
GPU-assisted AES encryption using GCM

Georg Schönberger ⋆ and Jürgen Fuß⋆⋆

Upper Austria University of Applied Sciences
Dept. of Secure Information Systems
Softwarepark 11, 4232 Hagenberg

georg.schoenberger@students.fh-hagenberg.at

juergen.fuss@fh-hagenberg.at

http://www.fh-ooe.at/sim

Abstract. We are presenting an implementation of the Galois/Counter
Mode (GCM) for the Advanced Encryption Standard (AES) in IPsec
in this paper. GCM is a so called “authenticated encryption” as it can
ensure confidentiality, integrity and authentication. It uses the Counter
Mode for encryption, therefore counters are encrypted for an exclusive-
OR with the plaintext. We describe a technique where these encryptions
are precomputed on a Graphic Processing Unit (GPU) and can later be
used to encrypt the plaintext, whereupon only the exclusive-OR and au-
thentication part of GCM are left to be computed. This technique should
primarily not limit the performance to the speed of the AES implemen-
tation but allow Gigabit throughput and at the same time minimize the
CPU load.

Keywords: AES, Galois/Counter Mode (GCM), IPsec, GPU, CUDA,
Gbit/s, high-performance

1 Introduction

Todays need of high-performance cryptography implementations is rapidly in-
creasing. As the most calculating intensive part often belongs to an encryption
or hashing algorithm, the overall performance of a system highly depends on the
speed of the underlying cryptography. To increase performance developers opti-
mize the algorithms tailored for several CPU-architectures. Alternatively one can
implement parallel versions of the algorithms using multiple CPU-cores or via
GPUs. Especially with the “Compute Unified Device Architecure” (CUDA) and
the programming language “C for CUDA” GPUs gained a boost in popularity
[1]. An extremely important area concerning speed of cryptographic operations
is in the protection of network traffic. In protocol suites like IP Security (IPsec)
[6], AES has become a favourite encryption scheme to ensure data confidential-
ity. In terms of the encryption mode the Counter mode (CTR) of operation is

⋆ Funded through a private research by Barracuda Networks, Inc.
⋆⋆ Funded by the KIRAS programme of the Austrian Federal Ministry for Transport,

Innovation and Technology.



2 Georg Schönberger and Jürgen Fuß

preferred for high-speed connections as it can be implemented in hardware and
allows pipelining and parallelism in software [8].

In this paper we focus on GCM (cf. [2] and [17]) and its usage as a mode for
Encapsulation Security Payload (ESP) in IPsec (standardised in RFC 4106 [5])
and constitute a new way to compute it:

– We show that—accepting slight modifications of the standards—it is possible
to precompute the AES-CTR part of AES-GCM without reducing security.

– As a practical example we show a prototype using GPUs for the precom-
putation that puts our ideas into practice. First of all this prototype shows
operational reliability, moreover we considered some benchmarks.

– The resulting challenges posed by the introduced architecture are analysed.
At the same time proposals for problem solutions are discussed as well as
their practicability and impacts will be observed.

1.1 Related Work

The implementation of AES-GCM on GPUs itself has not yet been a common
topic in research. GCM is defined in the NIST Special Publication 800-38D
[2] and used as the default cipher mode in the IEEE Standard 802.1AE—Media
Access Control (MAC) Security [3], mainly due to its good performance. Another
aspect why GCM in combination with AES can be of value is the fact that the
Intel Cooperation provides theirs own instruction set for implementing AES on
the Westmere architecture. The most famous set is called “AES-NI” that consists
of six new instructions to realize the AES-algorithm [9]. Moreover, there is an
instruction called “PCLMULQDQ” for carry-less multiplication which can be
used to increase the performance of the universal hash function “GHASH” in
GCM [10]. In an AES-NI-GCM implementation within the Linux kernel Intel has
also carefully examined the performance gains of these instructions compared to
a traditional implementation [11].

