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Abstract—In the present Internet, inter-domain routing is
based on BGP-4 [1] which selects a single path per destination
prefix, thereby preventing carriers and end-users to use the vast
inherent path diversity [2]. Addition of multi-path capabilities
to the Internet have long been advocated for both robustness
and traffic engineering purposes. Some works [3], [4] propose
inter-domain multipath architectures.

In this paper we consider a new service where carriers offer
additional routes to their customers (w.r.t. to BGP default route)
as an added-value service. These alternate routes can be used
by customers to help them to meet their traffic engineering
objectives (better delays etc.) or just for robustness purposes
(disjoint alternate routes). Announcing additional paths can lead
to scalability issues [5], so one carrier will propagate only the
paths that are most interesting for neighboring domains.

We propose an auction-like framework adapted to this specific
service, allowing one carrier to select the most interesting paths
and determine the prices at which these routes can be sold. We
consider the case where routes are sold as infinitely duplicable
goods (assuming small demands with regards to route capacities).
We design a winner determination mechanism, based on the
maximization of the seller’s revenue, that enforces fair allocation
of goods and is loser collusion proof. We also propose a payment
mechanism that is proven to be truthful when each bidder
submits one (potentially combinatorial) bid.

I. INTRODUCTION
Internet is composed of Autonomous Systems (i.e., ASes)

exchanging routing information. With the current de facto
inter-domain routing protocol (i.e., BGP [1]), an AS can only
propagate one path to its neighbors. Therefore only one path
is put into use and the benefits of path diversity, inherently
present in the Internet, are never harvested. At the same time,
network service providers (NSPs) are looking for providing
new services for customers and path diversity can be the
cornerstone of such services [6], [7]. Some proposals [3],
[4] highlight ways to propagate and use this diversity. Never-
theless, enabling Internet path diversity faces huge scalability
issues as the number of potential available paths can be very
important [5]. The insertion of any additional route has an
impact on the cost of the network. Network service providers
will hardly implement these routes at their expenses and will
therefore make their clients pay for this service. Nevertheless
clients will pay if the NSP succeed in proposing routes that
are interesting, according to the clients’ criteria.

Such an approach faces two important problems. First dif-
ferent paths have different characteristics (e.g., length, delay...)
and each of these paths may be interesting for a neighbor but

not for one another. Second, network service providers aim at
proposing path diversity as a value-added service, in particular
to face the scalability issue mentioned above. Therefore the
price establishment of a path is something very important
which has not yet been studied. We aim, in this paper,
at providing a simple framework that addresses these
problems and fits the specific constraints of the inter-
domain routing. Therefore we propose a route allocation
framework, inspired by the auction theory, that aims at pricing
routes and matching them to interested neighboring domains.
The allocation process outputs both route matching and pricing
and unifies good properties in order to motivate NSPs to adopt
such an approach.

The paper is organized as follows: In Section II, we describe
the context and the constraints of the inter-domain routing
where the allocation process takes place. In Section III, we
detail the notations we use, the wanted properties of the
framework and the related work. Then the Section IV presents
the allocation framework, including the winner determination,
followed in Section V by an example of payment function
proven to be truthful when bidders submit one bid. We then
underline some evaluations in Section VI before concluding
in Section VII by providing some further works extending the
framework.

II. BACKGROUND
A. Context

The architectures proposed in [3], [4] allow for the propa-
gation and the use of an important amount of paths. Internet
routers currently have in their FIBs 450 000 entries [8]1,
which is already identified as a growing issue [9], [10]. [5]
underlines that without any filtering, the amount of propagated
paths could reach a non-manageable amount (i.e., order of
magnitude of 1010). In order to address such an issue Kwong
et al. [10] suggest the use of market mechanisms to limit the
increase of the routing table size in a single path Internet.
Therefore we adopt the same perspective as [10] to avoid the
explosion of the routing table of Internet routers in the multi-
path context.

