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Abstract—Nowadays, users request comfortable frameworks
and development environments independent of the applications.
Those solutions should offer as many support as possible, should
be user friendly, and allow manipulation and visualization of
different things at the same time. Those requirements become
very important in the area of wireless sensor networks due to
different vendors, wide range of application field, and the high
amount of collected data. Currently existing solutions cover only
a limited range of service and are usually fixed on hardware,
operating system or application. In order to offer the user the
wide range of flexibility the CoMaDa framework was developed,
which is presented in this paper and combines all above mentioned
user requirements by working with virtual representation of real
wireless sensor networks and support in real time. CoMaDa
offers the user support for configuration of components, network
management functionalities, and data visualization at the same
time. CoMaDa is build in a flexible way, which allows the user
to integrate new features (e.g. personal code, hardware support,
visualization option) with less input and, therefore, adapt the
existing CoMaDa to every setup as requested.

I. INTRODUCTION

Today the call for comfortable frameworks and development
environments occurs independent of the application nearly
everywhere. Users want to work with intuitive tools, which
cover as many as possible aspects of the task they are facing
(e.g. offering programmatically interfaces, visualization tools,
debugging tools, etc.). These requirements especially apply to
wireless sensor networks, where a variety of different hardware,
operating systems and protocols complicate the development
of software. Many individual solutions, specializing in specific
hardware/platforms or designed for specific tasks (e.g. simu-
lation, visualization), exist and support the user in developing
applications for specific platforms. Since the user should not
be forced to switch to a different environment whenever he
decides to use different hardware/platforms, the authors decided
to develop a unifying framework that allows to easily adapt
applications to new environments, including different hardware,
node platforms and protocols, allowing the user to develop
applications regardless of the underlying network architecture.

The developed framework is named CoMaDa, which is an
abbreviation for Configuration, Management and Data handling

Framework. CoMaDa offers a centralized way to design ap-
plications that interact with wireless sensor network including
functionalities for data export and network control. Under the
term centralized the authors understand in this case that the
application runs on unconstrained devices outside the wire-
less sensor network. Due to this centralized construction it
is allowed to apply logic to a wireless sensor network that
needs an overview over the whole wireless sensor network.
This overview can only hardly be done in a decentralized way.
For example, in a centralized solution it is possible to power
down specific nodes in regions that have enough redundancy,
which also allows more intelligent observation schedules at the
same time. Due to this fact CoMaDa allows to pull logic out
of the wireless sensor networks resulting in leaving the sensor
nodes more power for the important tasks (e.g. calculations,
measurements). Additionally CoMaDa provides an adaptive
graphical user interface, which provides unified management
tools and can be adapted with few input for new platforms,
operating systems, and algorithms.

The remainder of this paper is organized as follows:
Section II will give a brief overview of different graphical
user interfaces, which influenced the design decision of the
developed CoMaDa in this paper. The design decisions and the
finally realized architecture of CoMaDa are given in Section III.
In order to give a proof of operability a building scenario was
assumed and the manifold possibilities supported by CoMaDa is
presented in Section IV. The presented work will be concluded
in Section V. 1

II. RELATED WORK

Today different graphical frameworks for wireless sensor net-
works exist. Parbat et al. gave an overview of 18 visualization
tools [2], which were analyzed. Those tools have in common
that they focus mainly on simulation, routing, and visualization
of sensor data. But they all do not offer a possibility to combine
hardware configuration, network management, and data visual-
ization at the same time. Users request these features today in

1This work was mostly done when Corinna Schmitt was with Technische
Universität München [1].
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order to administrate a system in a comfortable way and to be
aware of system errors as soon as possible. At the same time the
environment should be very flexible and independent in order to
support different algorithms and hardware or operating systems
to avoid using different instances of the interface in parallel. In
the following a very briefly glimpse over existing visualization
and simulation solutions is given.

