
Network Aware Virtual Machine and Image
Placement in a Cloud

David Breitgand Amir Epstein Alex Glikson
Virtualization Technologies, System Technologies & Services

IBM Research - Haifa, Israel
Email: {davidbr, amire, glikson}@il.ibm.com

Assaf Israel Danny Raz
Department of Computer Science

Technion, Israel Institute of Technology
Email: {assafi, danny}@cs.technion.ac.il

Abstract

Optimal resource allocation is a key ingredient in the ability
of cloud providers to offer agile data centers and cloud
computing services at a competitive cost. In this paper we
study the problem of placing images and virtual machine
instances on physical containers in a way that maximizes
the affinity between the images and virtual machine instances
created from them. This reduces communication overhead and
latency imposed by the on-going communication between the
virtual machine instances and their respective images. We
model this problem as a novel placement problem that extends
the class constrained multiple knapsack problem (CCMK)
previously studied in the literature, and present a polynomial
time local search algorithm for the case where all the relevant
images have the same size. We prove that this algorithm
has an approximation ratio of (3 + ε) and then evaluate its
performance in a general setting where images and virtual
machine instances are of arbitrary sizes, using production data
from a private cloud. The results indicate that our algorithm
can obtain significant improvements (up to 20%) compared to
the greedy approach, in cases where local image storage or
main memory resources are scarce.

I. INTRODUCTION

Cloud computing is rapidly gaining momentum as a pre-
ferred means of providing IT at low cost. At the core of
the cloud technology lies an agile data center that facilitates
dynamic allocation of resources on demand to satisfy the
variable hosted workloads. Although virtualization should not
be equated to cloud computing, most cloud implementations
use data center virtualization as the foundational technology
because of the advantages it offers for dynamic reallocation
of resources. It is a common practice in cloud computing to
create VM instances based on “master” images, which are
immutable VM templates of minimal size. Master images are
stored on Network Attached Storage (NAS) in a service termed

This work was partially funded by the European Commission’s 7th Frame-
work Programme ([FP7/2003-2013]) under grant agreement no. 285248 (FI-
WARE Project).

Image Repository. The master images use RAW image format
and before VM instance can be created from the template, it
should be copied to a Directly Attached Storage (DAS) of the
host where the new VM is to be instantiated.

Since RAW image size might be in the order of gigabytes,
copying RAW images from Image Repository to DAS of
the hosts introduces high bandwidth overhead and long boot
latencies, which offset the advantages of elastic cloud. To
minimize both network bandwidth overhead and boot latency,
“copy-on-write” (CoW) images are created from the master
images using some CoW image format [1], [2], [3], [4].

Theoretically, a host can instantly create and boot up a
minimal CoW image on DAS, pointing to the master image in
the Image Repository. Thus, a new VM will write the modified
data to the local DAS of the host, while using the master
image for the unmodified data. Although technically possible,
this configuration is rarely used in practice, because many
VM instances will read the unmodified data from their master
images repeatedly, introducing network overhead and read
latency. Also, the Image Repository will become a bottleneck
and this might limit cloud scalability.

In a typical large virtualized data center from which a cloud
is provided, physical machines are organized into racks, where
each rack offers shared storage for storing master images that
can be used by all hosts comprising the rack and also can be
accessed remotely over the network by the hosts outside of the
rack. The master images from the image repository are pre-
copied into the rack storage and hosts use these master images
rather than the master images stored in the Image Repository to
create CoW images for VM instances. This distributed image
store implementation off-loads the Image Repository service
and allows to reduce traffic and latency overhead in CoW
image to master image communication.

In this distributed image store configuration, some VM
instances are regarded local with respect to their master
images, meaning that these VM instances run in the same
rack where the master image resides. Other VM instances
can be regarded as remote with respect to VM instances that
communicate with these master images via top of the rack
switch (TOR). Thanks to extreme flexibility offered by the

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 9

virtualization technologies, customized images with very little
management effort can be created, which results in very large
collections of master images. Due to the size of these master
image collections it is infeasible to keep the entire collections
locally to the rack where VM instances run.

Therefore, the problem of minimizing network traffic over-
head and latency due to communication between a CoW VM
instance and its master image in a virtualized data center
arises. This problem is in the focus of this study.

The problem is important because CoW image to master
image communication occurs in-band with the regular service
traffic. Thus, scarce resources, such as network bandwidth
should be managed wisely to improve goodput of the hosted
applications. In the work of Tang [4], experimental evaluation
demonstrated that depending on the CoW image format used,
the network overhead introduced by communication between
CoW image and its master image can be up to 20% and can
severely impact network performance and service goodput.
The need to reduce this overhead motivates works on network
optimized pre-fetching of master images, e.g., [5], [4].

A typical layered network inter-connect of a data center is
shown in Figure 1. Layered architecture consists of a series
of connected racks. Physical servers within the same rack
are connected to a top-of-rack switch. Then, the racks are
connected to switches at the aggregation layer. Finally, each
aggregation switch is connected with multiple switches at the
core layer.

In such tree topologies the available bandwidth decreases as
the link level increases [6]. Thus, the average communication
of a host with a storage node in the same rack is much faster
than the average communication of a host with a storage node
at a different rack that uses switches at higher layers. Examples
of such hierarchical network topologies are tree [7], fat-tree [6]
and VL2 [8]. The latter is a relatively new architecture that
uses valiant load balancing to route the traffic uniformly across
network paths. In this architecture the communication cost
across all the racks is close to uniform.