The fast development and enhancements of CUDA pushed new and innova-
tive applications on GPUs. One of the first AES implementations using CUDA
was by Svetlin A. Manavski who also parallelised AES on instruction level us-
ing four threads to produce the 16 encrypted bytes [12]. Other papers followed
analysing how to realise AES with CUDA efficiently. A good example of how to
examine how well AES can perform on a GPU is the master thesis of Alexander
Ottesen [13]. He analysed the differences of AES with CUDA by first using the
traditional processing way and then compare this to a lookup table version. He
also tried to optimize these applications by fully utilising the different memory
spaces of a GPU.

There also have been some recent approaches to use AES on GPUs for tasks
in networking environments. The researchers of the “Networked & Distributed
Computing Systems Lab” in Korea released papers about how to speed-up SSL
[15] or how to accelerate a software router—also in connection with IPsec [16]—
with GPUs.



GPU-assisted AES-GCM 3

2 Our Approach

In our work we combine the potential of GPUs1 to accelerate AES with the
benefits of AES-GCM as authenticated encryption. In contrast to recent works on
only AES-CTR using CUDA ([13], [14]) we split the AES-GCM into two separate
stages. The first realizes the encryption part on the GPU2 and the second stage
is responsible for the authentication part. Moreover stage one needs not to be
executed with stage two at the same time, as the plaintext is only indispensable
at authentication time. This separation is a completely new way to implement
AES-GCM’s authenticated encryption.

Enc.

counters

Packet CPU

GPU

GHASH

XOR

IV

Enc.or dec.

packet

Tag

precomputes

1.

2. 3.

4.

Fig. 1. Schematic procedure of en-/decrypting a packet.

In Fig. 1 we show how we en-/decrypt a packet using AES-GCM with pre-
computation:

1. As soon as the secret-key and the initialization vector (“Nonce”) for AES-
GCM are negotiated, we start encrypting continuing counters with the key
on the GPU.

2. As soon as packets are arriving the CPU can start en-/decrypting it. Addi-
tional Authentication Data (AAD) can be added as well (q.v. [17, sec. 2.3]).

3. The CPU uses the precomputed counters generated by the GPU to XOR
with the plaintext for encryption and for authentication GHASH (universal
hashing over a binary Galois field [2, Chap. 5]).

1 We would like to emphasize the fact that the precomputation described here need not
be done on a GPU. Also free cores on a multi-core CPU may be used for this purpose.
Nevertheless, in this paper we refer to the processor that does the precomputation
as the GPU.

2 At this point we can use the results of the recent papers on AES with CUDA.



4 Georg Schönberger and Jürgen Fuß

Nonce

(GHASH)

Counter 0

Salt ESP-IV 0 1

4 Byte 4 Byte 4 Byte 4 Byte

Std. Nonce
Mod.

Std.

Salt ESP-IV

Mod. Nonce

Fig. 2. Modifications for the construction of the nonce and the usage of GHASH for
non-12 byte IVs.

4. After a packet is encrypted and the tag is computed, the packet can be
composed. In case of decryption the computed tag must be compared with
the encrypted packet’s original tag.

To use the counters generated by the GPU efficiently we have to adapt the
format of initialization vectors (IV) for AES-GCM. A nonce for AES-GCM con-
sists of the salt (4 bytes) generated by Internet Key Exchange Protocol (IKE)
[4] and the ESP-IV (8 bytes) [5, p. 4]. To form the initial counter for AES-GCM
this 12 byte sequence is padded with the 32 bit sequence “00 . . . 1” to become
16 byte long [17, p. 5] (see Fig.2). For the subsequent packet the ESP-IV is
incremented by one, the salt prefixed and then again padded. This usage of
the ESP-IV and the padding is not suited for precomputation as we cannot use
a continuous stream of encrypted counters. We only need one counter getting
incremented and not two (ESP-IV per packet and the padded-nonce within a
packet). Therefore we suggest the following changes for the construction of the
nonce (cf. Fig. 2):

– Extension of the ESP-IV to 12 bytes so that padding is not necessary. Oth-
erwise we would have to estimate the size of a packet and increase the initial
counter to generate enough encrypted data for the XOR. This would go along
with a large number of encrypted counters that must discarded or missing
counters for long packets. That’s why we use the salt and the 12 byte ESP-
IV as the initial counter for AES-GCM so as to have one counter and no
estimation of the packet sizes is needed.

