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Abstract. We present an information-theoretic discussion of authenti-
cation via graphical passwords, and devise a model for entropy estima-
tion. Our results make face-recognition based authentication comparable
to standard password authentication in terms of uncertainty (Shannon-
entropy) that an adversary is confronted with in both situations. It is
widely known that cognitive abilities strongly determine the choice of
alphanumeric passwords as well as graphical passwords, and we discuss
various selected psychological aspects that influence the selection pro-
cess. As a central result, we obtain a theoretical limit to the entropy of a
face-recognition based authentication in the light of some social engineer-
ing techniques (dictionary attacks on graphical passwords). Remarkably,
our results hold independently of any information that can be obtained
from the internet or through other forms of social engineering. Thus,
we obtain very general bounds on the quality of authentication through
face-recognition that solely depend on the authentication mechanism.
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Shannon-Entropy

1 Introduction

Graphical passwords are an elegant way of overcoming a certain vulnerability
of standard password authentication. A naive user may write down a password
somewhere, or perhaps tell it on the phone, if an adversary manages to trick the
user into believing that the call is from some honest service center. Composing an
access code from images rather than symbols prevents writing it down, and also
hampers giving the secret away otherwise. Using faces as images greatly supports
memorability of the secret access code, and has therefore become a popular
approach. Consequently, we consider face-recognition based authentication in the
following, bearing in mind that the ideas presented here can easily be extended
to various other types of graphical passwords (cf. the related work section).
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A major contribution of this work is an information-theoretic measure of
quality that a face-recognition challenge presents to the adversary. Since the
quality of alphanumeric password policies can be measured in terms of entropy
(using combinatorial considerations), an analogous measure for graphical pass-
words is certainly desirable. However, the literature about graphical passwords
hardly provides any assertions about entropy of graphical passwords. It turns
out that this goes much beyond the usual combinatorics that arises for standard
symbolic passwords. In the case of face-recognition based authentication, such
an entropy measure is, however, obtainable with combinatorial tools. The main
task accomplished in this work is estimating the maximum possible entropy of an
authentication challenge based on face selection. We demonstrate how to do this
in section 3, along with a discussion of possible variations to the model. A further
important point discussed in this work are psychological aspects regarding the
memorability and selection process of images, particularly faces. Choosing weak
passwords due to mental limitations of the human brain is a well-known problem.
Similar concerns apply for some graphical password authentication systems, so
choosing ”weak face-sequences” is an equally likely incident. The second con-
tribution of the paper is a discussion of such aspects, found in section 2.1. The
paper closes with a small example illustrating the derived results, and discussing
various directions of future research.

Related Work: The author of [1] gives various alternatives for alphanumeric
passwords, along with discussions of security. The work of [2] contains vulner-
abilities in face-recognition based authentication systems. An introduction to
various kinds of graphical passwords is found in [3, 4] as well as [5]. The latter
discusses the information content of (graphical) passwords in general, but does
not provide specific upper bounds for the scenario we consider here. The au-
thors of [6] present an implementation and empirical evaluation of a graphical
password authentication system. Though entropy is discussed there briefly, a
thorough formal analysis is missing. An interesting idea is given in [7], where
graphical passwords are made resistant against spying over the shoulder of the
user (shoulder-surfing). In [8], useful hints towards building a secure graphical
password authentication system are found. We follow a similar path in this paper.
Empirical studies regarding the performance of graphical passwords are given in
[9]. Passfaces™[10], Déjà Vu [11] or Awase-E [12] implement authentication algo-
rithms similar to the ones we consider here. We describe this mechanism in more
detail in section 2. Other approaches to graphical passwords involve finding and
clicking certain pass-positions within an image or drawing passwords on a grid.
See [13] for further references.

2 Authentication through Face-Recognition

Face-recognition is one cognitive action that human brains are well accustomed
to. Consequently, one would recognize faces easily, but describing a face to an-
other person such that this face could too be recognized by the other person is
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rather difficult. So why not use a sequence of faces (or general images) instead
of a sequence of symbols for forming a password? This is the basic idea behind
using faces for authentication: instead of being prompted to type in a password,
the user is prompted to select a couple of faces from a pool of given pictures,
with several decoy pictures among them (see [10–12]. In the sequel, we shall
assume that the order in which these are chosen during the authentication is of
no relevance (in section 3.3, we discuss how to account for this too). At the time
when the ”password” is chosen, the user is free to specify some images that will
be recognized. This is completely analogous to choosing a password that can
be remembered. For logging into the system, the user will pick the right ones
among the decoy pictures to complete the authentication. The obvious advan-
tage is that neither the faces can be written down, nor can easily be described
to another person to permit that one to authenticate herself. In that sense, this
approach appears superior to standard passwords, but a direct comparison is not
trivial. For alphanumeric passwords, combinatorial considerations quickly lead
to estimates how many passwords can be chosen according to the given policy.
This can be taken as a measure of quality of the password-selection process. Can
similar things be done for face-recognition based authentication? An answer is
provided in section 3.1.