The company Crossbow Technologies Inc. offers the inter-
face MoteView for wireless sensor networks, which allows the
user to integrate a client interface between the user and the net-
work. MoteView offers tools that support the user by deploying
and monitoring the networks. Additionally, MoteView allows
the user to become connected to databases, to analyze the data,
and to plot the data. MoteView was built in a modular way with
four layers, which allows four visualization possibilities: Data,
Commands, Topology, and Charts. The constraint for MoteView
is the usage of sensor platforms of Crossbow (e.g. Mica, IRIS)
and their supported operating system TinyOS. [3]

Due to user requests different simulators and emulators
were developed in the community, such as NS-2, TOSSIM,
OMNeT++, and COOJA. Those have in common that the user
can setup a wireless sensor network with the personal code
in order to evaluate its performance. In cooperation with the
performance tests the user is able to vary a number of factors
within the network (e.g. network size, deployment, delay, radio
range, routing). All those simulators have in common that they
are limited to one supported operating system. For example,
COOJA supports only Contiki and TOSSIM only TinyOS.
Sundani et al. pointed out in their research that no solution
is applicable to all situations, which users can assume for the
application. [4]

In order to sum up the related work it can be pointed out that
no general solution exists, which allows the user to configure,
manage, and to visualize data in any way at the same time.
Additionally, no solution exists, which allows the previously
mentioned requests to be studied independently of the operating
system. Therefore, CoMaDa was developed and is characterized
in detail in the upcoming Section III.

III. ARCHITECTURE

First, this section presents the design decisions for CoMaDa
based on the previously presented related work. Second, this
section deeply characterizes the architecture of CoMaDa.

A. Design Decisions

Before dealing directly with design decisions for the im-
plementation of a multi-purpose management framework for
wireless sensor networks, such as CoMaDa, the requirements
from users and vendors must be specified. In general, the
following requests exist [1], [5]:

• Managing the wireless sensor networks including setup
and manipulation tasks to network components even dur-
ing runtime.

• Support of different hardware.

• Data visualization in real time (e.g. network status,
collected data).

• Data export and import functionality in order to support
visualization, analysis or feedback.

In order to support management functionality a pro-
grammable as well as a graphical interface is required. The
programmable interface allows the user to implement and run
specific program logic depending on the state of the network,
whereas the graphical interface allows the user to react to visual
feedback at runtime and also gives the possibility to easily setup
the network.

Depending on the application scenario a wireless sensor
network can or must exist of hardware from different vendors
(e.g. IRIS and TelosB nodes from Crossbow Inc. [6], TelosB
nodes from Advanticsys [7]). One reason can be the proof of
program support on different platforms. Another reason can be
a different sensor equipment of sensor nodes.

Additionally, also depending on the application, each net-
work and each of its nodes fulfill a different purpose and,
therefore, run with different software. One network may only
be used to collect data about its environment (e.g. observing
room temperature and humidity), whereas another network may
be used to control an intelligent house. In a third scenario,
the network may deal with critical data requiring additional
security in the transmissions layer. On the one hand, in all
those three cases the access to the data of the network and way
of interacting with it highly differs, strongly depending on the
used software. On the other hand, the requirements of the user
to the network stay the same.

As mentioned in the beginning of this section, users generally
want to visualize the network and the collected data, they want
a way to configure the network components and to interact
with the network. A wide range of such tools, like the ones
discussed in Section II, exist but most of them are designed for
a specific purpose or a specific architecture/software, forcing
the user to either stick and specialize to one specific type
of architecture/software or to switch tools from application to
application.

The CoMaDa framework presented in this paper aims to
offer an abstract interface to sensor networks that can be shared
between different types of networks, allowing a user to write
applications that dynamically adapt to different networks and
therefore, offering the possibility to design applications that
interact with sensor networks independent of the underlying
network hardware/software. In order to achieve this, the frame-
work adds an additional layer of abstraction, in form of a
virtual representation of the network, between the part of the
application, which defines the desired logic, and the part that
actually interacts with the network. The second part can be seen
as driver to the actual network, which strongly depends on the
software and the type of the network but does not contribute to
the logic and appearance of the application itself. Thus, it may
simply be replaced when a different network is used, so the
appearance and functionality of the application stays the same,
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Fig. 1: Overview of the virtual sensor network representation used for CoMaDa

even so it is used with a totally different network.
The detailed architecture of the CoMaDa framework, which

is written in Java, is described in the following Section III-B.
In addition to the programmable interface of the framework,
the previously mentioned graphical interface, designed as
HTML/JS web-application, is presented as proof of concept
of the framework in Section IV.