Fig. 1. General data center network topology

In this work we consider VL2-like topologies. More specifi-
cally, we assume generic containers, where each container has
image capacity (i.e., the volume of the shared storage used to

host images) and compute capacity (i.e., resources that are
required to run VM instances). We treat compute capacity
as one-dimensional measure (e.g., CPU or main memory)
quantifying a primary resource bottleneck.

We assume that communication between VM instance and
its locally placed master image is confined to the container and
does not impose load on the inter-container network, while
VMs communicating with their remotely placed images suffer
from increased latency and introduce non-negligible overhead
on the data center network. Consequently, our goal is to design
efficient algorithms that make coordinated placement decisions
for VM instances and their images to maximize the number of
local VM instances and thus minimize the number of remote
VM instances. This reduces the communication cost between
virtual machine instances and their respective images.

We define a novel placement problem that extends the class
constrained multiple knapsack problem (CCMK) also known
as data placement problem previously studied by Shachnai and
Tamir [9] and Golubchik et al. [10], respectively. We introduce
a new constraint, called replica constraint, that requires a
feasible placement to include all images, while maximizing the
number of local VM instances. Note that from the theoretical
point of view this changes the problem and a new algorithmic
approach is required to address it.

Our model focuses on an off-line problem, where the set of
demands and available machines is known. In many practical
scenarios this may not be the case since requests arrive over
time, however our local search algorithm can be used for
initial placement of a large set of virtual machines into the
the data center and for online setting as a basis for ongoing
optimization that periodically improves the placement after the
arrival and greedy placement of a new set of virtual machine
instances by allowing migrations of virtual machines. Another
important real usecase, where our proposed algorithms are
beneficial arises in the context of disaster recovery. In this case
a backup cluster is requested to re-establish the state of a failed
cluster, based on the meta data collected about the images and
VMs while the original cluster was in the operational state.
It is important to be able to provide an efficient solution in
this case since the resources (both in terms of computation
and networking resources and in terms of time to recover) are
limited. Our Main contributions are as follows.
• We present a novel polynomial time local search algo-

rithm for equal size items, and we prove that it has an
approximation ratio of (3 + ε).

• Based on this theoretical result we develop a practical
heuristic for the general setting where images and VMs
are of different sizes.

• We evaluate this practical algorithm using data from the
private IBM research cloud. The results indicate that our
proposed local search algorithm provides significant gains
over a simpler algorithm that is based on a greedy packing
algorithm for the problem without replica constraint.

II. RELATED WORK

The need to improve cost-efficiency by reducing capital in-
vestments into computing infrastructure and operational costs
such as energy, floor space, and cooling drive the research

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 10

efforts on VM consolidation [11], [12], [13], [14], [15], [16]
and motivate features of the products such as [17], [18],
[19]. In most of the research work, VM consolidation is
regarded as a classical bin packing problem where resource
consumption is inferred from historical data or predicted using
forecasting techniques. In addition to the primary optimization
goal, which is the number of hosts, secondary goals such as
migration minimization, performance optimization and other
are considered. Most of this works consider physical resources
such as CPU and memory.

Recently, Meng et al. [20] considered consumption of
network resources by VMs as an optimization goal for VM
placement. They formulated the problem of assigning VMs to
physical hosts to minimize the total communication costs. This
goal can be achieved by placing VM pairs with large mutual
traffic rate in hosts with close affinity. Another recent work
used statistical multiplexing of network bandwidth among the
VMs to improve VM consolidation [20], [21].

The data placement problem was considered earlier in the
context of storage systems for multimedia objects such as
Video-on-Demand (VOD) systems. In this problem there are n
clients interested in data objects (movies) from a collection of
M data objects. The system consists of N disks, where each
disk j has storage capacity Cj and bandwidth (load) capacity
Lj . Each client request requires a dedicated stream of one
unit of bandwidth (load). This implies that each disk j can
store at most Cj data objects and serve at most Lj clients of
data objects stored in the disk simultaneously. The goal is to
find a placement of data objects to disks and an assignment
of clients to disks that maximizes the total number of served
clients, subject to the capacity constraints.

This problem can be modeled as the class constrained mul-
tiple knapsack problem (CCMK) also referred to as the data
placement problem [9], [10]. Shachnai and Tamir [9] showed
that the CCMK problem is NP-hard. They presented the
moving window (MW) algorithm and showed its optimality
for several interesting special cases. Golubchik et al. [10] gave
a tight analysis of the moving window (MW) algorithm and
provided a polynomial-time approximation scheme (PTAS) for
the problem.

Later, Shachnai and Tamir [22] and Kashyap and
Khuller [23] studied generalizations of the problem with
different item sizes. Another application of the problem is
the distributed caching problem studied in [24], in which each
item is a request to access data object and requires bandwidth.
Requests that access the same data object instance share its
storage, but requires non-shareable bandwidth.

III. MODEL AND PROBLEM DEFINITION

We are given M item types and N bins. Each type k, 1 ≤
k ≤ M is associated with a set Uk of items. Each bin j has
capacity Cj representing the maximum number of item types
that can be assigned to it and load capacity Vj representing the
maximum number of items that can be placed in the bin. A
placement specifies for each bin j, the types of items assigned
to bin j and how many items of each of these types are placed
in bin j. A placement is feasible if each bin j is assigned at
most Cj item types and the total number of items placed in

the bin is at most Vj . It is also required that each item type
should be assigned to at least d ≥ 1 bins. We refer to this as
replica requirements. The goal is to find a feasible placement
of items to the bins that maximizes the total number of packed
items.