– Normally, GHASH is applied for nonces not equal to 12 bytes. Due to the
new ESP-IV length GHASH should be used to form the 16 byte initial
counter. Again this usage of GHASH does not allow us to predict what
the initial counter for the next packet will be. For this reason we propose to
skip GHASH for nonces of 16 bytes. As long as one counter is not encrypted
with the same key more than once, this has no security impact.

A modification of the format of the IV in a counter mode may have negative
impact on the overall security of the encryption scheme. We claim that our



GPU-assisted AES-GCM 5

modifications do not reduce the security of the encryption method. Two issues
must be considered.

– Firstly, the original IV format makes sure that IVs will not repeat, neither
in one packet (using a 4 byte per packet counter) nor in different packets
(using a packet dependant 12 byte ESP-IV). The modified format can also
guarantee unique IVs for AES-GCM; inside a packet as well as in different
packets with the same 16 byte counter. Finally, a regular rekeying in the
IPsec protocol will prevent this 16 byte counter.

– Secondly, we do not use GHASH on a non-12 byte IV. With respect to this
modification it can be said that the purpose of GHASH in this case is to
have a simple method to guarantee as an output an IV that can be used for
AES-GCM. The standard also skips the GHASH in the case of a 12 byte IV
(for higher speed).

3 Challenges

As a result of precomputation it is essential to schedule encryption—in matters
of XOR and GHASH—asynchronously to the encryption of counters. This means
the need for a parallel implementation of encrypting and authenticating packets
while new counters for the subsequent packets are encrypted. From this it follows
that the overall performance of our AES-GCM depends primarily on the speed
of GHASH and memcpy operations to fetch the precomputed encrypted counters.
If we reach the point where we can process a packet as fast or even faster as
we can precompute, then again the limiting factor is the AES encryption of the
counters.

In conjunction with GPUs as coprocessors the challenging task is the transfer
of the encrypted counters from the GPU to RAM. One might also consider that
one GPU could precompute counters for several IPsec connections. Then the
management of the GPU as a shared resource is as important as the handling of
parallel processing packets and precomputing. As a solution for the management
of precomputed counters the CPU can provide double buffers. So, if one buffer
gets empty, a switch to the second buffer can be performed and the empty
buffer gets refilled asynchronously by the GPU. Sometimes network packets can
get lost or mixed up on their way to the receiver. In this case counters from the
previous buffer are needed. In this case we can insert some sort of “history” at
the beginning of each buffer that contains a certain amount of old counters from
the buffer just been overwritten.

4 Benchmarks

We used our implementations on the GPU to test if the precomputation can
speed up an existing AES-GCM application. As current AES-implementations
with CUDA nearly reach the 10 Gbit/s [13][16] we focused in the first place
on the interaction of CPU and GPU. For our benchmarking we patched the



6 Georg Schönberger and Jürgen Fuß

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

NoFast-NoSSE2

Fast-NoSSE2

NoFast-SSE2

Fast-SSE2

NoFast-NoSSE2

Fast-NoSSE2

NoFast-SSE2

Fast-SSE2

Fast-SSE2

T
hr

ou
gh

pu
t (

G
bi

t/s
)

1MB 10MB 100MB

LibTomCrypt with GPU-Patch
LibTomCrypt CPU

Fig. 3. Comparison of the encryption throughputs: (i) LibTomCrypt on the CPU and
(ii) LibTomCrypt with our GPU-Patch (both with and without LTC FAST and SSE2
instructions).

AES-GCM algorithm of the cryptographic toolkit “LibTomCrypt”3. The patch
included the replacement of encrypting counters with fetching counters from
precomputed memory. As precomputation can be done in parallel to encryption
the throughput depends on the time taken by copying encrypted counters and
performing GHASH.