B. Architecture Characterization

In order to develop a virtual representation of a wireless
sensor network, which can be used by applications to separate
the program logic from the driver (actually interacting with
the network), the common properties of all wireless sensor
networks need to be specified. In general, a wireless sensor
network is understood as a set of constrained sensor nodes,
which are capable of observing their environment (e.g. measur-
ing the room temperature) and communicating with each other,
as illustrated in Figure 2 based on references [8] and [9]. In
modern days, sensor nodes are not only restricted to observing,
but they are also capable of interacting with their environment
(e.g. controlling a light switch).

Wireless Sensor 
Network 

6

0

4

5

2

Sink

Server running CoMaDa

3

1

Aggregator Nodes: Node ID 0, 3, 6

Sensor Nodes: Node ID 1, 2, 4, 5 
Measurement functionality

Sink/Basestation performing IP-Basestation

Wireless Communication

Wired CommunicationData Packets 
(e.g. Sensor measurements)

Fig. 2: Abstract overview of communication between sensors,
CoMaDa, and cloud applications

In summary, a wireless sensor network can be defined by
a set of sensor nodes and the topology of this set, which
represents the communication links between the sensor nodes.
Further on, the sensor nodes, which build the network, are
defined by their collected data and their interaction capabilities
with the environment or themselves. All this knowledge allows
constructing a virtual representation, which can be used to
represent an arbitrary wireless sensor network.

Figure 1 shows an UML diagram of the proposed virtual
representation of a wireless sensor network by the presented
CoMaDa framework in this paper. The three main parts of this
representation are the classes

• WSN,
• Node, and
• Topology.

The class WSN maintains a set of Node objects, which repre-
sents the nodes building the network, as well as a Topology
object, which represents established communication links be-
tween the nodes.

The class Node can be seen as the most important class
of this representation. It grants access to all the capabilities
the network provides. Besides offering fields for storing an
identifier and some additional information (metadata for
storing information about the type of the node and tags the
user can define for better identification), it offers three important
fields: sensordata, actions and events. These fields
build the interface to the capabilities the node offers.

The node’s collected data can be accessed by sensordata,
which represents a set of SensorDatum objects that defines
the type and the value of the measured data. Objects of this
class also define the unit the datum was measured in. Besides of
the sensor data a sensor node might also communicate arbitrary
additional information. Letting the node define a set of events
that may occur and additionally offer the user the possibility
to subscribe to these allows the nodes to communicate such
information. Events that may occur at a specific node are
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possibly that the node has updated its measurements, that it
runs out of energy soon, or any other information it wants to
communicate. Such events may not only occur at node level
but the wireless sensor network as whole, being an observer
of all its nodes, may also want to communicate information.
Therefore, the class WSN also offers the possibility to subscribe
to events. Global WSN events may include notifying that the
topology has changed or a node was suddenly lost. Each event is
defined by a simple class, which holds some information about
the event itself and about each time an event occurs. Users are
notified by calling a callback function that was passed when the
user subscribed to the event. An example for such an Event
class is shown in Figure 3a.

1 c l a s s NodeLostEvent
2 ex tends Event {
3

4 S t r i n g i d ;
5

6 @EventParam
7 Node l o s t N o d e ;
8

9 @EventParam
10 Date t imes t amp ;
11 }

(a) Example Event

1 c l a s s S w i t c h L i g h t A c t i o n
2 ex tends NodeAction {
3

4 S t r i n g i d ;
5

6 @ActionParam
7 boolean tu rnOn ;
8

9 @Act ionResu l t
10 boolean s u c c e s s ;
11 }

(b) Example Action

Fig. 3: Code example for Event and Action implementations

As a consequence of the before described setup the user
would be able

• To access the structure of the network,
• To access the collected data, and
• To react to events occurring within the network.

All together the user is able to read all the data a wireless sensor
network offers. As already mentioned earlier, a sensor network
may be able to do more than simply collecting data. It may
offer the possibility to let it interact with its environment, or at
least it may offer a possibility to control its behavior. Therefore,
it is necessary to also be able to write to the network besides
just reading from it.

