
Automated Source Code Extension for Debugging
of OpenFlow based Networks

Stefan Hommes, Frank Hermann, Radu State, Thomas Engel
University of Luxembourg, SnT

6, rue R. Coudenhove-Kalergi, L-1359 Luxembourg
Email: {stefan.hommes, frank.hermann, radu.state, thomas.engel}@uni.lu

Abstract—Software-Defined Networks using OpenFlow have to
provide a reliable way to to detect network faults in operational
environments. Since the functionality of such networks is mainly
based on the installed software, tools are required in order to
determine software bugs. Moreover, network debugging might be
necessary in order to detect faults that occurred on the network
devices. To determine such activities, existing controller programs
must be extended with the relevant functionality. In this paper
we propose a framework that can modify controller programs
transparently by using graph transformation, making possible
online fault management through logging of network parameters
in a NoSQL database. Latter acts as a storage system for flow
entries and respective parameters, that can be leveraged to detect
network anomalies or to perform forensic analysis.

I. INTRODUCTION

The emerging concept of Software-Defined Networking
(SDN) has attracted a lot of attention following the develop-
ment of OpenFlow [1], a protocol that is used to communicate
between network devices and a centralized network controller.
Due to the programmability of the network controller, cus-
tomized code can be executed that adapts to customer specifi-
cations. In this paper we propose an approach to instrumenting
a variety of controller programs with logging capabilities based
on OpenFlow-specific network parameters. This is necessary
since networks are vulnerable to different kind of faults,
attacks and misconfiguration for which the root cause must
be determined promptly in production environments.
Since each program structure is different due to particular
application scenarios, source code modification and extension
is a tedious and error-prone task. Therefore, the requirements
of our approach are to allow:

• Automated source code extension of a wide variety of
controller programs to instrument controlling code in
order to add logging and debugging facilities without
modifying the controller itself. This should be possible
with user-defined levels of granularity;

• Storing network parameters in a database to allow user-
defined tracing, attack and fault detection capabilities; for
instance, digital forensics might require complete tracing
support, while other scenarios might be more lightweight;

• Transparent storage for the underlying monitoring plane.
Since several solutions exist for storing large datasets, we
need an approach that can be easily adapted to a partic-
ular storage solution. For instance, changing the storage

solution from Redis1 to HBase2 should be automated and
transparent for the end user.

To satisfy these requirements, our paper proposes a frame-
work that leverages graph transformation [2] for automated
source code extension in combination with an efficient
NoSQL3 database. The source code is extended with additional
functionality for logging network parameters, where the user
can choose between different levels of logging detail. In our
example, we provide a light mode to store a basic set of flow
parameters and a forensic mode to additionally retrieve flow
statistics.
The paper is structured as follows: In section II, we describe
related work in verification and testing of OpenFlow based
SDN. Section III describes our concept of logging flow
records in a NoSQL database. A short introduction to graph
transformation is given in section IV. In section V, we discuss
implementation details of the framework. We conclude our
paper in section VI.

II. RELATED WORK

From a historic perspective, the network management com-
munity had already addressed Software Defined Networks
(SDNs) ten years ago. Research efforts centred around pro-
grammable networks and active networking [3], [4], [5] and
[6], [7] have prefigured current SDNs by proposing a more
heavyweight, though more flexible architecture. We describe in
the following some work that concerns debugging of network
controller software for OpenFlow based SDN. Similar to a
debugger in software engineering, the network debugger ndb
[8] was proposed in order to help the operator to determine
the root-cause of software faults. Each switch sends so called
postcards, which are triggered whenever a packets arrives
at a switch and contain information about the matched flow
entry. This allows the programmer to find errors not only in
the controller software itself, but allows also to incorporate
the network devices and data plane. Network debuggers are
necessary in order to detect errors when software faults
were not detected in the first glance. For the programmer,
OpenFlow applications need to be analysed before operational
deployment in order to detect software faults. The NICE tool

1http://redis.io/
2http://hbase.apache.org/
3http://nosql-database.org/

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper105

[9] aims at testing controller programs to discover violations of
correctness properties due to bugs in the controller software. A
more focussed view on data plane verification is considered in
VeriFlow [10]. This approach adds an additional layer between
network controller and network devices that checks new rules
in real-time before they are deployed in the network. The tool
Anteater [11] focusses also on data plane analysis. It represents
the collected network topology and forwarding information
bases (FIBs) from the network devices as boolean functions.
In combination with user-defined network invariants (e.g. loop-
free forwarding), a boolean satisfiability problem (SAT) solver
performs the analysis. We have done previous work in graph
based analysis of communication patterns in [12], [13], [14]
without however to address the dynamic aspect and possible
transformations as in the current work.