In Fig. 3 we compare the runtime of encrypting 1, 10 and 100 Megabyte
(MB) of random data. To simulate the encryption of network packets we process
the data in chunks of 1024 Byte as this could be a suitable packet size. Fig. 3
shows that our patch is faster in every combination of used instruction sets and
for all sizes of data. Also note the fact that with activated LTC FAST and SSE2
our version has more than twice the throughput of the traditional LibTomCrypt
library. We also examined the statistical spread of the runtimes by conducting
the tests a thousand times. As a result the variation is negligible because only
sporadic outliers were detected with a variation around one millisecond.

We used an Intel Core i7 940, 12GB 1333MHz RAM and a GTX480 on an
Intel DX58SO Motherboard for testing. The operating system was Ubuntu 10.4
and for compiling LibTomCrypt in version 1.17 we used gcc-4.4.

3 Available under public domain at http://libtom.org/.



GPU-assisted AES-GCM 7

5 Conclusion

Our implementation of AES-GCM separated into stages shows that this mode
of operation has benefits from a cryptographic point of view and also solves
performance issues. The fact that the coprocessors can perform encryption in
parallel to processing data offers new challenges to high-performance network
applications. Current standards for the use of this mode in IPsec are not per-
fectly suitable for an implementation with precomputation. However, only small
modifications are necessary and they do not affect security. We are looking for-
ward how well an implementation running in kernel-mode will perform. Finally,
a comparison of AES-GCM with classical combinations of block cipher and hash
function will be an important next step.

References

1. NVIDIA Corporation: NVIDIA CUDA C Programming Guide, Developer Manual
(2010), http://developer.nvidia.com/object/gpucomputing.html

2. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC, NIST Special Publication 800-38D (2007)

3. IEEE Computer Society: Standard for Local and metropolitan area networks: Media
Access Control (MAC) Security, New York (2006)

4. Kaufman, C.: Internet Key Exchange (IKEv2) Protocol, RFC 4306 (2005)

5. Viega, J. and D. McGrew: The Use of Galois/Counter Mode (GCM) in IPsec En-
capsulating Security Payload (ESP), RFC 4106 (2005)

6. Kent, S. and K. Seo: Security Architecture for the Internet Protocol, RFC 4301
(2005)

7. Kent, S.: IP Encapsulating Security Payload (ESP), Request for Comments 4303
(2005)

8. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, NIST Special Publication 800-38A (2001)

9. Akdemir, K. e.a.: Breakthrough AES Performance with Intel AES New Instructions,
Intel Whitepaper (2010), http://software.intel.com/file/27067

10. Gopal, V. e.a.: Optimized Galois-Counter-Mode Implementation on Intel Archi-
tecture Processors, Intel Whitepaper (2010), http://download.intel.com/design/
intarch/PAPERS/324194.pdf

11. Hoban, A.: Using Intel AES New Instructions and PCLMULQDQ to Significantly
Improve IPSec Performance on Linux, Intel Whitepaper (2010), download.intel.
com/design/intarch/papers/324238.pdf

12. Manavski, S.A.: Cuda compatible GPU as an efficient hardware accelerator for AES
cryptography, In Proceedings IEEE International Conference on Signal Processing
and Communication, ICSPC (2007)

13. Ottesen, A.: Efficient parallelisation techniques for applications running on GPUs
using the CUDA framework, Universitt Oslo (2009), http://www.duo.uio.no/sok/
work.html?WORKID=91432

14. Di Biagio, A. and Barenghi, A. and G. Agosta: Design of a Parallel AES for Graph-
ics Hardware using the CUDA framework, Parallel and Distributed Processing Sym-
posium, International (2009)



8 Georg Schönberger and Jürgen Fuß

15. Jang, K. e.a.: SSLShader: Cheap SSL Acceleration with Commodity Processors,
In Proceedings of the USENIX Symposium on Networked Systems Design and Im-
plementation (2011)

16. Han, S. e.a.: PacketShader: a GPU-Accelerated Software Router, In Proceedings
of ACM SIGCOMM (2010)

17. McGrew, D. A. and J. Viega: The Galois/Counter Mode of Operation (GCM) - re-
vised, Technical Report (2005), http://www.csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf


