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Abstract—Almost all modern mobile devices are equipped with
a number of various wireless interfaces simultaneously, so that
each user is free to select between several types of wireless
networks. This opportunity raises a number of challenges, since
in general selfish choices do not lead to a globally efficient
repartition of users over networks. The most popular approach
in this context is to charge an extra tax for connecting to
overloaded networks, thus incentivizing users to choose less
congested alternatives.

In this paper we apply that idea to a system where several
networks with a common coverage area coexist. Moreover we as-
sume that users –or the applications they use– are heterogeneous
in their sensitivity to the congestion-varying Quality-of-Service
(QoS). We show the technical and computational feasibility of
computing taxes leading to a globally optimal outcome for any
number of networks and application types (QoS-sensitivities),
hence generalizing the results from previous works.

I. INTRODUCTION

Wireless networks technologies such as 3G, WiFi (IEEE
802.11 a/b/g/n/ac), or LTE, are becoming more and more
crucial and widespread. Each technology has its own advan-
tages and drawbacks, in terms of throughput, geographic area
covered, energy consumption, etc. Moreover, recent mobile
terminals are equipped with a number of different network
interfaces, offering the possibility to connect through different
technologies to a variety of networks concurrently. Wireless
network users can then switch from one network to another,
for example using the IEEE 802.21 standard [7].

Switching between networks implementing different tech-
nologies is referred to as vertical handover. We expect that
one of the major objectives in future generations of mobile
networks would be to find a solution for the vertical handover
decision, satisfying both mobile users and providers. Indeed,
allowing each user to select at any time its most suitable
wireless network, i.e., to be always-best-connected [10], could
cause the overload of some technologies and the under-
utilization of others. This is due to user selfishness: users
ignore the negative consequences of their actions on others
when making their choices, which can lead to inefficient
situations. In order to cope with that problem and profit

from the diversity of technologies, operators have to improve
resource management.

A number of recent papers in the transportation science
literature addressed that same problem (see [4], [8], [12]).
They discuss the introduction of incentive tools, interpreted
as taxes, which could influence user choices towards a more
efficient situation. In this paper, we focus on applying that
idea to a situation when we need to influence user’s choices
between several wireless heterogeneous networks. Due to the
specificity of the wireless framework, our problem can be
modeled as a routing game simpler than the general ones
studied in [4], [8], [12], which allows us to reach analytical
results.

II. RELATED WORK

Various works in the literature investigate how the selfish
behavior of users in networks can be regulated through in-
centive tools, such as taxation or penalties. The idea being
that users select the cheapest path from their position to their
destination node in the network, taking into account the cost
(latency, or delay, that is sensitive to congestion) of the paths
but also possibly some additional (monetary) costs imposed
by the network manager. So that a proper definition of the
tax levels influences user choices. In the homogeneous case,
i.e., when all users have the same sensitivity to the taxation,
Beckmann et al. [2] showed that the so-called Pigovian taxes–
applied on each link, and computed using the derivative of the
cost functions of the links–produce a minimum-latency (delay)
traffic routing (see [18]). In [11], Pigovian taxes are also used
to influence user preferences, and induce a repartition of flows
among the available access networks that optimizes the overall
network performance.

Reference [4] considers the case when users may perceive
differently the relative costs of delay and taxes. The authors
were the first to study this setting, for a situation when all
users have the same source and destination, with any network
topology in between. For that scenario, it is shown that there
exist taxes so that the resulting user flow minimizes the
average latency. Those results have been generalized to the
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multicommodity setting (i.e., several source-destination pairs)
in [12], [13]. A constructive proof is given to show that taxes
inducing the minimum average latency multicommodity flow
exist for both the cases of elastic (i.e., cost-dependent) and
nonelastic demands.