III. LOGGING OF FLOW ENTRIES

In the following we describe our approach towards a
solution for fault detection based on flow entries. The latter
are installed to the forwarding table of a switch through an
OFPT_FLOW_MOD message in case that an incoming packet
can not be matched to an existing flow entry. Such match
fields can be wildcarded or contain a specific value (e.g. IP
address). After a flow entry is expired, statistical information
(e.g. received packets/bytes, flow alive time) can be sent to
the controller if a respective flag is set. Since every successful
connection between two hosts results in a flow and in a
cascade of flow entries, such flow traces provide important
information for several applications. For instance, flow entries
can be leveraged to visualize traffic flows or to realise load
balancing by calculating a baseline for the network. Another
application where flow traces can be a valuable source of
information is code debugging. Due to the flexibility that is
given by the controller acting as a network operating system,
the functionality of software running on the controller can
become increasingly complex and may involve many different
program parts. Finding the root cause of an error in the case
of an incident can be challenging for a network administrator.
Therefore, we propose fields that extend each flow entry with
details about the origin of the installation program:

• Unique flow identifier
• Switch identifier
• Path of associated program
• Line in Code

By storing all flow entries with the proposed parameters
as flow records in a central database, polling traffic to the
switches is reduced, while bringing the benefit of having a
history of all monitored flows for forensic analysis. It allows
also to detect logical errors in the controller code by defining
safety invariants which are compared with the relevant flow
parameters. Since each flow record in the database contains
the program name and line in code, it is possible to determine
the program on the controller that installed the flow entry.
Furthermore, suspicious flow entries on a switch can be traced

back to the program that sent the installation message by their
unique identifier for root cause analysis.

A. Database management

Saving flow entries as flow records in a central database is
challenging since huge numbers of them must be inserted in a
very short time. A benchmark for the POX controller showed
that slightly over 30K new flows per second can be processed
[15]. In order to achieve this high scalability and performance,
we propose the use of a NoSQL database system having a key-
value store. For implementation, we chose the open source
database Redis that uses hash types to map between string
fields and string values and is used to represent structured
objects:

[key]:{field -> value, field -> value}

Each flow record is defined as a hash object that contains the
respective parameters (e.g. IP address, line in code) as field
values. A second hash object is generated for each switch and
stores all associated flow records by their IDs as field values.
The current status of each flow record is specified by a flag that
denotes whether it is active (1) or removed (0). An active state
defines a flow entry that is currently in use, whereas a removed
flow entry has expired or was uninstalled by the controller.
The latter can be determined by setting a flag in the OFPT_-
FLOW_MOD message to acknowledge each flow removal. In
addition, two fields are reserved as counters that contain the
total number of installed and removed flow entries for the
respective switch. The described object structures allow for a
convenient way of obtaining information about the network
with only a small number of database requests.

In order to relieve the burden of the programmer in adding
the code for the described logging solution to existing con-
troller programs, we propose dynamically generating code
using graph transformation, as displayed in Figure 1. The
steps involved are (1) parsing of the source code to derive its
abstract syntax tree representation, AST1; (2) executing the
graph transformation system on AST1, yielding a resulting
abstract syntax tree AST2, where intermediate graphs contain
additional temporal structures; and (3) serialising AST2 to
derive the extended source code.

IV. GRAPH TRANSFORMATION

The formal technique of algebraic graph transforma-
tion [16], [17] generalizes term rewriting techniques used
for the transformation of abstract syntax tree structures in
formal language theory to the more general case of abstract
syntax graph structures. In the present scenario of automated
source code extension, this enriched flexibility and the avail-
able formal results provide us with additional capabilities for
achieving a high level of maintainability and reliability.

In the algebraic approach to graph transformation [17],
a graph G = (V,E, (s, t : E → V)) consists of a set V
of nodes (vertices), a set E of edges, and the functions
s, t : E → V mapping each edges e ∈ E to its corresponding
source and target nodes, respectively. The approach provides

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper106

Logging functionality

NoSQL Database

Contains specific
information for

flow entries.

Source
Code

Abstract
Syntax
Tree

Extended
Abstract

Syntax Tree

Extended
Source Code
with Logging

1 2 3

Parsing (Xtext)
Graph Transformation

(Henshin)
Serialiser

(Xtext)

Network Controller

Application

Fig. 1. Automated source code extension by the use of graph transformation for adding logging functionality to controller programs.

formal concepts for attribution and typing including node type
inheritance.