This problem without the replica requirements was studied
in [9], [10] and was referred as the class constrained multiple
knapsack problem (CCMK) and data placement problem. The
replica requirements with d > 1 might be required for fault
tolerance.

CCMK with replica requirements can be applied to the
problem of VMs and VM images placement on physical
containers in virtualized data center. Specifically, we are given
a set of M VM images stored on a centralized server and N
containers. Each VM image k, 1 ≤ k ≤ M is associated
with a set Uk of VMs. Each container j has storage capacity
Cj representing the maximum number of images that can be
placed on it and load capacity Vj representing the maximum
number of VMs that can be simultaneously run in it. A
placement specifies for each container j, the set of VM images
placed on container j and how many VM instances of each of
these images are placed in container j. It is required that each
image should be placed in at least one container. The goal is
to find a feasible placement of all VM images and all VMs
to the containers that maximizes the total number of locally
placed VMs.

Note that we make a natural assumption that the total com-
pute capacity and the total image capacity of the containers is
sufficient to place all the VM instances and at least one replica
of each of their master images (without repetitions).

IV. LOCAL SEARCH ALGORITHM

In this section we show a polynomial time local search
(3 + ε)-approximation algorithm for CCMK with replica
constraints. Shachnai and Tamir [9] showed that the CCMK
problem is NP-hard. We first show that the CCMK problem
with replica requirements is NP-hard.

Theorem 4.1: The CCMK problem with replica require-
ments is NP-hard.

Proof: We show a simple reduction from the CCMK
problem without the replica constraints to the CCMK problem
with replica requirements as follows. We modify the instance
of CCMK to an instance of CCMK with replica constraints by
adding a new bin N+1 with capacity M and load capacity 0.
Since, the load capacity of bin N + 1 is 0, in any solution to
the CCMK instance with replica requirements all the items are
packed in bins 1, . . . , N . Thus, it is easy to see that the number
of items in the optimal solution to the CCMK instance equals
the number of items in the optimal solution to the instance of
CCMK with replica requirements.

The problem without the replica requirements has a simple
2-approximation algorithm. For a single bin, the following
greedy algorithm is optimal: Order the sets of items in non-
increasing order of sizes. Then, in step i the algorithm packs
in the bin maximum number of items of set i. The algorithm
terminates when reaching one of the bin capacity limits (or
all items are packed in the bin). A simple greedy algorithm
called Greedy for the multiple knapsack problem (MKP) is

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 11

presented in [25]. This algorithm packs items to the bins
sequentially. In step j the algorithm packs items to bin j
by applying an algorithm for the single bin problem on the
remaining set of items. For the CCMK problem without the
replica requirements the algorithm for a single bin described
above can be used by Greedy. The analysis of Greedy appears
in [25] and yields the following results for our problem
without the replica requirements (as previously observed in
[22]).

Theorem 4.2: Greedy is a e
e−1 -approximation algorithm for

the CCMK problem without the replica constraints and with
identical bins.

Theorem 4.3: Greedy is a 2-approximation algorithm for
the CCMK problem without the replica constraints.

We now show our local search algorithm. First we describe a
3-approximation algorithm that may have exponential running
time. Then to ensure polynomial running time, we modify the
algorithm to obtain a (3 + ε)-approximation algorithm.

Let S = (S1, . . . , Sn) be an assignment of items and item
types to bins, where Sj is the set of items and item types
assigned to bin j. The algorithm starts from an arbitrary
feasible assignment of items and item types to bins such that
every item type is assigned to at least d bins.

The general algorithm repeatedly performs one of the fol-
lowing local improvements. In each step the algorithm tries
to repack a single bin i from Si to S′i or to repack a pair of
bins i, j from Si, Sj to S′i, S

′
j , respectively. Let T be the set of

unassigned items. When repacking bin i or pair of bins i, j, the
algorithm considers the set of items Si

⋃
T or Si

⋃
Sj

⋃
T ,

respectively for the repacking. If the repacking improves the
solution then it is applied. The algorithm terminates when no
further improvements are possible. The local search algorithm
for the CCMK problem with replica requirements tries to
replace two sets of items of different types in a bin or swap
two sets of items of different types between pair of bins.
The algorithm uses additional operation that combines the
two operations, since there are cases where each of these
operations alone may not be sufficient for improving the
solution. Specifically, the algorithm, repeatedly performs one
of the following local improvements.
• Replace operation. Replace set of items of type k as-

signed to bin i with set of unassigned items of type k′

(as illustrated by Figure 2(a)).
• Swap operation. Swap two sets of items of type k and k′

between bins i, j, respectively. Then, if there is free load
capacity in bins i, j assign additional unassigned items
of type k′, k to bins i, j, respectively (as illustrated by
Figure 2(b)). Note that when a set of items is reassigned
to a new bin some items may be dropped due to the load
capacity limit of the bin.

• Swap and Replace operation. Perform swap operation on
bins i, j and then replace operation on one of the bins i
or j.