In our context, each domain filters the routes according
to the needs of his neighbors and makes neighbors pay
according the routes they receive. Filtering according to the

1450 000 routes or so in november 2012
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needs of each neighbor allows to leverage a new commercial
approach of route propagation, as each neighboring domain
may pay to receive his own specific route. Nevertheless a
good knowledge about each neighbor is required in order
to propagate the correct sets of routes. This knowledge is
very hard to obtain as it depends on the type of neighbors
and reflects complex policies of neighboring domains, which
may include commercially sensitive information. A matching
process is therefore required to associate, for each neighbor,
the best set of routes. Therefore a network service provider,
which has already received several paths, aims at identifying
the paths which deserve to be propagated to some of his
direct neighbors (cf. Figure 1). The path allocation takes place
between the NSP and his neighbors and no further domain is
involved in the process.

Therefore the goal of the current work is to answer both
following questions: 1/ Path to neighbor matching: to which
neighbor do I send which route? 2/ Price computation: what
price will each neighbor pay? While the proposed framework
differs from pure auctions (cf. Sections II-B and III-C), its
design is very close as both problems are well tackled by the
auction theory respectively under the name of Winner Determi-
nation Problem and Price Establishment [11]. Therefore some
comparisons between the current route allocation framework
and the auction theory are used all along the paper to highlight
important aspects.

The propagation of paths to neighbors, according to the
proposed allocation framework, follows these four steps:
• Step 1: publication of paths: The provider sends to

his neighbors a set of path2 information (e.g., AS path,
path characteristics, monitoring results [12]...) and the
setting of the allocation process (e.g., type of mechanism,
constraints...).

• Step 2: Path bidding: Each neighbor sends a set of bids,
each one containing a set of routes and the corresponding
price he is willing to pay for it.

• Step 3: Path(s) matching and price(s) computation:
after receiving the bids, the provider is able to compute
both the path to neighbor matching, which selects, for
each neighbor, the set of paths he wins, and the prices
neighbors must pay.

• Step 4: Path configuration and payment: once matching
and pricing are done, the provider allocates the routes
by configuring the routing equipments such that each
winner is able to use the paths he won, and propagates
the full routing information to the winners. These route
announcements and configurations can be considered as
a grant to use the additional routes.

The framework allows a carrier to offer additional routes
to some selected customers in order to help them achieve
their respective traffic engineering objectives. However, the
end to end paths that are offered may pass through carriers
that are not involved in the process. In other words, the

2Only a set of the most “interesting” routes may be sent using eventually
coarse filtering functions (e.g. too long paths etc.).

carrier has usually no control on the proposed routes (and
their characteristics). Only a privilege to access these alternate
routes is provided, with no quality of service (i.e., QoS)
guarantees.

CDNs

InternetAuctioneer/seller: 0

Path advertisement
(any color)

i.e., goods to be sold

Firms

ISPs

Destina
tion

...

Neighboring ASes
i.e., bidders

Fig. 1. Goods and actors identification

B. Inter-domain constraints
From an inter-domain point of view, the price of inter-

domain peering bandwidth has drastically dropped during
the last decade (a two order of magnitude decrease [13]).
Therefore we assume that the network service provider that
sells paths is able to forward the whole traffic demand of his
clients, leading to the assumption that the NSP’s capacities are
over-dimensioned compared to the needs of his neighbors.

Moreover, selling an inter-domain path is different from sell-
ing a conventional good in the sense that, after the transaction,
a path does not belong to the buyer. Indeed instead of really
selling a path, the seller provides a grant to use the said path.

As it is currently the case, several buyers can be granted
simultaneously to use a common path. Without any bandwidth
constraint, all the neighbors could be granted to use the
same path. Whereas the number of buyers is limited by the
number of neighbors, we consider, for the rest of the chapter
and without loss of generality, that an unlimited number of
neighbors/bidders can win a single path.

Therefore here are the characteristics of the inter-domain
context:
• Neighbors/bidders may want to win several routes to

reach the same destination. They must therefore be able
to bid on bundle(s) of routes/goods.

• these routes/goods can be duplicated infinitely by the
seller in the sense that the seller can either propagate the
routing information to only one bidder or to all bidders,
which can be considered as a duplication of routes.