L
��

m
��

(1)

K

��

// r //ooloo

(2)

R

��

G D //oo H

A graph transformation step
G =

p,m
==⇒ H (as depicted right)

rewrites graph G to H via rule
(production) p and match m.
Such a rule p = (L ←l− K −r→ R) consists of a left hand side
(LHS) graph L, an interface graph K, a right hand side (RHS)
graph R, and inclusions l : K ↪→ L, r : K ↪→ R (called rule
morphisms) relating the rule components. It specifies how a
graph structure L found in a graph G is rewritten into R, while
the context structures around L in G are preserved. Given a
match m : L → G (injective graph morphism) of the left
hand side L of rule p into graph G such that p is applicable,
the resulting graph H is intuitively derived by removing the
parts that are in L but not in K and by adding those that are
in R but not in K. More formally, the transformation step
G =

p,m
==⇒ H is defined by two pushout diagrams (1) and (2),

which means that G is the gluing of L and D via the common
part (intersection) K and H is the gluing of D and R via K.

V. IMPLEMENTATION

Automated source code extension was developed using the
Eclipse plugins Xtext [18] and Henshin [19], which are both
based on the Eclipse Modelling Framework (EMF)4. Henshin
is a graph transformation environment. We used its graphical
user interface for the visual specification of the graph trans-
formation rules and its graph transformation engine for their
execution. The parser and serialiser for Python source code
were generated using Xtext with the official EBNF grammar
for Python 3.2.
The network controller, POX, and the Redis database ran on a
Intel i5 PC (2.50 GHz x 4 cores) with 8 GB of RAM and an
Ubuntu 12.04 64-bit OS. The Redis benchmark utility showed
a rate of approximately 150,000 requests per second for the
SET and GET database requests. These values can be seen as
sufficient, since a single POX controller can handle slightly
over 30K flows per second.

4http://www.eclipse.org/emf/

We demonstrated a typical application scenario for graph
transformation based on the Python controller program l2_-
learning.py5. It enables the controller to build a table that
maps the source hardware address to the switch port from
which the frame was received. If the destination hardware
address is unknown, the switch floods the frame out to all
ports. If the port of the destination hardware address is
determined by the reply, a flow is installed on the switch
in order to forward subsequent frames without involving the
network controller. In order to extend this program with the
described logging capabilities of section III for debugging
purposes, we developed two rule sets that can be applied to
various controller programs. The user can choose between a
light and a forensic mode. In the first, a user-defined selection
of flow entry parameters is saved in the database, which is
useful for archiving or simplistic analysis. In the forensic
mode, the functionality of the first mode is extended by setting
up the switch to deliver statistical information after each
flow removal. Such information includes the flow duration
and number of received packets, together with the reason for
removal (e.g. expired, uninstalled).
Technically, the two rule sets are stored as two transformation
units that share a subset of rules. This reuse improves the main-
tainability of the implementation should additional logging
features be incorporated. The source code for the light and
forensic mode is available online6, as well as an adapted screen
shot from the graph transformation tool Henshin [19] that
displays the graph transformation rule extend ofp flow full
as an example. Henshin uses a compact visualisation of rules,
where the interface graph K is omitted. The mappings are
specified by numbers [n] for the nodes and additionally, by
common colouring differing from grey. Thus, the interface
graph K is implicitly given by the intersection of the LHS
and RHS, i.e., by all numbered elements. In the screen shot,
the RHS R is shown with a decreased scaling factor. It
contains 190 nodes and has a height of 18. The text boxes
in the bottom part of the figure contain source code fragments

5https://github.com/noxrepo/pox/tree/betta/pox/forwarding/l2 learning.py
6https://github.com/shommes/POX.git

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper107

that correspond to the upper four framed components of R.
Note that only the elements in the left hand side L, its
counterparts in R (zoomed component) and its adjacent edges
were specified manually, while the remaining graphical part
was inserted using the automated import mechanism of the
Henshin tool. The complete set of transformation rules for
extending Python code with logging information contains 13
rules and was created by taking relevant example source code
fragments, importing them into the Henshin GUI and adapting
those parts that are specific to the example used in order to
derive general purpose rules.

Based on the available formal results and tool support,
we were able to show certain correctness properties [20].
First of all, the formal concept of typed attributed graph
transformation ensures that at each step, the intermediate
graphs are correctly typed and satisfy the structural conditions
of the type graph [17]. Moreover, we formally proved that
the transformation system for source code extension always
terminates and yields unique results. To do this, we used the
tool support in AGG [21] based on static termination and
confluence criteria [17] with some slight but direct extensions
based on the concept of layering and the tree structure of the
input abstract syntax tree. Based on the consistency conditions
in [22], we proved that the resulting output always has a tree
structure.