In the articles evoked above, users are sensitive to the
latency caused by congestion; however there are several papers
where other congestion-dependent costs are considered. In [3],
three different cost functions are proposed: two of them depend
both on the interference level and the transmission rate, and
the third one depends only on the interference level. In [17]
users are supposed to have information about the geographical
locations and current loads of network access points, and are
able to move between the coverage areas of different networks.
Thus users face a trade-off between the load level of their
current access point and the distance they have to travel.
In both works, the authors take into account only the user
behavior, i.e., mobile users select the access network selfishly,
hence a noncooperative game. The interaction between mobile
users and the operator is not considered there, while in the
current paper we consider the impact of the operator’s actions
(the incentives).

A totally different approach is to seek for an optimal user
admission policy in a network, through SMDPs (Semi Markov
Decision Processes). This approach is applied to the problem
of global expected throughput maximization with the help
of a central controller (taking admission decisions) in [5],
[6], [14]. The methods consider that the user arrival process
and the time spent in the network are known stochastically.
An admission policy maximizing total throughput can then
be derived. However, the presence of an authority making
decisions instead of users could be perceived negatively. In
our model, users make their own choices, the operator’s
intervention consisting only in adding incentives.

III. MODEL AND PROBLEM FORMULATION

We consider a system with n heterogeneous wireless net-
works covering the same area. This model is a generalization
of the one in [9] where only two networks and two user (or
application) classes were considered. The users situated in the
common coverage area of these networks seek for an Internet
connection. We assume that they could easily handover from
one network to another, thus choosing at every moment the
most suitable one. Users select which network to connect to
based on the QoS they experience and on the prices charged
by the network owner. We investigate how users make their
decisions, what is the outcome of these decisions, how far
that outcome is from the optimum situation from the point
of view of the network owner, and, finally, how the network
owner could stimulate users to act efficiently.

A typical application case of our approach is that of network
off-loading, with the objective to reach the most efficient load
balance between indoor and outdoor coverage technologies.

A. Mathematical formulation

We identify all parameters related to a specific network i
through the use of the lower index i, for 1 ≤ i ≤ n. Each
network i has a QoS-related cost function `i(fi) that we will
call the latency function, where fi is the flow (cumulated
throughput) on network i. All networks are owned by the same
provider, which is aiming to minimize some cost function and
could influence users behavior through charging a tax τi on
each network i.

We assume a total user demand D coming from users’
applications. Since QoS requirements can vary depending on
the applications used and on user preferences, the trade-offs
between QoS and monetary cost shall differ, which we model
through the sensitivity to the monetary cost (or equivalently,
the ratio of the price sensitivity to the latency sensitivity). We
can represent this variability by considering price sensitivities
of users and price sensitivities of applications, so that each pair
(user,application) would lead to a specific sensitivity value.
Assuming a finite number of application types and of user
types, we would have a finite number of overall sensitivities.
To simplify notations, without loss of generality we will treat
a user running q applications with different requirements as
q separate users, each one running one application. Therefore
from now on we only evoke users, each one having a given
price sensitivity. This simplification can be done because the
interactions among flows from a single user are negligible
due to a non-atomicity assumption explained below: no user
can improve his utility by coordinating his own flows, so we
can treat those flows as being issued by distinguished (non-
cooperating) users.

We consider m classes of users, implying that users from
the same class have the same price sensitivity value. We write
all the parameters related to class j with the upper index j ,
1 ≤ j ≤ m; users in class j have tax sensitivity αj ≥ 0 and
the total demand from class-j users is denoted by dj , so that∑m

j=1 d
j = D.

We assume that the cost perceived by a class-j user con-
nected to network i is a combination of QoS (through the
latency function) and price

Cj
i (f) = `i(fi) + αjτi, (1)

and that every user seeks for a connection which minimizes
this cost. The following assumption specifies the type of
latency functions we use in our model:

Assumption A: Each network i has a capacity ci, and a
load-sensitive latency function corresponding to the mean
sojourn time in an M/M/1 queue:

`i(fi) =

{
(ci − fi)−1 if fi < ci,

∞ if fi ≥ ci,
(2)

with fi the total flow on network i.
With this type of latency function we also have to assume
that D <

∑n
i=1 ci, in other words the aggregated capacity

is enough to treat all demand. We assume that the provider
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owning all considered networks is interested in minimizing
the social cost (or total cost) expressed as:

C(f) =

n∑
i=1

fi`i(fi), (3)

where f = (f1, . . . , fn) is the flow distribution vector, with∑n
i=1 fi = D. That cost corresponds to the aggregated

latencies undergone by users.