• the inter-domain allocation process must generate low
amount of messages. Therefore a one round allocation
process should be preferred3.

• a route is allocated to a bidder at most once. Indeed,
once a domain receives the routing information and is
able to use the associated path, receiving again the same

3The present work describes one single use of the process, which should be
a one round process to minimize the communication overhead. Nevertheless,
routes can be re-allocated on a regular basis (e.g., hourly, daily...) by using
the same one round process. It could therefore elect different winners with
different prices, if the valuations of bidders changed since the previous
allocation. The use of repeated allocation processes should be analysed from
a repeated game perspective, which is outside the scope of the current work.
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routing information does not give him any new grant or
any additional capability.

III. FRAMEWORK REQUIRED PROPERTIES
A. Notations

We present in this section the notations, inspired from [14],
for our work. A transit domain (i.e., the seller denoted by 0)
proposes a set of routes G (G for goods) to all or part of
his neighbors B (B for bidders). Figure 1 identifies the seller,
the bidders and the routes/goods in the global environment.
Each neighbor i ∈ B is a potential bidder and may therefore
answer to the process in order to buy one or several route(s).
Each bidder has a utility function ui(g), which associates each
set of routes g ⊆ G with a utility value. The utility function
is private and represents the preference of bidder i for each
set of routes g. Each bidder i bids a reported valuation vi(g).
These reported valuations are either public or at least known
by the seller. After receiving the bids from each bidder the
seller elects the winners W ⊆ B. The seller also computes
the price each winner must pay in order to obtain the set of
routes he wins. Bidders that do not win any route are named
losers L, with L ∪ W = B. A bidder i who wins a set of
routes g ⊆ G pays a price pi(g) ≤ vi(g). His payoff is then
πi = ui(g) − pi(g) whereas the payoff of the seller (i.e., the
amount he wins) is π0 =

∑
i∈B pi .

B. Properties
The mechanism we design is intended to take place in

both market and inter-domain routing contexts. Therefore we
consider the following properties as being essential to the
successful adoption of this framework:
• Implementable: With the current 450 000 IPv4 prefixes,

inter-domain routing is already dealing with an important
amount of information. The present allocation framework
must occur in a context where each one of the said
prefixes is associated with several routes (which is not the
case with the current one route paradigm) and where sev-
eral instances of the framework may run in parallel (e.g.,
one instance per prefix). Therefore the first requirement
of the mechanism is to be scalable and implementable.

• Truthful: A mechanism is truthful if bidding ui is a
dominant strategy for every bidder i (i.e., vi = ui).
Such a property is interesting for the seller as it allows
to assign the paths to those that really evaluates them
more. Moreover it helps the seller to design future route
allocations by learning the type of routes that are really
interesting. Ultimately, it prevents bidders from manipu-
lating bid values in order to influence the price they have
to pay.

• Maximize the income of the seller: We aim at providing
to the seller a substantial income that will make him adopt
this mechanism.

• Deal with unknown valuation functions: Pricing of al-
ternate routes is a new possibility of the future multi-path
Internet. Therefore a seller does not know yet how much
each route could be priced. It is therefore impossible to
fix prices and let buyers come if the price is interesting for

them. Furthermore, we do not know yet the type of utility
functions NSPs have for such a new service. We must
be agnostic about this information. Different approaches,
which are cited in Section III-C may be used on a long
run - i.e., when NSPs have sufficient knowledge about
their clients’ needs. Nevertheless the unknown valuation
function case is more adapted in this emerging market.

The two first properties (i.e., implementability and truthful-
ness) may prevent the mechanism from closely approaching
the maximum revenue of the seller. Nevertheless we consider
these two properties essential to the adoption of the frame-
work. Therefore we aim at maximizing the revenue of the
seller under the constraint that the two first requirements are
respected.

The presented requirements are tackled by the auction
theory (cf. related work in Section III-C). This is the reason
we chose to set up an auction-like allocation framework that
we adapt in order to be compatible with the interdomain
constraints presented in Section II-B.

