on improving accuracy.

To provide further understanding how our estimation
method provides the drastic gain on precision, the distributions
of correlation coefficients in the three cases are compared in
Fig. 8. This comparison clarifies that the correlation analysis
without adjusting the two factors’ influences (Fig. 8c) gener-
ates a lot of small (but large enough to accept as “correlated”
in correlation testing) correlation coefficients around 0.05 to
0.2, which are scored as errors (that is, no invoking relations).
Comparing the result with the second case (Fig. 8b) and that



Gray box: corresponds to each server 
− 3 web/app. servers, 1 app. server, 1 of two DB 

servers 
Bar: corresponds each request-type 
− The request-types detected as delayed are 

shown here due to space limitation. 
Length of bar: shows the number of requests 
− The red part shows the ratio of delayed ones. 
− logarithmic scale 

Link: shows response delay propagation 

Delayed 

Good performance 

Fig. 10: The result of response delay propagation analysis provided by our developed response delay monitoring system during
one minute starting from 8:01am on April 4, 2014.
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Fig. 9: Analysis of the manually extracted invoking relations
by the observed time windows number of receiver and invoker
request-types, explaining the reason of the modest recall value.

of our estimation method (Fig. 8a), it is derived that the small
correlation coefficients are caused by spurious correlations
caused by the two factors, which are eliminated by the two
techniques in our estimation method respectively.

C. Why is the Recall Modest?

While our estimation method shows enough high recall
value weighted for the purpose of our response delay moni-
toring, someone may wonder the reason of the modest recall
value without weighted. In order to explain the reason, the ratio
between the number of time windows the receiver request-type
is observed and that the invoker request-type is observed for
the manually extracted invoking relations is shown in Fig. 9.
Each bar in the graph is divided into two areas, one denotes
the ratio of invoking relations successfully captured by our
estimation method while the other denotes those failed to be
captured by our method. This result shows once the ratio
exceeds 10, such invoking relations are rarely captured by

our estimation method (that is, the correlation coefficients are
too small to be accepted by correlation testing). Such a case
happens when a popular request-type in a downstream tier is
invoked by many request-types in an upstream tier and some of
the request-types in the upstream tier are moderately invoked.
However, as the weighted recall value in Table II shows,
such request-types are minority according to their request-
frequency and have only a limited impact on our response
delay propagation analysis.

D. Response Delay Propagation Analysis

To illustrate the effectiveness of our response delay propa-
gation monitoring system, we show an one-minute snippet of
response delay propagation analysis data starting from 8:01am
on April 4, 2014 (see Fig. 10). The monitoring system detected
46 request-types in 5 servers as delayed during the one minute
(14 request-types and 32 request-types from the first tier and
the second tier, respectively). While 14 request-types were
delayed in the first tier, 5 of them were identified as the
results of delay propagation caused by the 6 request-types
in the second tier with which they have invoking relations.
We note that the number of request-types executed during this
one minute was much larger than that in the figure since the
figure only shows the request-types detected as delayed for the
purpose of human-readability.

V. RELATED WORKS

Techniques which extract causal relations from IP packet
traces in black-box IT systems have been proposed in pre-
vious research for performance anomaly diagnosis [2], [3],
[5]. Aguilera et al. [2] obtain causal relations among com-
ponents in an n-tier application to find high-impact causal
path patterns on the performance of the system. For the pur-
pose, the technique introduced in the paper reconstructs every
transaction trace by stochastically determining each parent-
child pair of nested request-calls7 from parallel execution
of nested request-calls. However, this approach experiences

7It means each pair of an invoking request and the invoked request, in our
words.



degradation of accuracy on determining nested request-calls
when average response time increases and trace parallelism
increases. On the other hand, our approach is robust to high
parallelism of request execution by strictly applying statisti-
cal analysis on estimating invoking relations among request-
types. Sherlock [3] and Orion [5] correlates a response delay
in a networked component with that in another networked
component. In other word, they aim to directly detect “delay
propagations” among networked components instead of detect-
ing them through invoking relations as we do. This approach
is unsuitable to analyze response delay propagations among
request-types in an n-tier system since a response delay in
that case can indeterministically propagate to others through
hardware/software resource dependences [13]. Our estimation
method instead correlates request-frequencies of request-types
which are deterministic through invoking relations.

Other studies also use packet trace monitoring for perfor-
mance analysis of n-tier applications [12], [14]. Magpie [4]
focuses on extraction of request-types and correlating them
with resource consumption for performance prediction. Spec-
troscope [11] identifies anomalous requests by comparing
request-flows between “problem” time windows and “non-
problem” time windows. EtE [8] analyzes captured packets
for end-to-end performance monitoring of networked services.
Comparing with them, we focus on identifying response delay
propagations among request-types inside of an n-tier applica-
tion rather than detecting anomalous response degradation.

For performance analysis of an n-tier system, many studies
correlate resource consumption of the system such as CPU
consumption or disk I/O with the system’s performance be-
havior [6], [7], [15]. We use correlation analysis in a decidedly
different manner.

VI. CONCLUSIONS

In order to analyze the propagation relations among de-
layed request-types in an n-tier system, first we proposed
a novel method for highly accurate estimation of invoking
relations between a request-type executed in a tier and one
executed in another tier in the system (Section II). The
estimation method is based on correlation analysis between
the request-frequency time-series of a request-type and that
of another one in a different tier, and eliminates the spurious
correlations caused by two factors (overall time trend and coin-
voked request-types) to enable hair-splitting correlation testing
precisely distinguish request-types which have an invoking
relation between them (as evaluated in Section IV-B).

Then we showed the overall architecture of our devel-
oped response delay monitoring system which can diagnose
response delay propagation among request-types and can dis-
tinguish root causes of response delay from propagated delays
(Section III). We implemented the monitoring system and are
using it for daily monitoring of the large in-company two-tier
system in real. The snapshot of the response delay propagation
analysis shown in Section IV-D was taken during the real daily
monitoring.

One of our future works is to sophisticate the response time
model by employing existing efforts on performance modeling,
which is beyond the scope of this paper.
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