See Figures 2(a) and 2(b) for illustration of replace and
swap operations, respectively. In this example each bin has
capacity 2 and load capacity 10. There are 3 items of type
k and 7 items of type k′. Let n =

∑M
k=1 |Uk| denote the

total number of items. Let LS denote the value of the local

Fig. 2. Local search operations.

optimum obtained by the local search algorithm and let OPT
denote the value of the optimal solution.

Theorem 4.4: The local search algorithm reaches a local
optimal solution in O(n) steps and 3LS ≥ OPT .

Proof: Let Yij be the set items of type i assigned by LS
to bin j. Let Xij be the set of items of type i assigned by the
optimal solution to bin j and are not assigned by LS to any
bin. Let Xj =

⋃M
i=1Xij be the set items assigned to bin j

by the optimal solution and are not assigned by LS to any bin
and let Yj =

⋃M
i=1 Yij be the set of items assigned to bin j

by LS. A bin is called load saturated if it is assigned with the
maximum number of items it can hold and capacity saturated
if it is assigned with the maximum number of item types that
it can hold. Let BL be the set of load saturated bins, let BC be
the set of capacity saturated bins, which are not load saturated
and let B be the set of all bins. Let X =

⋃
j∈B Xj and let

Y =
⋃
j∈B Yj . Also, for a set of bins A let XA =

⋃
j∈AXj

and let YA =
⋃
j∈A Yj . Let Cfj and V fj be the free capacity

and free load capacity of bin j in the local optimal solution,
respectively.

We now consider the set of bins BC . Recall that BC is the
set of capacity saturated bins, which are not load saturated in
the local optimal solution obtained by LS. We charge the set
of items Y packed by LS for the set of items XBC

assigned
by the optimal solution to the set of bins BC and were not
assigned by LS to any bin. This charging scheme is provided
using the following lemma.

Lemma 4.1: It holds that |XBC
| ≤ |Y |.

Proof: The charging scheme has two steps. In the first
step we charge items assigned by LS to the set of bins BC
and are of type that has strictly more than d replicas (i.e,, item
type that is assigned to more than d bins) for the set of items
XBC

that are assigned by the optimal solution to the set of
bins BC and are not assigned to any bin by LS. In the second
step we charge for the subset of items in XBC

that were not
charged for in the first step.

We now describe the details. We assume, w.l.o.g, that BC
is the set of bins {1, . . . , |BC |}. For every bin j ∈ B let
Y ′j ⊆ Yj be the set of items assigned by LS to bin j and are

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 12

of type that has more than d replicas. Clearly, that the total
capacity (or total number of types with repetitions) used by
the optimal solution for the set of bins BC is at most the total
capacity used by LS for the set of bins BC . Observe that if
|Xij | > 0 for item type i and bin j ∈ BC then |Yij1 | = 0
for every bin j1 ∈ BC . Otherwise, LS can add items from
Xij to Yij1 and thus make a local improvement. In the first
step, the charging scheme iterates through the set of bins BC .
In iteration j, 1 ≤ j ≤ |BC |, the charging scheme iterates
through item types with set of items from Xj until all these
items are considered or until all item types with set of items
in Y ′j are charged once. When the charging scheme considers
item type i in iteration j with |Xij | > 0, there exists an item
type i1 with more than d replicas and |Yi1j | > 0, such that Yi1j
was not charged. The charging scheme charges |Xij | items
from Yi1j for the set of |Xij | items of type i assigned by the
optimal solution to bin j. Clearly, |Yi1j | ≥ |Xij |. Otherwise,
LS can make a local improvement by replacing |Yi1j | items
of type i1 with |Xij | items of type i in bin j.

In the second step the charging scheme considers the subset
of items from XBC

that were not considered in the first step
as follows. The charging scheme iterates through the set of
bins BC . In iteration j, 1 ≤ j ≤ |BC |, the charging scheme
iterates through item types with set of items from Xj that were
not charged for in the first step. When the charging scheme
considers item type i assigned by the optimal solution to bin
j with |Xij | > 0, there must exists an item type i1 with set
of items Yi1j that were not charged and |Yi1j | > 0 , since the
capacity of bin j is saturated.

We consider two cases.
Case 1: |Yi1j | ≥ |Xij |. Then, we charge |Xij | items from

Yi1j for the set Xij of items of type i assigned by the optimal
solution to bin j.

Case 2: |Yi1j | < |Xij |. (note that item type i1 must have
exactly d replicas. Otherwise, items from Yi1j were charged
in the first step of the charging scheme). In this case we will
use the following observation.

Observation 4.5: In case 2 the capacity of all the bins in
the set B in the local optimal solution is saturated.

This observation can be easily established as follows. Since,
all the bins in the set BC are capacity saturated, it remains
to show that the capacity of all the bins in the set BL is
saturated. If there exists a bin j2 ∈ BL that is not capacity
saturated then LS can make the following swap and replace
improvement operation. Since bin j2 is load saturated and not
capacity saturated, there exists an item type i2 with |Yi2j2 | >
1. First, swap one item of type i2 assigned to bin j2 with the set
of items of type i1 assigned to bin j. Then, replace the item of
type i2 assigned to bin j with min{|Xij |, |Yi1j |+V

f
j } > Yi1j

items of type i. Thus, improving the local optimal solution. A
contradiction.

By observation 4.5 at least one of the following holds.
• There must exist a replica of item type i2 6= i with more

than d replicas that was not charged.
• There exists a replica of item type i that was not charged.