As we underlined in Section II-B, routes are infinitely
duplicable. Therefore the seller could potentially allocate a
set of routes to every bidder. Taking into account the revenue
maximization goal, a common reflex is to sell the routes at the
maximum price that bidders are able to pay (i.e., a pay as you
bid mechanism: pi = vi). Nevertheless, in our context, such a
mechanism has two consequences. The first is that each bidder
is elected as a winner and wins the good he wants. Indeed,
for each new bidder that wins a good, the seller increases
his revenue (without any good depletion). The maximum
revenue is thus reached if all bidders win the auction. As a
consequence, competition between bidders totally disappears.
Moreover, another consequence is the lack of truth, which
encourage bidders to bid lower values. Indeed each bidder
knows, before bidding, that he will win the set of goods he
wants regardless of his bid. All bidders will thus bid with a
valuation of zero, which will lead to a null seller’s revenue,
which is far from maximizing his revenue. A payment function
must therefore be found to maximize the seller’s revenue and
enforce truthfulness.

C. Related work
Pricing of items is a large and old field that has been well

studied to sell physical goods (e.g, [15] for cars, computers...).
The emergence of computer science extended the field to
the pricing of unlimited supply goods. Some works have
been proposed to maximize the revenue of the seller in an
unlimited supply context [16], [17], [18], [19], [15], [20].
While the computation of the maximum revenue price vector
is NP-hard [16], contributions to the field generally propose
price computation algorithms that approximate the maximum
revenue of the seller. To the best of our knowledge, no
contributions unify the properties presented in Section III-B.
[21] deals with the selling of one item while we deal with
several items. Some other works do not ensure that players
disclose their true utilities [16], [20]. While [22] proposes a
way to transform any non-truthful item pricing mechanism into
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a truthful mechanism, it degrades the efficiency of the revenue
approximation and overall requires a minimum amount of
buyers, which is not a reasonable assumption in our context.
Some other works [19], [23] take into account historical
records (e.g., Bayesian prior) or already know how much each
buyer is able to pay [24], which is also not the case in our
context.

From a pure auction perspective, our framework gives the
opportunity to sell sets of routes to neighbors, which could be
compared to a combinatorial auction4. Combinatorial auctions
have been well studied in the literature [25], [14]. Althought
they seem to fit our goal, we apply them in a context where
items to be sold can be duplicated by the seller (i.e.,
unlimited supply) and allocated simultaneously to different
clients/bidders, which is not the case of these works.

Auctioning goods with unlimited supply is not common and
some works have been done to address this problem. Goldberg
et al. studied in [26] the selling of a single digital good and
extended their work to multiple goods in [27]. Nevertheless,
their approaches only take into account a single won good per
winner and does not deal with combinatorial auctions. Other
works also deal with digital auctions, but all focus on multiple
identical items [28], [29], [30], [31]. We also aim at setting up
our framework to make the bidders give their true valuations.
A lot of work has been done in auction theory to set up truthful
auctions [32], [33], [11], [14], [34], [35], [36]. Nevertheless
all these works focus on a finite number of goods to be sold.

Other works [37], [38], [39] aim at providing frameworks
that associate inter-domain routing with auctions or pricing.
From a networking point of view, they propose to sell band-
width along paths that everybody can use and fix transit prices
according to pricing mechanisms, whereas we aim at selling
the right to use specific paths, regardless of the bandwidth.
From a game theory point of view, they address these issues
by using a VCG approach, which is not adapted in our infinite
supply context [40].

From a pure networking point of view, an architecture has
previously been proposed to sell inter-domain routes [41] and
advocates for the use of auctions in this context, without
providing any auction framework. While this architecture
proposal is well adapted to a federation of domains, it is highly
centralized and thus not adapted to the Internet (distributed
by nature). It requires a strong cooperation between carriers
while we adopt an incremental perspective, where each NSP
can adopt the framework on his own5.