VI. CONCLUSION AND FUTURE WORK

This paper describes an approach to instrument network
controllers in OpenFlow with logging capabilities that allow
network debugging. In order to avoid manual code modifi-
cation by the programmer, we propose using graph transfor-
mation, which allows automated source code extension based
on user-defined transformation rules. This concept, which can
easily be modified for additional use-cases in similar scenarios,
was further demonstrated to instrument controller software in
order to log flow entries as flow records in a database system.
Latter serves as a storage solution, which allows both forensic
analysis and anomaly detection based on the archived flow
records. We will determine in future work the potential of
the logged information for fault management and in order to
detect network attacks.

ACKNOWLEDGEMENT

Supported by the Fonds National de la Recherche, Luxem-
bourg (PhD-09-188).

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[2] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann, “Theory of
Constraints and Application Conditions: From Graphs to High-Level
Structures,” Fundamenta Informaticae, vol. 74, no. 1, pp. 135–166,
2006. [Online]. Available: http://fi.mimuw.edu.pl/vol74.html

[3] R. Stadler and B. Stiller, Eds., Active Technologies for Network and
Service Management, 10th IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations and Management, DSOM ’99, Zurich,
Switzerland, October 11-13, 1999, Proceedings, ser. Lecture Notes in
Computer Science, vol. 1700. Springer, 1999.

[4] J. Biswas, A. A. Lazar, J. F. Huard, K. Lim, S. Mahjoub, L. F. Pau,
M. Suzuki, S. Torstensson, W. Wang, and S. Weinstein, “The IEEE
P1520 standards initiative for programmable network interfaces,” Comm.
Mag., vol. 36, no. 10, pp. 64–70, Oct. 1998.

[5] M. Brunner, B. Plattner, and R. Stadler, “Service creation and manage-
ment in active telecom networks,” Commun. ACM, vol. 44, no. 4, pp.
55–61, Apr. 2001.

[6] J. Smith and S. Nettles, “Active networking: one view of the past,
present, and future,” Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on, vol. 34, no. 1, pp. 4 –18,
feb. 2004.

[7] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden,
“A survey of active network research,” Communications Magazine,
IEEE, vol. 35, no. 1, pp. 80 –86, jan. 1997.

[8] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proceed-
ings of the first workshop on Hot topics in software defined networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 55–60.

[9] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A
NICE way to test openflow applications,” in Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation,
ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp.
10–10.

[10] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
verifying network-wide invariants in real time,” in Proceedings of the
first workshop on Hot topics in software defined networks, ser. HotSDN
’12. New York, NY, USA: ACM, 2012, pp. 49–54.

[11] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in Proceedings of the
ACM SIGCOMM 2011 conference, ser. SIGCOMM ’11. New York,
NY, USA: ACM, 2011, pp. 290–301.

[12] J. François, S. Wang, R. State, and T. Engel, “Bottrack: tracking botnets
using netflow and pagerank,” in NETWORKING 2011. Springer Berlin
Heidelberg, 2011, pp. 1–14.

[13] C. Wagner, G. Wagener, R. State, and T. Engel, “Malware analysis with
graph kernels and support vector machines,” in Malicious and Unwanted
Software (MALWARE), 2009 4th International Conference on. IEEE,
2009, pp. 63–68.

[14] H. J. Abdelnur, R. State, and O. Festor, “Advanced network finger-
printing,” in Recent Advances in Intrusion Detection. Springer Berlin
Heidelberg, 2008, pp. 372–389.

[15] “About POX,” 2012. [Online]. Available:
http://www.noxrepo.org/pox/about-pox/

[16] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[17] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of
Algebraic Graph Transformation, ser. EATCS Monographs in Theor.
Comp. Science. Springer, 2006.

[18] Xtext - Language Development Framework – Version 2.3, Eclipse
Consortium, 2012, http://www.eclipse.org/Xtext/.

[19] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced concepts and tools for in-place EMF model transformations,”
in Proc. MoDELS’10, ser. LNCS, vol. 6394. Springer, 2010, pp. 121–
135.

[20] F. Hermann, S. Hommes, R. State, and H. Ehrig, “Correctness
of source code extension for fault detection in OpenFlow based
networks,” Technische Universität Berlin,Fakultät IV, Tech. Rep.
2013-xx, 2013, to appear. [Online]. Available: http://user.cs.tu-
berlin.de/ frank/Papers/HHSE13.pdf

[21] AGG, TFS-Group, TU Berlin, 2012, http://www.tfs.tu-
berlin.de/menue/forschung/software/.

[22] E. Biermann, C. Ermel, and G. Taentzer, “Formal foundation of con-
sistent EMF model transformations by algebraic graph transformation,”
Software and Systems Modeling (SoSyM), vol. 11, pp. 1–24, 2011.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper108