Now, we consider three subcases.
Case a: There exists a bin j2 ∈ BL, such that |Yij2 | > 0

and Yij2 was not charged. It must hold that |Yij2 | ≥ |Yi1j |+

V fj . Otherwise, LS can make the following swap improvement
operation. Swap the sets of items of types i1 and i between
bins j and j2. This swap operation replaces Yi1j with maximal
subset of items of Yij2

⋃
Xij in bin j. We charge |Xj | items

of the set Yj
⋃
Yij2 for the set of items Xj (that contains Xij).

This charge is possible, since |Yj | + |Yij2 | ≥ |Yj | + |Yi1j | +
V fj > Vj . Note that this charge replaces any charge already
made for items from the set Xj .

Case b: There exists a bin j2 ∈ BC and item type i2,
such that Yi2j2 ⊆ Y ′j , |Yi2j2 | > 0 and Yi2j2 was not charged.
Clearly, |Xij | ≤ |Yi2j2 | (otherwise, LS can improve the
solution by replacing Yi2j2 with Xij in bin j). We charge
|Xij | items of the set Yi2j2 for the set of items Xij .

Case c: There exists a bin j2 ∈ BL and an item type
i2 6= i, such that Yi2j2 ⊆ Y ′j , |Yi2j2 | > 0 and Yi2j2 was
not charged. Let rij = min{|Xij |, |Yi1j |+ V fj }. It must hold
that |Yi2j2 | ≥ rij . Otherwise, LS can make the following swap
and replace improvement operation. First, swap the set of items
Yi1j and Yi2j2 between bins j and j2, respectively. Then, re-
place Yi2j2 with rij items from Xij in bin j. If |Yi2j2 | > |Xij |,
then we charge |Xij | items of the set Yi2j2 for the set of
items Xij . Otherwise, |Yj | + |Yi2j2 | ≥ |Yj | + V fj ≥ Vj , we
charge |Xj | items of the set Yj

⋃
Yi2j2 for the set of items Xj

(that contains Xij). Note that this charge replaces any charge
already made for items from the set Xj .

Since all the items in the set XBC
are charged for by the

charging scheme and each item in the set Y is charged at most
once, it follows that |XBC

| ≤ |Y |.
We now return to the proof of the theorem. Since all the bins

in the set BL are load saturated, |XBL
| ≤ |YBL

|. By Lemma
4.1, |XBC

| ≤ |Y |. Thus, OPT ≤ |X| + |Y | = |XBL
| +

|XBC
|+ |Y | ≤ |YBL

|+ 2|Y | ≤ 3|Y | = 3LS.
Since each improvement step strictly increases the number

of packed items, the number of improvement steps is at most
n.

The convergence time of the local search algorithm to a
local optimum may be exponential. To ensure polynomial
running time we modify the algorithm as follows.
• Replace operation. Let Rkj be a set of items of type k

assigned to bin j and let Rk′j be a set of unassigned
items of type k′. if |Rk′j | ≥ (1 + ε)|Rkj |, then Si ←
Si \Rkj

⋃
Rk′j .

• Swap operation. Let Rki and Rk′j be sets of items
of type k, k′ assigned to bins i and j, respectively.
Let Tk and Tk′ be the sets of unassigned items of
type k, k′, respectively. Let R′k′i ⊆ Rk′j

⋃
Tk′ and let

R′kj ⊆ Rki
⋃
Tk. If |R′k′i

⋃
R′kj | ≥ (1 + ε)|Rki

⋃
Rk′j |,

then Si ← Si \Rki
⋃
R′k′i and Sj ← Sj \Rk′j

⋃
R′kj .

• Swap and Replace operation. Let Rki and Rk′j be sets of
items of type k, k′ assigned to bins i and j, respectively.
Let Tk′ and Tk′′ be the sets of unassigned items of
type k′, k′′, respectively. Let R′k′i ⊆ Rk′j

⋃
Tk′ and let

R′k′′j ⊆ Tk′′ . If |R′k′i
⋃
R′k′′j | ≥ (1 + ε)|Rki

⋃
Rk′j |,

then Si ← Si \Rki
⋃
R′k′i and Sj ← Sj \Rk′j

⋃
R′k′′j .

Note that we assume that when the algorithm performs one of
the above improvement operations and assigns items of any
type k to a bin, it assigns a maximal set of these items, such
that the solution is feasible.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 13

Theorem 4.6: For any ε > 0, the modified local search al-
gorithm is a polynomial time (3+ε)-approximation algorithm.

Proof: The proof of the approximation ratio is similar to
the proof of Theorem 4.4 with the difference that each charge
for a set of unassigned items is 1+ε times the original charge.
The polynomial running time of the algorithm follows from the
fact that at each improvement step a set of items R′ replaces
a set of items R, such that |R′| ≥ (1 + ε)|R|. It is easy to
see that the number of steps is at most NM log1+ε Vmax =
O(1εNMlnVmax), where Vmax is the maximum load capacity
of any bin. This follows from the fact that the number of sets
packed in the bins is at most NM and at each improvement
step one of these sets is replaced with a set larger by a factor
at least 1 + ε. More specifically, in replace operation a set of
items is replaced with a new set larger by a factor at least
1+ ε. In swap operation the size of the largest of the swapped
two sets after performing the swap operation is at least 1 + ε
times the size of the largest of the two sets before performing
the swap operation and the size of the smallest of the two sets
after performing the swap operation is at least the size of the
smallest of the swapped two sets before performing the swap
operation.