For this purpose, the CoMaDa framework offers the concept
of actions. Each Node defines a set of actions, which defines
the ways the node can be configured at runtime and which also
offers an interface to the interaction capability of the node to its
environment. Since sensor nodes are very constrained devices,
one can assume that the actions offered by a node are limited to
rather simple processes, which can be modeled by taking a set
of input parameters and returning a result. A simple example for
such an action, which should command a node to manipulate
the light switch it is connected to, is shown in Figure 3b. A
user can declare such a class for each different action a node
is capable of doing and add it to its set of actions.

The concept of events and actions gives the user an
easy-to-use tool to model the capabilities of his network. Since
actions and events are only static interfaces to their
respective functionality, an application would need to know

about these interfaces at the time the application is designed
in order to be able to use them. This means that applications
were not able to dynamically adapt to new types of nodes with
new capabilities. In order to circumvent this problematic and
in order to allow applications to use events and actions
in a dynamic fashion, the CoMaDa framework requires those
to be decorated with reflection annotations, which can be
evaluated at runtime. This concept is shown in Figure 3b. The
parameters and result are annotated with @ActionParam and
@ActionResult respectively, which allows an application to
extract the necessary information the user has to enter in order
to perform the actions of a node at runtime.

Section IV shows how this information is used to dynam-
ically adapt CoMaDa to arbitrary networks in order to offer
the user a graphical interface to nodes the framework has
never seen before. But this only demonstrates the basic concept
of annotations. Additional, more detailed annotations, which
further describe the semantics of an action, are imagin-
able. For example, a node could use these to communicate
that some of its actions can be used to deactivate power
intensive, optional features or to set the node into a power
saving mode. This means that external modules could enforce
power saving policies even in networks with nodes they have
never seen before, and, therefore, would have had no idea of
how to interact with these without being able to dynamically
extract information about these using the annotations. Using
the concepts of events and actions the user can reflect
the functionalities of nodes in the virtual representation by
simply designing own Node class derivatives, providing infor-
mation about offered events and actions in the respective
events and actions fields.

1 / / NodeCol l ec t ion nc ; <−− provided by WSN
2

3 nc . f i l t e r ( ” # node1 > ∗” ) ;
4 / / s e l e c t s a l l nodes t h a t are l i n k e d to #node1
5 nc . getNodeById ( ” node1 ” ) . f i l t e r B y O u t g o i n g L i n k s ( ) ;
6 / / does the same
7 / / but a l l o w s the compi ler to check the syntax
8

9 nc . f i l t e r ( ” t a g : l i g h t , t a g : k i t c h e n ” )
10 . p e r f o r m A c t i o n ( new S w i t c h O f f L i g h t A c t i o n ( ) ) ;
11 / / s e l e c t s nodes tagged as ” l i g h t ” and ” k i t c h e n ”
12 / / and l e t ’ s them perform ” Swi tchOffLightAct ion ”
13 / / => s w i t c h e s o f f the l i g h t s in the k i t c h e n

Fig. 4: Code example for node filter feature

The last part of the virtual representation to discuss is the
class NodeCollection, which is used by the class WSN
to organize its assigned Node objects. NodeCollection is
simply a collection of Node objects that offers the possibility to
react to events and perform actions on a whole set of nodes by
simply offering and forwarding the methods of the class Node
for the whole collection. Additionally, it offers the possibility
to filter the collection by simple patterns as shown in Figure 4,
giving the user a powerful tool to select and interact with groups
of nodes.
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Fig. 5: General structure of the framework CoMaDa

The presented virtual representation allows an user to effi-
ciently design applications interacting with arbitrary wireless
sensor networks, without having to specialize in a specific net-
work architecture/platform by simply relying on this additional
abstract layer.

As already mentioned above the translation between the
actual network and its virtual representation is done by a
driver that highly depends on the used network architecture and
platform. Figure 5 shows an overview of all the framework’s
parts and their interaction. The actual network is shown on
the bottom and as can be seen, it is connected to its virtual
representation by three components:

• WSNdriver,
• Protocol stack
• WSNconnector.