B. Routing game interpretation

Assuming that only radio links incur QoS-related costs (i.e.,
latency), the setting described above could be seen as a routing
problem, with a common source for all users, represented by
the common coverage area of the networks, and one common
destination (the Internet). Each user forwards his flow through
one of n routes, which are the n networks, with a routing cost
equal to the cost in (1), as depicted in Figure 1. When users
selected their route, their interactions form a noncooperative
routing game.

s t

`n(fn) + αjτn

`1(f1) + αjτ1

d1, . . . , dm d1, . . . , dm
...

Fig. 1. Logic representation of the network selection problem as a routing
problem: the perceived cost on each route i depends on the load fi and the
tax τi, but also on the user type j through the sensitivity αj .

In this paper we assume that users are non-atomic [1], i.e.,
the individual impact of each player on the network loads is
negligible. Those games have been extensively studied since
the seminal work of Wardrop [19]. In particular, for our routing
game there are theoretical results proving the existence of
optimal taxes, i.e., taxes driving the system to a situation with
minimum social cost [12]. For the specific latency functions
considered in this paper, we find an analytical expression for
those optimal taxes.

Note that our model does not include network attachment
costs: adding such costs (possibly different among networks)
would affect the attachment decisions of users but also pos-
sibly deter them from performing vertical handovers during
the connection (due to varying network conditions over time).
Such considerations are left for future work.

C. The case of several providers

In this paper we consider that all networks are owned and
controlled by the same entity, that we call the provider. The
objective for the provider here is to make the best use of the
network resource, in the sense of the aggregated user cost
of Equation (3). Hence the provider is not directly driven
by revenue, the taxes imposed on network are only used as
incentives to reach the best flow repartition.

Considering several providers managing the different net-
works would totally change the paradigm, since those
providers would compete to attract customers and make rev-
enue, and would use taxes for that purpose. We would then
have a non-cooperative game played among providers deciding
their tax levels, and anticipating user reactions when making
those decisions. Such situations of competing providers have
been studied in [15] with cost functions similar to ours, but
with few positive analytical results: even the existence of a
Nash equilibrium of the tax-setting game is not guaranteed.
However, if such an equilibrium exists, it can reasonably be
expected to benefit to users (a general property of competition)
with respect to a case where a single entity controls all
networks and sets prices to maximize revenue (not the case
treated here).

The case when several providers perfectly cooperate to
optimize network usage would be equivalent to the one-
provider case. However there are some in-between situations,
where providers may partially compete and cooperate: for
example they may have roaming agreements, or may have to
share the capacity of their access networks. Those aspects are
partially treated in [16] but would deserve more attention.

IV. USER EQUILIBRIUM AND OPTIMAL SITUATIONS

In this section we define the user equilibrium of the routing
game, and compare the equilibrium without taxes to an optimal
situation from the point of view of social cost (3). To simplify
notations, we assume without loss of generality that:

Assumption B:
1) c1 ≥ c2 ≥ . . . ≥ cn
2) α1 < α2 < . . . < αm

A. User equilibrium

When users act selfishly, each one choosing a network
minimizing his individual cost (1), then the game has an
equilibrium, i.e., a situation such that no user can reduce his
cost by a route change. We call that situation user equilibrium
or Wardrop equilibrium, and it is characterized by Wardrop’s
principle [19].