V. A PRACTICAL ALGORITHM

The theoretical algorithm described in the previous sec-
tion cannot be applied directly to realistic scenarios since it
assumes fixed size items. Thus, we need to develop a new
realistic algorithm that can handle variable size of both the
VMs and the images in an efficient way.

The proposed solution has two steps as described in Al-
gorithm 1 (PLACEMENT ALGORITHM). In the first step,
it computes a solution using algorithm Extended Greedy
(EGREEDY, Algorithm 2). In the second step, the algorithm
applies the local search procedure LS (Algorithm 3). Both
algorithms are described below.

Algorithm EGREEDY works as follows. In the first phase,
it places each image in some container, so that by the end
of this phase all images are placed. In the second phase,
it runs algorithm Greedy for the multiple knapsack problem
presented in Section IV. Since items have variable sizes, each
knapsack optimization step in Greedy is based on the dynamic
programming algorithm described in [22].

The local search procedure, LS, (see Algorithm 3) repeat-
edly iterates over pairs of bins in order to find local improve-
ments in packing pairs of bins, such that the number of packed
items is increased. It uses a procedure called Local(Si, Sj) to
find a repacking S′i and S′j of bins i and j, respectively. If
v(S′i) + v(S′j) > v(Si) + v(Sj), the algorithm repacks bins
i, j, where v(Si) is the number of items in the set Si. The
procedure Local finds an approximate solution to an instance
of the problem with two bins (again using algorithm Greedy
for the multiple knapsack problem).

The procedure Local maintains the replica constraints by
ensuring that images with single replica in the solution S that
are packed in bins i or j are not discarded from the solution.
The procedure tries improving the solution by repeatedly
performing the following two steps. In the first step, images

with a single replica are moved between bins i and j to create
a solution to the pair of bins i, j that contains only images with
single replica and no items. The image movement operation
may involve exhanging images between bins i and j or moving
images in one direction only. Note that a single movement step
might invlove multiple images on each bin. In the second step,
algorithm Greedy for the multiple knapsack problem runs.

Algorithm 1: PLACEMENT ALGORITHM

Input: {(Cj , Vj)}j=1...N , {(ci, si)}i=1...n, d
Output: Assignment S = (S1, . . . , Sn) of items to bins

S ← EGREEDY ()1
S ← LS(S)2
return S ;3

Algorithm 2: EXTENDED GREEDY ALGORITHM: EGREEDY
Input: {(Cj , Vj)}j=1...N , {(ci, si)}i=1...n, d
Output: Assignment S = (S1, . . . , Sn) of items to bins

Let S be such that Sj = ∅, ∀j = 1 . . . n1
for k ← 1 to M do2

Place image k in a bin with sufficient remaining capacity3

for j ← 1 to N do4
Apply the exact algorithm for the single bin problem on5
the set of remaining items (while taking into account the
images packed in the previous step)

return S ;6

Algorithm 3: LOCAL SEARCH PROCEDURE: LS
Input: S = (S1, . . . , Sn), {(Cj , Vj)}j=1...N ,

{(ci, si)}i=1...n, d
Output: Assignment S = (S1, . . . , Sn) of items to bins

while the solution was improved in the following loop do1
for each pair of bins i, j apply the local improvement2
operation do

(S′i, S
′
j)← Local(Si, Sj)3

if v(S′i) + v(S′j) > v(Si) + v(Sj) then4
(Si, Sj)← (S′i, S

′
j)5

return S ;6

Obviously, since in a large scale setting, there are many pairs
of bins to examine, the local search procedure might take too
much time to execute. Moreover, at each iteration, only small
improvements might be achieved. To ensure reasonable run
times, we slightly modify Algorithm LS and obtain algorithm
RANDOM LS as shown in Algorithm 4. At each step, it selects
a random pair of bins and performs the optimization step on
it. The process continues as long as there is an improvement
in pair optimization. We imposed an early stopping condition
that stops the optimization process if after 20 consecutive
pair optimizations no improvement was achieved. To further
improve the early stopping condition in a practical setting,
the algorithm can be configured to stop if improvements that
it achieves fell below a predefined percent of VMs in the
managed environment.

As indicated by the results of the next section, the random-
ized algorithm achieves results that are within 1% of those
obtained by Algorithm 1, but with much shorter running time.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 14

Algorithm 4: LOCAL SEARCH PROCEDURE: RANDOM LS
Input: S = (S1, . . . , Sn), {(Cj , Vj)}j=1...N ,

{(ci, si)}i=1...n, d
Output: Assignment S = (S1, . . . , Sn) of items to bins

repeat1
Select a random pair of bins i, j;2
Apply the local improvement operation:3
(S′i, S

′
j)← Local(Si, Sj)

if v(S′i) + v(S′j) > v(Si) + v(Sj) then4
(Si, Sj)← (S′i, S

′
j)5

until No improvement for 20 consecutive steps ;6
return S ;7

VI. EXPERIMENTAL EVALUATION

In this section we describe the results of experimental
evaluation of the algorithm presented in the previous section.

We use algorithm Extended Greedy (EGREEDY, Algo-
rithm 2) as a baseline for comparison.

A. Methodology
For our evaluation, we use the data collected from a part of

a private research cloud inside IBM. Specifically, we collected
the data about the physical capacity (i.e., physical hosts
hardware configuration), VM instances running on these hosts,
images that are used to create these instances and relative
image popularity.