The component WSNdriver provides access to the basic
functionalities of the network, managing the communication
from the network to the framework and vice versa. This part
only needs to be exchanged when the nodes are run with a
different platform/operating system. The WSNdriver forwards
the received data to the protocol stack. The protocol stack
is responsible for the support of the different communication
protocols used. After the data is translated it is passed on to
the WSNconnector that finally is responsible for creating and
updating the virtual representation. As long as no home-cooked
platforms and protocols are used, the implementations of the re-
spective driver and protocol modules can be shared across users.
So in most cases the user does not need to bother implementing
those when switching to a new platform, but he can simply use
existing implementations. In contrast to that, the WSNconnec-
tor, which is responsible for the virtual representation of the
network, needs to know which representation (which class) to

use for which node. Since a wireless sensor network is very
dynamic (nodes may be added, nodes may be removed all the
time) it cannot be modeled statically and the user has to decide
how to communicate and recognize the functionalities his nodes
offer. The user could either include this information in a proto-
col, letting the nodes communicate this information themselves,
or he could simply use a hard naming scheme. In this case the
user could simply distinguish different kind of nodes offering
different kind of functionality by the individual IDs of the
nodes. Whatever way the user chooses, he has to adapt the

WSNconnector and manually tell it what nodes shall be re-
flected by which class. Using the concept of WSNdriver, proto-
col stack and WSNconnector, applications that were designed to
operate on the previously discussed virtual representation can
easily be adapted to different networks and types of nodes with
the following steps:

1) Exchange the WSNdriver if a new platform/operating
system is used.

2) Exchange the protocol stack if different communication
protocols are used.

3) Design Node class derivatives for the new nodes (in order
to reflect new events and actions).

4) Adapt the WSNconnector so the new nodes are recog-
nized.

In most of the cases only a smaller subset of the above
mentioned steps are necessary since the user rather designs
new type of nodes or experiments with new protocols than
redesigning the whole network.

IV. PROOF OF OPERABILITY

The graphical user interface of CoMaDa, as described in
references [1] and [5], is implemented on the server, which
has unlimited resources, rendering energy consumption and
memory evaluation unnecessary (cf. Figure 2). Therefore, the
presented evaluation is a proof of operability of an application
implemented on top of CoMaDa, the previously mentioned
GUI.

CoMaDa was tested in an office scenario integrated in the
project AutHoNe, which deals with autonomic home network-
ing questions [10]. The detailed reasons for choosing an office
scenario for application purposes is given in Section IV-D. The
used sensor hardware was the following, which all worked
under the operating system TinyOS [11]:

• IRIS nodes with sensors for temperature, light, and
sound [6].

• TelosB nodes with sensors for temperature, humidity, and
light [6], [7].

The authors used hardware of different vendors in order
to show the compatibility of the GUI and its independent
applicability. The following sections show a proof of concept
for the GUI tasks introduced in Section III: (1) Configuration
of network components, (2) visualization of network status,
and (3) data import/export.
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Fig. 6: Extended visual feedback of a wireless sensor network in real time [1]

A. Configuration of Network Components

The developers of CoMaDa decided to design it independent
of the used hardware but at the same time integrated operating
system depending parts (e.g. IPBaseStation from TinyOS),
which allow a basic support for the operating system TinyOS.
The established GUI for configuration tasks supports the pro-
gramming of the required base station as well as the mea-
surement devices. For the latter the user is able to choose
between different pre-installed setups. Those setups depend on
the chosen hardware and include specifications for platform
type, sensor board type, TinyOS options, and node function-
ality. Platform types include all platforms, which are currently
supported by TinyOS, such as IRIS, MICA, Imote, and TelosB.
Depending on the platform structure different sensor are in-
cluded or can be attached via UART to it and can be specified
via the GUI. TinyOS offers different functionalities per default
(e.g. routing protocol BLIP), which can be activated manually.
Finally, the user must specify the performed node functionality
(e.g. IPBaseStation, individual algorithms). Here the user can
decide whether a pre-defined algorithm (e.g. IPBaseStation)
should be installed or a personal algorithm, where the user
must specify the location of the source code. With this degree
of configuration as described, the user is able to configure each
node in the wireless sensor network individually. [1], [5]
In order to ensure unique identities, the user has to choose an
individual ID for each node in the next step. Then the user

can compile the chosen code with his specifications. After the
compilation the user received the required RAM and ROM size
for the chosen configuration. With these facts in mind the user
plugs in the appropriate sensor node and programs it. [1]
If the user wants to deploy a wireless sensor network supporting
different functionalities by individual nodes the above steps
can differ during configuration period. An example can be
a wireless sensor network where some nodes are only data
collectors with different active sensors and other sensor nodes,
which perform in-aggregation.