2.1 Psychological Aspects

We know that as early as the second and third days of life, babies are able
to distinguish between happy and sad faces, by their second or third month
they develop an affective consonance with their mother, to the extend that they
reproduce more or less synchronized facial expressions [14]. It is true that these
are most rudimentary forms of empathy, much less sophisticated than those
underlying our social conduct when we reach maturity, but both require the
capacity to understand the emotions of others, to read signs of pain, fear, disgust,
and joy in their faces [15].

Empathy is the intimate and fundamental potential of socialization, however,
there has been much controversy about the two main but contrastive theories
over the last three decades which try to explain the ability to share emotions.
The ”theory of mind” argues that the development of other views and feelings
can only be conceived with a previous knowledge or other outside appearances.
It is defined by a cognitive determination individually given by experience. In
the early 1990s, Giacomo Rizzolatti and his team discovered the mirror neurons
and its location in the premotor cortex and partly in the cerebral cortex, which
is responsible for the coordination of motion and also in the broca-areal which
is responsible for the development of language. There are obvious reasons to
define a connex between the mirror neurons an its location in brain areas that
are indispensable for the ability to interact socially.

A critical review took place of how one is strongly contagioned by expressed
emotions of others. These neurons seem to have the surprising property of re-
sponding not only when a subject performed a given action, but also when the
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subject observed someone else performing that same action. Gallese, one of Riz-
zolatti’s group members, speculated, that the mirror neurons enable a person to
share intentions, views and goals. However, studies analyzing the correlation of
language and the thinking of the state of mind of others question if the simula-
tion mechanism fulfills also the ascription of emotions notionally. ”This would
mean that people with a damaged amygdala do not recognize fear in the faces
of his fellow-men, nevertheless they often manage to see that fear anyhow,” says
Rebecca Saxe, a assistant professor at the Massachusetts Institute of Technol-
ogy [15]. Other colleges see it differently. Claus Lamm from the University of
Zurich [15]: ”When we observe emotions it is primary about the symphatisation
and not about the attribution of mindsets. Simulation theories employ emotions
and actions, directly observable conditions, for example laughing or tears. ”The
theory of mind” generally examines the understanding of not directly observ-
able conditions.” Kai Vogeley from the University of Cologne says both sides are
right. He differs between conscious thinking about others and prereflexive em-
pathy, where we instantaneously understand others. In other words, the mirror
neurons probably help us so we can intuitively emphasize with somebody, before
we precisely form an imagination of the other person.

In times of growing media technologies an the insertion of attractive meth-
ods to capture clients, the image becomes more and more, what appears to be
rated as a powerful expression to transfer emotions and action. In relation to
our analysis of how people choose faces when they want to maximize security in
internet operations we see how the levels of consciously clarifying expressions of
others and intuitive immediate reactions to them mix together in various indi-
vidual possibilities that appear to develop incomprehensibly. Though, if we look
at social networking websites such as Facebook where users explicitly inform
other users with illustrative material from their own livelihood and social back-
grounds, we assume similarities between faceimages that are displayed (friends,
admired movie stars, etc.) and faces that are picked for passcode identities, as
we are constituted to refer to our images that represent our livelihood. These
images are activators of emotive contexts that rely strongly on self-cumulative
needs that want to be transferred in a interdependent form.

The exchange of selected pictures has become a prestigious way of socializing
and the exclusion of images that could reveal own doubtful stories are commonly
accepted. Therefore, pictures not reflecting on a specific individual coded cog-
nition, are not chosen for safety-purposes. This fact may attract hacker, who
inform themselves about such individual characteristic traits by looking at the
images shown on personal websites. They can be looked upon as fairly reliable
evaluations in order to raise the possibility to find security weaknesses. It is not
yet clear if face-recognition systems do not have similar ”weak spots” compared
to passwords regarding the divulgement of the social surroundings behind pub-
lished pictures of someone. Standard password dictionary used to go into other
systems illegally are as imaginable for graphical passwords. With forty three
muscles we can create more than ten thousand face expressions but only a few
of them are seen regularly, foremost expressions that show our basic emotions
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like fear or happiness. Unconsciously created Microexpressions may be a way of
diminishing the vulnerability when choosing face images for authentication, as
it is even more difficult to describe faces that seemingly express a ”hidden look”.

2.2 A Simple Dictionary Attack

Assume that the adversary has collected a pool of pictures that can be related
to the subject whose graphical password should be identified. Such a pool can be
constructed from social networking sites, such as Facebook (www.facebook.com),
Twitter (www.twitter.com), MySpace (www.myspace.com) and many more; per-
haps also photosharing websites like Flickr (www.flickr.com), for instance. A
general purpose dictionary of pictures of people that are familiar to many per-
sons may for instance be constructed using celebrity pictures that can be found
via the image search feature of most of the popular search engines. A standard
remedy against dictionary attacks are retry counters locking the login mask after
a small numbers of failures.

It has been demonstrated that such sites can be exploited for automated
social engineering [16], so using the same technology for collecting photos appears
as an easy next step. A simple attack strategy is matching pictures from the
login challenge screen with those in the dictionary. If strong similarities can be
identified, then those pictures can be chosen for a trial login. If less pictures can
be recognized than are in the dictionary, then the remaining ones have to be
chosen on another basis; perhaps without any help in the worst case. Doing the
matching is a challenge by itself, but can be done.