More specifically, in our setting the total number of hosts
is 137. All hosts have the same amount of secondary storage
(i.e., capacity), 250 GB. With respect to the amount of RAM
(i.e., load capacity), the hosts are divided into four groups as
described in Table I.

Host Configuration Memory Capacity [GB] Count [%]
Small 30 22

Medium 62 68
Large 126 8

X-Large 254 2

TABLE I
PHYSICAL HOST CONFIGURATIONS

There are 1984 VMs in our setting. There are 10 VM sizes
in use ranging from 1 to 32 GB. There are 576 master images
that have at least one active VM instance. The master image
popularity is shown in Figure 3. Images that do not have active
VM instances are omitted from the graph. The number of VM
instances per image ranges from 1 to 99 with more than half of
the images having only one VM instance and a small amount
of images having multiple VM instances. Figure 4 shows the
number of VM instances for each memory size. As one can
see most of the VMs (80%) use memory size of 2 GB and 6
GB. The image sizes range from 2 GB to 36 GB.

To study the algorithm behavior we independently change
capacity (i.e., the amount of local storage) and load capacity
(i.e., main memory) in the original problem instance, using a
uniform factor. Table II shows the results of our experiments.
The columns in this table represent memory capacity factors
(i.e., the uniform factors that are used to modify main memory
of the physical hosts) and rows represent storage capacity
factor (i.e., the uniform factors used to modify the secondary

0

10

20

30

40

50

60

70

80

90

100

1 46 91 136 181 226 271 316 361 406 451 496 541
VM Images (sorted)

N
um

be
r

of
 V

M
 in

st
an

ce
s

Fig. 3. Image popularity distribution: shows the number of VM instances
per image. The images are sorted in order of increasing popularity.

0

50

100

150

200

250

1 2 4 6 8 10 12 16 24 32

Memory Size (GB)

N
um

be
r

of
 V

M
s

Fig. 4. Total number of VM instances for each memory size (GB)

storage of the physical hosts). An intersection of each column
and row shows the average improvement computed over 24
executions of the algorithm compared to the EGREEDY
algorithm. Factors smaller than 0.9 are not shown in Table II,
because for these factors feasible solutions do not exist in this
problem instance.

The standard deviation is small in all experiments. For a
specific example see Table III that represents an improvement
in absolute numbers for the storage factor 0.9.

We used a four core 1.2 GHz per core 2007 Xeon server
with 8 GB main memory to run our experiments.

As one can see, the local search algorithm achieves the best
results when storage is scarce. For example, when we modify
the original problem instance so that the image storage takes
up 90% of the host storage, the improvement of the local
search algorithm ranges between 12% and 20%. We also see
that the main memory is a secondary bottleneck. This result is
in line with the intuition that as one has more storage capacity
per host, it is easier to satisfy replica constraints and improve
the affinity of VM instances and images.

As main memory and secondary storage become abun-
dant, the improvement obtained by the local search algorithm
compared to the EGREEDY algorithm becomes negligible.
Table III shows the results of our experiments for a fixed

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 15

Memory (GB) Storage (GB)
0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.9 1.2 1.089 1.093 1.052 1.027 1.026 1.021
1 1.19 1.074 1.072 1.049 1.025 1.026 1.025
1.1 1.18 1.07 1.065 1.043 1.019 1.017 1.016
1.2 1.16 1.059 1.057 1.031 1.01 1.0075 1.0085
1.3 1.14 1.042 1.037 1.019 1.0022 0 0
1.4 1.12 1.026 1.022 1.0088 0 0 0
1.5 1.12 1.015 1.017 1.00046 0 0 0

TABLE II
RANDOM LOCAL SEARCH IMPROVEMENT RATIO

storage capacity factor of 0.9 and different memory capacity
factors represented by the rows of the table. The entries of the
table represent the number of locally placed VMs. The second
and third columns represent the average and standard deviation
of the number of VMs placed by the local search algorithm,
respectively. The fourth column of the table represents the
number of VMs placed by EGREEDY algorithm. The last
column of the table shows the average improvement in terms
of number of local VMs placed by the local search algorithm
compared to the EGREEDY algorithm. As one can see the
standard deviation of the number of locally placed VMs placed
by the local search algorithm is small. The average running
time of the Random Local Search algorithm was 6 minutes
with the maximum running time being 10 minutes.

RAM RANDOM LS EGREEDY Avg Improvement
Avg STD

0.9 1780.25 10.74 1485 295.25
1 1831.25 20.25 1542 289.25
1.1 1866.96 21.60 1589 277.96
1.2 1900.88 23.40 1632 268.88
1.3 1914.88 23.9 1673 241.88
1.4 1930.33 16.0 1716 214.33
1.5 1943.46 23.27 1741 202.46

TABLE III
COMPARISON OF RANDOM LOCAL SEARCH AND EGREEDY

ALGORITHMS WITH STORAGE FACTOR OF 0.9

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

1 21 41 61 81 101 121 141

Improvment steps

N
u

m
b

e
r

o
f

V
M

s

LS

Random

LS

Fig. 5. Total number of placed VMs in each LS improvement step for storage
and memory factors of 0.9

Figure 5 shows improvements in number of locally placed
VMs per improvement step for Algorithm 3 and Algorithm 4

for a sample execution of Algorithm 4. Both algorithms are
executed for the storage and memory factors of 0.9. As one can
see, in this execution both algorithms converge to essentially
the same total improvement in local VM placement with
Algorithm 4 being within 2% of the result of its deterministic
counterpart.