B. Visualization of Network Status

After configuration of the network components the user
activates the wireless sensor network. First, the sensor node,
called sink, performing the program IPBaseStation is attached
to the USB port of the gateway. This sensor node is a kind
of agent between the wireless and the wired infrastructure of
the complete system. The program allows the serial protocol to
pass 802.15.4 frames in the systems, which makes the whole
system interesting for systems dealing with the idea of Internet
of Things (IoT) [12] and support IP communication between
components [11].
Second, the user changes to the option IP tunnel where the used
USB port is specified and starts the tunnel application, which
is required by IPBaseStation [11]. The user can now activate
individually each component of the wireless sensor network,
which was configured before. In the currently open environment
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in the GUI the user receives direct feedback of the running
system. The tunnel traffic is visualized including activated and
transmitted sensor nodes as well as received packets in raw
format at the sink. New deployed sensor nodes are integrated
in this visualization when they are recognized by the tunnel
application, which happens when the first packet its received
after sensor booting. If the wireless sensor network should be
shut down the user can deactivate the IP tunnel manually by
pushing the ‘stop’ button.
Usually in wireless sensor networks routing algorithms are
integrated in order to handle the packet transmission with in the
network correctly and transmitting them on an optimal route
from source to sink. This routing structure is not visualized
in the visualization option of the tunnel. Sometimes the user
is interesting in this information as well, thus an extended
visualization option was integrated in CoMaDa. Therefore the
user must switch through the submenu to the option network
status. Here the user can view the routing tree and the current
state of all the nodes of the deployed sensor network in real
time. Figure 6 shows an example for such an extended view
of a wireless sensor network, which consists of four sensor
nodes and the sink (=Base). On the left side of the visualization
the processed tunnel traffic is illustrated. The received data at
the tunnel is used as an input for the class WSNDriver, which
forwards it to the protocol-stack for further translation. Here the
user is now able to see what information each packet includes
and from which node it was received. All this information
is shown on the right side bottom side in a light modified
version as well. Additionally, on the right upper side the
currently used routing tree is illustrated including the sensor
nodes with their individual IDs. Below the routing tree each
node is shown in its current state, including its current sensor
values and any available meta-data. In this example the wireless
sensor networks consists of three data collectors with IDs 1104,
1103, and 1101. The sensor node with ID 5678 supports in-
network aggregation in the system and uses SSL to encrypt
the communication between itself and the sink [13] (instead
of UDP, which is typically used in wireless sensor networks
[9], [8]). Node 5678 aggregates the individual packets of nodes
1104 and 1103 without any modification. This operation is
known under the term message aggregation. The node 1101
currently transmits its packets directly to the sink. [1], [5]

As can be seen in Figure 6, the GUI dynamically adapts
to the currently attached network. All data that is available
about the individual nodes gets visualized. Even the aggregator
(node 5678), which uses a SSL secured transmission con-
nection, is integrated and viewed as any other node due
to the abstract representation of the network. In addition
to that, the aggregator was defined to offer a method that
influences its aggregation behavior and, therefore, is inter-
nally represented by a different class, which offers access to
this functionality by declaring an appropriate Action called
SetAggregationDegree. The GUI uses this information
and displays a text-box and a corresponding button in order
to allow the user dynamically trigger this function. In this

visualization the edges in the routing tree display the currently
used routes between the nodes. In the background each sensor
node stores alternative routes as well, but those a not displayed
in the visualization yet. If the deployed wireless sensor network
is large scaled the complexity rises and the user might lose the
overview. Therefore, the authors added an additional feature to
this visualization: The user can click on the sensor node with
its individual packet information below. As a consequence the
corresponding sensor node and it ingoing and outgoing routes
in the routing tree are highlighted in order to find the sensor
node more quickly. [1]