IV. PATH ALLOCATION FRAMEWORK
A. Allocation process

Conventional winner determination computations are based
on the maximization of the social welfare (i.e., X(v) =
argmaxx

∑
i vi(x) [11]). Such maximization selects in gen-

eral a restricted number of winners as goods are over-

4Combinatorial auctions: auctions where bidders can bid simultaneously on
several goods - cf. [25]

5A NSP currently receives a path diversity thanks to his external BGP
peerings [42]. Therefore he can already sell this diversity to his clients without
any cooperation with other NSPs.

demanded. Nevertheless, in our unlimited supply context, the
maximization of the social welfare is equivalent to electing all
bidders to be winners, which could lead to a seller’s revenue
of zero.

It must be noticed that accepting a new winner (or increas-
ing the set of winning bids) may face two contradictory effects:

• the new winner pays, which makes the payoff of the seller
π0 (i.e., his revenue) increase;

• depending on how the prices are computed, the prices
paid by winners may decrease, which makes the payoff
of the seller π0 decrease (as illustrated in Figure 2).

For instance, in multiple identical item auctions with limited
supply, the VCG6 price may reduce if you add another item. In
such a case, adding items to make every bidder win makes the
price and the seller’s revenue drop to zero [11]. Therefore the
revenue of the seller is null whether there is no winner (i.e.,
|W | = 0) or every bidder is elected to win (i.e., W = B).
There must exist at least a set of winners W where π0 > 0
(unless the selling process does not make sense). Therefore,
despite what can be intuitively thought, maximizing the seller’s
revenue does not always require to sell routes to all bidders.
It depends on the price computation function which is used
by the seller.

The revenue of the seller depends on both the set of winning
bids and the prices winners pay. We adopt an iterative approach
to elect the winners and the prices. We iteratively increase the
set of winning bids in order to explore the bid space, compute
the corresponding prices and the revenue of the seller at each
iteration. We can then deduce the seller’s maximum revenue
point. This process is described in Algorithm 1.

Algorithm 1 Revenue curve computation
Revenue max = 0;
Winners max = 0;
ForAll Winning bids ⊂ bids do
Revenue = compute revenue(Winning bids)
if Revenue > Revenue max then

Revenue max = Revenue
Winners max =Winning bids

end if
EndFor

This algorithm computes the price for different sets of
winning bids. A first approach for computing the maximum
revenue of the seller is to compute, for all the combinations of
winners, the prices and the associated seller’s revenue and keep
the combination of winners providing the maximum revenue.
Nevertheless this approach suffers from the important number
of potential winner sets. Therefore we use a ranking approach
to add bids to the set of winning bids. A way to rank bidders
must be found in order to easily identify, at each computation
step of the algorithm, the bid which must be elected as extra
winning bid for the next iteration.

6Whereas VCG pricing computation is not applicable in our context, it is
a good way to illustrate that increasing the set of winners may reduce prices.
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B. How to rank bids fairly?
Some rankings have already been proposed in [43], [40],

nevertheless their characteristics are proved in a context where
a limited number of goods is available and with single-minded
bidders (i.e., each bidder is only interested in a single set of
goods). In order to set up a fair matching between goods and
bidders, a bid can be elected as a winning bid only if all the
bidders that proposed more for the same set of routes also
win. Let b be a bidder and vb(g) his bid for the set of routes
g (b may also submit other bids). Here are the requirements
of a ranking. vb(g) can be elected as a winning bid:
• requirement 1: if all the higher ranked bids have already

been elected as winning bids
• requirement 2: and if no group of lower rank bids can

propose more than vb(g) for the same set g.
These two requirements may be considered as fair conditions.
It must be noted that a bidder may have several winning bids
and several losing bids (i.e., for different sets of routes).

It is easy to rank bids for the same set of goods. Never-
theless, it is more difficult to rank bids associated to different
sets of goods as the sizes of the sets may be different and as
the sets may not contain the same routes. In such a case, bid
values can not be considered alone and set sizes must also be
taken into account. Therefore we rank bids according to the
mean reported valuation of the bid - i.e., vb(g) =

vb(g)
|g| .

Definition 1: A mean-bid winner determination is a de-
termination of the winners such that if a bidder i wins thanks
to his bid vi, each bidder j that has, at least, one higher mean-
bid (i.e., vj > vi) also wins.
By definition, mean-bid winner determination is
compatible with the first requirement of a bid ranking.
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Fig. 2. Example of the evolution of the seller’s revenue.

Figure 2 presents what the output of Algorithm 1 could be
on a single duplicable item. In this graphic example, 40 bidders
bid in the range [0, 1] and prices are computed according to
a price function7. The curve traces the revenue that the seller
could earn by fixing the mean-bid-value separating winners
from losers. The point providing the highest revenue is the
point M. Each bid whose mean value is lower than M is a

7Here, the first-loser-mean-bid payment function (detailed in Section V) is
used but other payment functions may be used.

losing bid. If a bidder has only losing bids, he does not win
anything. In the case he has several bids higher than M,
he wins the set of goods which has the highest reported
valuation - i.e., xi = maxg{vi(g)|vi(g) >M}.

Theorem 1: When goods are infinitely duplicable by the
seller, a mean-bid winner determination is loser collusion
proof.

Proof: Theorem 1 advances that no losing bids or coali-
tion of losing bids can propose to the seller more than what
winners propose, for the same set of routes/goods. We rank
all the bids by their mean values. For any winner bid v1, we
perform a reductio ad absurdum by imagining that a set of
lower rank bids (i.e., {v2, .., vn} with ∀i ∈ {2, .., n}, vi < v1)
can propose a better common bid v{2,..,n} for exactly the same
set of goods g = g1 = ∪i∈{2,..,n}gi (with gi the set that
bidder i bids on). We have to note that ∀i, j ∈ {2, .., n},
gi ∩ gj = ∅ as a good is only present once in g and that
goods are not duplicable by bidders (cf. Section. II-B). If the
coalition is successful, its valuation should be higher than the
one of bidder 1 - i.e., v{2,..,n} =

∑
i∈{2,..,n} vi > v1 and

therefore v{2,..,n} =
∑

i∈{2,..,n} vi

|g| ≥ v1 = v1
|g| . Nevertheless

we have the following, which yields a contradiction with the
previous relation, and the proof follows:

v{2,..,n} =

∑
i∈{2,..,n} vi

|g|

=

∑
i∈{2,..,n}

vi×|gi|
|gi|

|g|

<
v1
|g1|
×

∑
i∈{2,..,n} |gi|
|g|

<
v1
|g1|

= v1

Theorem 1 proves that the mean-bid winner determination
is compatible with the second requirement of a bid ranking.

V. EXAMPLE OF SIMPLE PAYMENT FUNCTION
We analyse in this section the characteristics of a simple

payment function, the first-loser-mean-bid payment. Despite
the apparent simplicity of this payment function, it gives to
bidders incentive to tell the truth when each of them submit a
unique bid (cf. Section V-B).

A. Payment function presentation
Definition 2: A first-loser-mean-bid payment is a pay-

ment function where the winners pay each of their won goods
the highest mean-valuation of the losing bidders:

for each g ⊆ G, p(g) = |g| ×M

and M = max{vi|i ∈ L}

Here is a small example of the allocation process with 4
bidders (i.e., bidders 1, 2, 3 and 4) competing for 2 goods
(i.e., a and b). Table I presents an example of bids, which are
then ranked according to the mean in Table II and processed
to compute both the seller’s revenue and the good allocation
in Table III.
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Having ranked the different bids according to the mean
allows the seller to scan all the possible winner combinations
by scanning it from high to low mean values (cf. Table II). At
each step, the revenue of the seller is computed (here, using the
first-loser-mean-bid payment) in order to select the maximum
revenue good allocation.

As a first step, the seller states that only bidders who bid
more that 7, as mean bid value, are elected as winners (cf. first
column in Table III). Therefore bidder (1) wins b and the price
of each won route is 6 (i.e., the mean bid of the first loser),
which gives to the seller a total revenue of 6. As a second
step, the seller elects the more-than-6-mean-value bidders as
winners. The price which is to be paid is 5 per route as only
bidders 3 and 4 remain losers and their maximum mean-bid
value is 5. The revenue is therefore 10. Every step is computed
and the seller selects the one maximizing his revenue (i.e., step
3, in red, with a revenue of 15).

(1) (2) (3) (4)
a - 6 5 2
b 7 - 5 -

ab 11 9 6 3

TABLE I
BIDS

⇒

Mean Bidder Goods
7 (1) b
6 (2) a

5.5 (1) ab
5 (3) a⊕ b

4.5 (2) ab
3 (3) ab
2 (4) a

1.5 (4) ab

TABLE II
BIDS RANKED ACCORDING

TO THE MEAN

⇓
Minimum winning mean bid

7 6 5.5 5 4.5 3 2 1.5
(1) b b ab ab ab ab ab ab
(2) ∅ a a a ab ab ab ab
(3) ∅ ∅ ∅ a⊕ b a⊕ b ab ab ab
(4) ∅ ∅ ∅ ∅ ∅ ∅ a ab

Route price 6 5 5 2 2 2 0 0
Revenue 6 10 15 8 10 12 0 0

TABLE III
REVENUE COMPUTATION (⊕ FOR THE CONVENTIONAL XOR

OPERATOR)

B. Telling the truth
We prove here that if bidders submit only one bid, the

proposed process and the first-loser-mean bid payment is
truthful. It must be noted that the seller can easily enforce
bidders to submit only one bid (potentially containing several
routes/goods).

Theorem 2: In the present allocation framework (duplicable
goods, mean bid-winner determination based on the maximiza-
tion of the seller’s revenue and first-loser-mean-bid payment),
if each bidder submit one bid, truth telling is a dominant
strategy.

Proof: Here bidders submit only one bid (potentially
containing several goods). A winner may lie in order to reduce
the price he is about to pay and a loser may lie in order to
become winner.

First, by modifying their bids, winning bidders are not
capable to modify the price they pay as the price is computed
thanks to bids of losing bidders.

Nevertheless a loser can make his losing bid become a
winning bid by increasing the associated bid value. More

formally, a bidder i lies and bids a valuation vi(g) > ui(g)
such that he is able to win the set of goods g ⊆ G that he
would have lost by telling the truth (i.e., when vi(g) = ui(g)).
What price would bidder i pay? It is obvious that i is not
willing to pay the price p(g)T > ui(g) (i.e., where p(g)T is
the value of p(g) when i tells the truth). Nevertheless p(g)
could be reduced by the lie of i and take an interesting value
p(g)L < ui(g) < p(g)T (i.e., L when i lies). Therefore the
question is: can p(g) decrease and take a value lower than
ui(g) by increasing vi(g).

Figure 3 shows a zoom around the maximum revenue point
and illustrates the elevation of the revenue curve because of the
lie of a bidder. The black arrow shows the lie of bidder i (from
a mean value vi(g)T = 0.41 to a mean value vi(g)L = 0.52
- cf. point 0 in Figure 3). Without the lie of the bidder, the
revenue curve is represented by the red curve whereas the
new revenue values, influenced by the lie, are represented by
the blue diamonds.This bid modification makes some potential
revenue points increase (cf. blue arrows that lead to points 1,
2, 3, 4 and 5), whereas some other points are not modified.
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Fig. 3. Revenue curve deformation.

We analyse here the increase of the revenue curve led by
the lie. The following applies either if MT ∈ (ui(g), vi(g)] or
not.

The lie (i.e., vi(g) > ui(g)) makes the seller’s revenue curve
change (as illustrated in Figure 3). It is important to notice that
the modification of the seller’s revenue curve only occurs in
the value interval (ui(g), vi(g)]. Indeed ∀m /∈ (ui(g), vi(g)],
the number of won goods is not changed and the revenue
remains the same.