Definition 1: A Wardrop equilibrium is a flow repartition

f = (f ji )1≤i≤n,1≤j≤m , such that
{
f ji ≥ 0 ∀i, j
dj =

∑n
i=1 f

j
i ∀j

and such that

∀i, i′, j f ji > 0⇒ `i(fi) + αjτi ≤ `i′(fi′) + αjτi′ , (4)

with fi =
∑m

j=1 f
j
i . The quantity f ji represents the flow from

class-j users that is routed through network i (recall that dj

is the total flow of class-j users).
In other words, at a Wardrop equilibrium, the cost of each
used route is lower (for the users taking that route) than the
cost of any other.

B. User equilibrium without taxes

Consider the case when the provider does not charge taxes
for using his networks (or equivalently all taxes are the same),
and thus users make their choices without any intervention
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from the provider. Then the flows at a Wardrop equilibrium
have the form stated in the following proposition.

Proposition 1: Under Assumptions A and B, at a Wardrop
equilibrium fWE with no taxes being applied, we have:

fWE
i =

{
D−

∑t
q=1 cq+tci

t if i ≤ t,
0 otherwise,

(5)

where 1 ≤ t ≤ n is the maximum index for which

D −
t∑

i=1

ci + tct > 0, (6)

and represents the number of used networks.
The proof comes quite directly from Definition 1, since

without taxes all users should perceive the same cost on all
used routes. The proof details are omitted due to lack of space.

Proposition 1 provides a way to compute the equilibrium
flows (in a time linear in the number n of flows).

C. Optimal situation

In this section we investigate the optimum situation, which
we later intend to reach by introducing appropriate taxes.
An optimal flow assignment f opt = (f opt

1 , . . . , f opt
n ) which

minimizes social cost (3) is the solution of the following
mathematical program:

min
f1,...,fn

n∑
i=1

fi`i(fi) (7)

s.t.

{∑n
i=1 fi = D

fi ≥ 0, for i = 1, . . . , n
(8)

Note that this problem does not distinguish among user
classes, it only involves aggregate flows on each network. With
the specific latency functions (2) we can express the optimal
flows analytically.

Proposition 2: Optimal flows (f opt
i )1≤i≤n minimizing (3)

are unique and given by:

f opt
i =

ci −
√
ci(

∑k
j=1 cj−D)∑k

j=1

√
cj

if i ≤ k,

0 otherwise,
(9)

where 1 ≤ k ≤ n is the maximum index for which

ci −
√
ci(
∑k

j=1 cj −D)∑k
j=1

√
cj

≥ 0. (10)

Proof: We apply the following result from [2]:
Lemma 1 (Beckmann et al., 1956): For any non-atomic

routing game with latency functions (`i), the optimal flows
minimizing social cost (3) correspond to the Wardrop
equilibrium flows of a modified game where latency functions
are

¯̀
i(fi) = `i(fi) + fi`

′
i(fi). (11)

Therefore, applying the equilibrium conditions (4) there exists
H > 0 such that for all i, 1 ≤ i ≤ n:{

f opt
i > 0⇒ `i(f

opt
i ) + f opt

i `′i(f
opt
i ) = H,

f opt
i = 0⇒ `i(f

opt
i ) + f opt

i `′i(f
opt
i ) = `i(0) ≥ H.

(12)

With our latency functions (2), we immediately remark that

f opt
i > 0⇔ 1

ci
< H, (13)

thus from Assumption B there exists k (the number of used
networks at the optimal situation) such that (f opt

i > 0 ⇔ i ≤
k). From (12) we get

f opt
i = ci −

√
ci√
H
, i = 1, . . . , k, (14)

and the condition
∑k

i=1 f
opt
i = D yields H =

(
∑k

i=1

√
ci)

2

(
∑k

i=1 ci−D)2
.

Plugging that last expression into (14) gives (5), while plug-
ging it into (13) leads to the characterization (10) for k.

Similarly to Proposition 1 for equilibrium flows, Proposi-
tion 2 implicitly defines a linear-time algorithm to compute
optimal (i.e., globally cost-minimizing) flows. Note that to
compute optimal (as well as equilibrium) flows we only need
to know the network capacities (ci)1≤i≤n and the total demand
D, that do not depend on any characteristics of user classes.