C. Data Import and Export

The amount of collected sensor data depends on the size of
the network, on collected values, and on collection intervals.
As a consequence this data amount can be huge. Today it is
common to analyse the data by plotting them. Different tools
are available, which offer different plotting techniques (e.g. line,
point, step diagrams) and can be divided into offline and online
tools. In the case of offline tools (e.g. Matlab) the collected data
must be stored on the server for further process. The online
tools (e.g. COSM [14]) allow the user to upload data in real
time and to display them directly. In order to support both
options the established GUI includes data import and export
functionality.
All received data is stored locally on the server in tab-
separated files, which can be imported to offline analysis tools
(e.g. Matlab) and be analysed and plotted depending to the users
requirements. The final plot is currently not imported back into
the GUI. Thus, the user has to view it outside the GUI on its
specific terminal or browser.
In the case of online tools, such as COSM [14], the received
data from the wireless sensor network must be converted to the
required data format, which is in case of COSM the JavaScript
Object Notation (JSON) language, before the data can be
exported to the tool. The COSM module implicitly does this
and the user only has to specify which individual sensor node
of the system should be exported and visualized. Therefore,
the user creates feeds (models used by COSM to group data-
streams) for each node he wants to export and the COSM-
module automatically translates between CoMaDa’s virtual
representation and COSM’s feed architecture. Per default all
data included in the packet is displayed via COSM (e.g. Node
ID, time, light, sound). The resulting visualization is imported
to the GUI and visualized to the user. Figure 7 illustrates such
a visualization result where the user has discarded the plotting
of time and Node ID, because it is redundant to the information
shown in the left part of the figure including all default data.
As a result in this example only the plots for light and sound
are visualized. Here the user has also the possibility to regulate
the time scale of the plots (here: 3 hours). Periodically in the
background of the GUI the plots are stored in order to view
them offline again. If the user shuts down the wireless sensor
network completely, the plot is stored in total over the whole
plotting time for each sensor node, which was plotted. [1]
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Fig. 7: Imported COSM plot [1]

D. Operability evaluation

As mentioned in the beginning of Section IV an office
scenario was chosen for operability proof. An office scenario
was a reasonable possibility to test the GUI based on CoMaDa
on behalf of the framework itself with all its supports, because it
allowed the authors to test the GUI on different scaled networks
sizes (3-30 nodes), different distances between sensor nodes and
to the sink, and during different experimental durations (5 min
- 3 days). Additionally it was possible to test the GUI in an
environment, which included different architectural structures
(e.g. glass, concrete and wooden walls, metal infrastructure,
influence of different radio settings).
The developed GUI was tested extensively and scaled well on
different setting. Currently the only requirement is that the
sampling rate should be chosen appropriately to the network
size. This means that if the network consists of more than
15 sensor nodes the sample rate should be set to higher than
25 seconds in order to avoid packet lost. Another drawback is
currently the number of possible active connections to COSM,
which is limited to five at the same time. This means it is only
possible to export five nodes at the same time. If a display
of one node is shut down the user can directly open a new
connection to display another one. This exporting drawback
does not influence the visualization of live stream and routing
as shown in Figure 6.
Independently of the currently supported operating system
TinyOS further investigations exist to support the operating
system Contiki in the future. Additionally, more analysis tools
will be integrated in the GUI. Those extensions of the GUI will
be possible with less manual input due to the modular structure
of the GUI as described in Section III.

V. CONCLUSION

As motivated at the beginning of this paper existing frame-
works and GUIs for wireless sensor networks focus on sim-
ulation scenarios or are bound to specific hardware/platforms.
Therefore, this paper deals with the realization of the flexible
and adaptable framework CoMaDa, which supports manage-
ment tasks for different hardware types and visualization of
collected data, as well as feedback about the system status in
real time. The flexibility of CoMaDa is gained by a virtual

representation of the real wireless sensor network, which offers
independency of the application, algorithms, and hardware

vendors. In addition, the framework was built in a modular
structure, which offers the user the opportunity to modify
CoMaDa to his/her requirements by adding new functionali-
ties (e.g. adding support for new nodes, new protocols, new
operating systems) with fewer overheads. With its adaptive and
modular structure, CoMaDa makes a great base for building
applications that interact with wireless sensor networks but are
not bound to specific platforms or setups.

The authors believe that the presented framework can charm
developers to design and implemented their applications with
no specific target platform in mind, so the community could
benefit from these regardless of their preferred platform. This
would lead to the benefit that the set of available tools is
no reason for deciding for a specific platform anymore. For
testing purposes in individual applications the source code of
the framework including the GUI is available with MIT-License
under reference [15]. The authors will be grateful for every user
feedback in order to make the framework more flexible and user
friendly.
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