Then ∀m ∈ (ui(g), vi(g)], the value of the revenue is
increased by the price paid by i (i.e., m × g). Therefore
either the maximum revenue point remains the same (i.e.,
MT = MT ) or ∃m ∈ (ui(g), vi(g)] such that r(m) ≥ MT .
In both cases the new maximum revenue point ML provides
a price that is higher than ui(g) leading to a negative payoff
for i.

As a conclusion, truth telling gives to bidders their maxi-
mum payoff and is therefore a dominant strategy.
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VI. EVALUATIONS

A. Computational complexity
From a computational perspective, the process can be sum-

marized by the ranking of bids and the computation of the
revenue curve. The ranking of the bids is an O(|Bids| ×
log(|Bids|)) [44] operation (with |Bids| = |B| × |G|). Once
the ranking of bids is done, the computation of the revenue
curve, according to the first-loser-mean-bid payment, requires
the computation of |B| revenue computations. Each revenue
computation is linear in the number of bids as it only looks at
all the bids to select the ones that are elected as winners and
computes the revenue with the price given by the first-loser-
mean-bid payment function. The overall process complexity is
therefore in O(|B|2) and in O(|G|log(|G|)). Figure 4 shows
the square root of the computation time according to the
number of bidders, for different processes. It shows that the
allocation process is less than linear regarding the square of
the number of bidders. It reinforces the square complexity of
the allocation process, regarding the number of bidders.
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Fig. 4. Time computation evolution (square roots) regarding the Number of
bidders.

B. Ratio between revenue and winners’ valuation
Figure 5 shows the ratio between the revenue of the

seller and the valuation that winners could have paid to win
their routes. We compute this ratio for different numbers of
goods/routes and for different numbers of bidders.
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Fig. 5. Revenue over valuation ratio.
We find that the seller receives as a revenue between 55%

and 80% of the prices that winners could have paid (i.e., their
valuations). The revenue that is not perceived by the seller is
the winners’ payoff. Nevertheless, Figure 5 is an evaluation of

the allocation when bidders submit several bids, which is not
proven to be truthful.

Figure 6 shows the same evaluation (i.e., revenue over
valuation) for allocations which accept only one bid per bidder.
This evaluation is important as we proved in Section V that
truth telling is a dominant strategy for this type of mechanisms.
Therefore, whereas the seller is not sure that the valuations
provided by the bidders in the evaluation of Figure 5 are true,
the ones provided for the allocations simulated in Figure 6 can
be assumed to be equal to the real utility values.

We can see that the ratio between revenue and valuation
is almost the same (i.e., approximately 60%) for different
numbers of bidders and for different numbers of routes. It
is interesting to note that this revenue over valuation values
are coherent with the ones of the one good sales of Figure 5
as the one good sales, which leads to a one bid per bidder
submission, provide a ration between revenue and valuation of
around 60%. The evaluations of Figure 6 give a less interesting
ratio than Figure 5. It can be considered as the price the seller
has to pay in order to enforce truthfulness - i.e., the price of
truthfulness.
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VII. CONCLUSION

Today’s Internet displays vast potential path diversity, which
is truncated by the inter-domain routing protocol BGP. Some
works [3], [4] propose some architectures to enable the prop-
agation and the use of this path diversity. Nevertheless, the
enabling of such an amount of paths would lead to import
scalability issues [5] and ISPs need a mechanism to provide
limited access to these alternate routes.

We propose in this paper a path allocation process based on
auctions, organized by a network service provider to locally
sell routes to its neighbors. Generally speaking, this auction-
like process has for benefits to both propagate to each neighbor
only the paths he is interested in and to establish a price
according to what he can pay. In addition, the allocation
framework we propose has the advantage that the winner
determination, which is based on the maximization of the
seller’s revenue, is loser coalition proof, which means that no
loser or collusion of losers can question the seller’s selection
of winners. Furthermore we propose a payment function that is
dominant truthful when bidders submit one bid, meaning that
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each bidder has an incentive to bid the true value he evaluates
the set of paths he bids on.

As a further work, we aim at studying this allocation
framework if other constraints come into play (e.g., bandwidth
constraints...) and characterize the performance of the mech-
anism, in term of revenue.
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