From the practical perspective, it is important that the opti-
mization algorithm runs sufficiently fast for the typical cloud
scales. The deterministic version of the local search passes
over all bin pairs at least once. Therefore, its running time is
considerably longer, 2 hours on the average as opposed to 5−6
minutes for the randomized version. Finally, we performed
experiments for replica requirements of placing at least d = 2
replicas of each image that show the improvement achieved
by the local search algorithm compared to the EGREEDY
algorithm. These results are omitted due to space limitations.

VII. CONCLUSIONS AND FUTURE WORK

In this work we studied the problem of maximizing affinity
between VM images and VM instances created from them
through joint placement of images and instances. We defined
a novel optimization problem that extends the Class Con-
strained Multiple Knapsack problem and provide a (3 + ε)-
approximation algorithm for it. We evaluate performance of
the algorithm in a general setting where VM instances and
VM images are of arbitrary sizes using production data from
a private research IBM cloud. We show that the algorithm
achieves significant improvements in VM instance locality
when either main memory or secondary storage become a
scarce resource.

Future directions of this work include improvement of the
approximation ratio of the presented local search algorithm,
exploring the possibility of constructing an algorithm with
fixed approximation ratio for the generalization of the problem
where VM instances and VM images can be of arbitrary sizes.
Another interesting research direction is studying the online
version of the problem considering different communication
costs between VMs and images, various workloads and net-
work topologies, based on actual cloud data.

REFERENCES

[1] M. McLoughlin, “The QCOW2 Image Format,” http://people.gnome.org/
∼markmc/qcow-image-format.html.

[2] “VMware Virtual Disk Format 1.1,” http://www.vmware.com/
technical-resources/interfaces/vmdk.html.

[3] “Microsoft VHD Image Format,” http://technet.microsoft.com/en-us/
virtualserver/bb676673.aspx.

[4] C. Tang, “FVD: A high-performance virtual machine image format for
cloud,” in USENIX ATC. Portland, OR, USA: USENIX, Jun 2011.

[5] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual machine
image distribution network for cloud data centers,” in INFOCOM, 2012
Proceedings IEEE, march 2012, pp. 181 –189.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008, pp. 63–74.

[7] Juniper, “Cloud-ready data center reference architecture,” http://www.
juniper.net/us/en/local/pdf/reference-architectures/8030001-en.pdf.

[8] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” Commun. ACM, vol. 54, no. 3, pp. 95–104, 2011.

[9] H. Shachnai and T. Tamir, “On two class-constrained versions of the
multiple knapsack problem,” Algorithmica, vol. 29, no. 3, pp. 442–467,
2001.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 16

[10] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu,
“Approximation algorithms for data placement on parallel disks,” in
SODA, 2000, pp. 223–232.

[11] A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and migration cost
aware application placement in virtualized systems,” in Middleware ’08:
Proceedings of the 9th ACM/IFIP/USENIX International Conference on
Middleware. New York, NY, USA: Springer-Verlag New York, Inc.,
2008, pp. 243–264.

[12] S. Mehta and A. Neogi, “Recon: A tool to recommend dynamic server
consolidation in multi-cluster data centers,” in IEEE Network Operations
and Management Symposium (NOMS 2008), Salvador, Bahia, Brasil,
Apr 2008, pp. 363–370.

[13] J. E. Hanson, I. Whalley, M. Steinder, and J. O. Kephart, “Multi-aspect
hardware management in enterprise server consolidation,” in NOMS,
2010, pp. 543–550.

[14] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for Cloud computing,” in HotPower 08 Workshop on Power Aware
computing and Systems, San Diego, CA, USA, 2008.

[15] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server con-
solidation,” in International Conference for the Computer Measurement
Group (CMG), 2007.

[16] S. Chen, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and W. H.
Sanders, “CPU gradients: Performance-aware energy conservation in
multitier systems,” in Green Computing Conference, 2010, pp. 15–29.

[17] VMware Inc., “Resource Management with VMware DRS, Whitepaper,”
2006.

[18] IBM, “Server Planning Tool,” http://www-304.ibm.com/jct01004c/
systems/support/tools/systemplanningtool/.

[19] ——, “WebSphere CloudBurst,” http://www-
01.ibm.com/software/webservers/cloudburst/.

[20] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in INFOCOM, 2011.

[21] D. Breitgand and A. Epstein, “Improving consolidation of virtual ma-
chines with risk-aware bandwidth oversubscription in compute clouds,”
in INFOCOM, 2012.

[22] H. Shachnai and T. Tamir, “Approximation schemes for generalized
2-dimensional vector packing with application to data placement,” in
RANDOM-APPROX, 2003, pp. 165–177.

[23] S. R. Kashyap and S. Khuller, “Algorithms for non-uniform size data
placement on parallel disks,” J. Algorithms, vol. 60, no. 2, pp. 144–167,
2006.

[24] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in SODA, 2006, pp. 611–620.

[25] C. Chekuri and S. Khanna, “A polynomial time approximation scheme
for the multiple knapsack problem,” SIAM J. Comput., vol. 35, no. 3,
pp. 713–728, 2005.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP 17