V. ELICITING OPTIMAL USER-NETWORK ASSOCIATIONS
WITH TAXES

To reduce the total cost the provider has to give an incentive
to some users to switch networks, so as to provide higher
QoS to the majority of users and lower QoS to some others,
instead of providing the same QoS to everyone (what we get
at the Wardrop equilibrium without taxes). Here the provider
introduces special taxes, such that the flow assignment in the
Wardrop equilibrium induced by these taxes is the optimum
flow assignment. Previous works (see [4]) ensure that those
taxes exist, and the following lemma will help to compute
them.

Lemma 2: Under Assumptions A and B, optimal taxes are
such that τ1 ≥ τ2 ≥ . . . ≥ τk, where k is the number
of networks used (i.e., networks with positive flows) at the
optimal situation. For networks i > k, it is sufficient to have
τi ≥ τk.

Proof: Let us first consider used networks, i.e. networks
1, . . . , k. From Lemma 1, for i, i′ ≤ k we have

ci

(ci − f opt
i )2

=
ci′

(ci′ − f opt
i′ )2

:= K2 (15)

for some constant K.
Suppose that τi < τi+1 for some i < k, and that those taxes

lead to an equilibrium coinciding with the optimal situation.
Then for a class of users j choosing network i+ 1, we have
from the equilibrium conditions

`i+1(f opt
i+1) + αjτi+1 ≤ `i(f opt

i ) + αjτi,

hence `(f opt
i+1) < `(f opt

i ).
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But `i(f
opt
i ) = 1/(ci − f opt

i ) = K/
√
ci from (15), therefore

since ci ≥ ci+1 we have `(f opt
i+1) ≥ `(f opt

i ), a contradiction.
Now, we consider networks k+1, . . . , n, which do not carry

any flow in the optimal situation: no user should prefer one
of those networks to their current one. In particular, denoting
by j a class sending flow to network k under optimal taxes,
we must have

`i(0) + αjτi ≥ `k(f opt
k ) + αjτk, ∀i = k + 1, . . . , n,

thus

τi ≥
`k(f opt

k )− `i(0)

αj
+ τk, ∀i = k + 1, . . . , n. (16)

But from (12) we have `k(f opt
k )− `i(0) ≤ 0, therefore taking

τi ≥ τk is sufficient to ensure that (16) holds, i.e., that
networks i = k + 1, . . . , n are not chosen by users.

Now we provide a method to calculate the optimal taxes:
Proposition 3: Under Assumptions A and B, the following

taxes are optimal:

τi+1 = τi +
`i(f

opt
i )− `i+1(f opt

i+1)

αsi
, (17)

for i = 1, . . . , n− 1, with τ1 taken arbitrarily, and with

si := min

{
j :

i∑
r=1

f opt
r ≤

j∑
q=1

dq

}
. (18)

For networks used at the optimal situation (networks with
f opt
i > 0), the index si represents the class with maximum

sensitivity among those sending flow to network i.
Proof: For a network i with positive optimal flow, we

define αmax
i and αmin

i as respectively the maximum and
minimum sensitivities among classes sending some flow to
network i (i.e., classes j such that f ji > 0). Then the Wardrop
equilibrium conditions for classes choosing networks i and
i+ 1 (both with positive optimal flows) yield

αmax
i (τi − τi+1) ≤ `i+1(f opt

i+1)− `i(f opt
i ) ≤ αmin

i+1(τi − τi+1)

Since τi ≥ τi+1 from Lemma 2, we obtain αmax
i ≤ αmin

i+1 .

• If αmax
i = αmin

i+1 then a class of users, denoted by j′, is indif-
ferent between both networks. From the Wardrop equilibrium
conditions we have:

`i(fi) + αj′τi = `i+1(fi+1) + αj′τi+1. (19)

From this we derive (17), with j′ satisfying (18).

• If αmax
i < αmin

i+1 , then this corresponds to a rare case, when
two neighbor classes are perfectly divided, and there is no
class whose users are indifferent between both networks. One
more time using the Wardrop equilibrium conditions we write:{

`i(fi) + αmax
i τi ≤ `i+1(fi+1) + αmax

i τi+1

`i(fi) + αmin
i+1τi ≥ `i+1(fi+1) + αmin

i+1τi+1.
(20)

These two inequalities imply that

τi +
`i(fi)− `i+1(fi+1)

αmax
i

≤ τi+1 ≤ τi +
`i(fi)− `i+1(fi+1)

αmin
i+1

.

So, in this particular case a whole range of taxes for network
i + 1 induce an optimal division of users. Note that our
proposition in Equation (17) falls in that range.

For networks with empty flows in the optimal situation, our
proposition is still valid. Indeed, since taxes decrease with the
network index, the class m with the highest sensitivity to price
is the first class which would be interested in connecting to
these empty networks. It is easy to see that the taxes defined
by (17) will prevent them from doing this. If k is the maximum
index of a network with non-empty flow in optimal situation,
then from the Wardrop equilibrium conditions we should have:

`k(f opt
k ) + αmτk ≤ `i(0) + αmτi ∀i > k, (21)

which is verified with the tax defined by (17).
Like the two previous propositions in the paper, Propo-

sition 3 implicitly defines an algorithm to compute optimal
taxes: Proposition 2 should first be applied to obtain optimal
flows, then (18) provides the value of si for each network i
to be inserted into (17) so as to get the tax value.

The freedom to arbitrary choose τ1 gives us an interesting
feature: the provider could regulate his total revenue by
adjusting appropriately τ1 without any harm to the social cost.
For example, τ1 could be set (to a negative value) such that
the total revenue is null.

The intuition behind Proposition 3 is illustrated in Figure 2.
We already know from Lemma 2 that the bigger tax should be

d1α1

d2α2

d3α3

d4α4

f opt
1

f opt
2

f opt
3

C2
1 (f opt

1 ) = C2
2 (f opt

2 )

C3
2 (f opt

2 ) = C3
3 (f opt

3 )

Fig. 2. Example of user distribution among networks with optimal taxes for
the case m = 4, n = 3: class-1 (resp. class-4) users all attach to network 1
(resp. 3), while class-2 (resp. class-3) users are split among networks 1 and
2 (resp. 2 and 3).

charged on networks with lower indexes (bigger capacities).
This in turn means that the “richest” users are connected
to them (the smaller their sensitivity values). Thus, the least
price-sensitive users will choose network 1. On the example
on Figure 2, the total flow of class-1 users is not enough to
ensure an optimal flow f opt

1 in network 1. So, the following
(by sensitivity value) class should fulfill the optimal flow in
network 1. The total flow of classes 1 and 2 is bigger than
the optimal flow f opt

1 , so we have to split users from class 2.
Here we should use the Wardrop equilibrium conditions to find
an expression for τ2 depending on τ1, this condition meaning
that users of class 2 are indifferent between networks 1 and 2.
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In general, the only computational difficulty is to find a class
with users indifferent between two networks with consecutive
indices. In the proposed example, it is class 2 for networks 1
and 2, and class 3 for networks 2 and 3.

VI. EFFICIENCY ANALYSIS

In this section we present some analytical investigations
about the efficiency of our taxation method. As an efficiency
measure we use the Price of Anarchy (PoA), which is the
ratio between the total cost value achieved from the selfish
users behavior and the minimum total cost value that could
be reached by coordinating users [12]. This value is larger or
equal to one. The larger the PoA, the less efficient the selfish
users behavior, while if the PoA equals one, then selfish user
behavior leads to an optimal situation and no intervention is
needed. Recall that the taxes computed in Proposition 3 drive
the system to an optimal situation, i.e., to a situation with PoA
equal to one.

A. Influence of heterogeneity on the PoA

At first, we provide the PoA values while varying the het-
erogeneity among networks, which comes from the different
capacities. For simplicity, we consider capacities of the form
ci = c0w

i−1 for i = 1, . . . , n, where we call w ∈ (0, 1] the
homogeneity value. On Figure 3 we plot the PoA for different
values of the total user demand D, with c0 such that the total
capacity of the system equals 10 [Mbit/s]. We observe more
heterogeneous systems lead to a larger worst-case PoA (higher
inefficiency due to user selfishness). It is especially clear when
total demand is close to the total capacity value (i.e, the system
is congested), but for very heterogeneous systems the PoA is
quite high even for small demand values, thus the introduction
of taxes would lead to significant performance gains.

0 2 4 6 8 10

1

1.2

1.4

Total Demand [Mbit/s]

Po
A

w = 0.9

w = 0.8

w = 0.7

w = 0.6

Fig. 3. PoA versus total demand D with n = 10 and total capacity equal
to 10 [Mbit/s].

B. The PoA interpretation

Finally, we present two counterparts for the Price of An-
archy in our model. For simplicity, we consider only a case
with two networks in which c1 = 4 [Mbit/s] and c2 = 11
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Fig. 4. Demand gain versus PoA, for different demand levels in the case of
two networks.
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Fig. 5. Capacity gain versus PoA, for different demand levels in the case of
two networks.

[Mbit/s]. First, Figure 4 shows how many more users the
operator could serve if using network resources in an optimal
way for the same total cost, compared to the case when he
does not influence users behavior. In a somehow similar way,
Figure 5 indicates the capacity (or investment) reduction that
would lead to an unchanged total cost, just because of effective
resource management. These two values are comparable to the
Price of Anarchy, but have the advantage of being convertible
into monetary gains, probably more appealing to network
providers. These figures have to be understood as follows.
Consider a system with relative load equal to 0.7 (dotted
curve) and a PoA of 1.02: Figure 4 show that if we optimize
resource usage (e.g., through optimal taxes), we could have 2%
more users in our system without increasing the total cost.
The analogical explanation works for Figure 5: in the same
situation, if we introduce optimal taxes, we can decrease our
system’s capacity by 2% without changing the overall cost
perceived by users.
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VII. CONCLUSIONS AND PERSPECTIVES

In this paper we have considered the inefficiency of selfish
user behavior in heterogeneous wireless systems. We have
generalized the results of [9] to a model with an arbitrary
number of user classes (corresponding to user-specific and/or
application-specific perceptions of price), and also an arbitrary
number of networks. We have derived analytical expressions
for the optimal taxes, which drive the system to an optimal
flow repartition minimizing the total cost. We have showed
that the “cost” of inefficiency can have monetary equivalents.

Our model relies on some strong assumptions, one of which
is the simple network topology–all networks being supposed
to have the same coverage area. Obviously, this topology is
quite far from reality, and in the future we aim to consider
more complicated systems. Further, we would like to study
other–possibly application-specific–cost functions.

Additionally, the non-atomicity assumption significantly
simplifies the analysis, however its validity becomes question-
able if we consider small-cell networks with only a few users
and bandwidth-consuming applications. Extending our work
to the atomic case would thus be of high interest; in such
a case the decisions made by users could involve attaching
simultaneously to several networks and splitting the flows
among them (benefiting from protocols such as MultiPath
TCP).

Finally, our work did not consider the practical implemen-
tation aspects of our mechanism. Those of course need to be
examined for our mechanism to be applicable. In particular,
measuring precisely the congestion level at the access point,
and transmitting this information to users so that they make
their decisions, warrants specific investigations. Among the
possible tools that can be used for the latter task, one can
evoke the 802.21 standard [7] and the Generic Access Network
techniques for the management of cross-technology handovers
and the information diffusion to users. Also, another path
toward proving the applicability and efficiency of our approach
would be to observe its behavior on scenarios based on real
traffic data (instead of Markovian simulated traffic as we did
in [9]).
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