Many digital cameras sold nowadays are able to recognize faces quickly in
order to properly set the focus of the camera. Such algorithms (see [17, 18]) can
equally well be used for extracting faces from pictures of groups of people, or
from pictures where the person is not the major content of the photograph.
Several algorithms for matching pictures against each other are available in the
computer vision literature (see [19]). Calculating similarity between images is a
highly nontrivial task, as rotation (of the picture, as well as the person shown in
the picture), can introduce severe difficulties. Nevertheless, similarity estimates
can be obtained automatically, as has been demonstrated in the cited literature.
We are basically concerned with the information-theoretic quality of passwords,
leaving out the details of image processing here.

3 Entropy of Face-Recognition Challenges

In his seminal paper [20], C. Shannon introduced entropy as a measure of un-
certainty of choices. In our case, this will be the choice of (password-)pictures
from a given pool. Similarly as for alphanumeric passwords, where entropy mea-
sures the uncertainty of choice from the set of possibilities, graphical password
selection too enjoys various degrees of freedom. Our model will upper bound
the Shannon-entropy of the probability distribution modeling the selection of
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a graphical password, thus yielding a natural measure of quality that is inter-
pretable and comparable to standard measures. Before giving the model in sec-
tion 3.1, we briefly introduce the entropy concept for convenience of the reader.

Shannon constructed the entropy H of a given probability distribution in or-
der to satisfy three conditions [20]: First, H is nonnegative and continuous. Sec-
ond, H strictly increases with the number of choices, if each of them is equiprob-
able. Third, if a choice can be decomposed into several sub-choices, then the
overall entropy is the sum of the first choice’s entropy, plus the weighted sum of
each subsequent choice’s entropies, where the weight is the probability of facing
that choice. We will extensively use that property in section 3.1.

Shannon proved [20, Theorem 2] that the only function satisfying all three
requirements is of the form H(p1, . . . , pn) = −K

∑n

i=1 pi log(pi), with the con-
vention that 0 log 0 = 0 and K being any positive constant. A common choice
for K is such that the logarithm is to the base 2, giving the entropy in bits. We
will implicitly assume this throughout the remainder of this work.

It is well known that entropy is maximized for the uniform distribution, in
which case we have H(1/n, . . . , 1/n) = logn, and minimal for any degenerate
distribution (i.e. point mass) making H vanish. To measure the quality of a
password, one identifies the set from which those passwords are chosen, and
calculates the entropy of the distribution from which the passwords are drawn.
Doing some combinatorics to determine the number of possible passwords, the
maximal uncertainty occurs of each of these is chosen with equal probability.
However, this makes remembering the password an almost infeasible task. Us-
ing mnenomics or other tricks to easily remember or derive passwords changes
the shape of the selection distribution into something different from the uni-
form distribution and thus lowers the entropy. If the same password is chosen by
everyone, then there would be no uncertainty and hence zero entropy. Though
counting the number of passwords and calculating the maximum possible en-
tropy is often easy, determining the empirical entropy of passwords is a highly
nontrivial task (see [21] for some figures). In this work, we shall take the first
step for graphical passwords, leaving empirical studies subject of future research
and follow-up papers. For existing field trials, see [9].

3.1 Upper-Bounding the Entropy

We seek a measure of uncertainty that resembles the way in which the qual-
ity of passwords is measured by Shannon entropy. Passwords are most easily
remembered when they are words or somehow constructed from mnemonics.
Following that idea, assume that memorability of faces is supported by drawing
them from the pool of familiar faces in one’s mind. Assuming further that many
of those are available on social networking sites (Facebook, Twitter, etc.) or
public photo-sharing (flickr.com, etc.). Let us introduce a probability for having
chosen one face that the adversary could locate on the internet. This probabil-
ity, along with the probability of actually having photographs on the internet,
helps setting up a decision tree (cf. figure 1). We will upper-bound the entropy
of the resulting probability distribution in the following, yielding a theoretical
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limit of the entropy of graphical passwords, similar as this can be done for pass-
words. Throughout the remainder of this work, except where stated otherwise,
we assume that the authentication system is insensitive to the order in which
the faces (or images in general) are chosen by the user. This requirement can be
relaxed, as we discuss in section 3.3. The variables for our model are as follows: n
denotes the number of pictures that are found on the web and can be related to
the subject of interest. p is the probability of the subject under attack having no
personalized information (pictures) available on the internet. m is the number
of pictures presented at the login-screen, and k is the number of pictures to be
chosen for login.

h0

h1

h2

h20 h21 h2k

0 1 k

· · ·

d0

d2

d1 d20 d21 d2k

personalized dictionary available?

yes no

how many photos are mnemonics?

Fig. 1. Decision Tree

We give a step-by-step construction of the model, illustrating the idea using
the decision tree displayed in figure 1. The first decision to be made is whether
or not the subject under attack has pictures on the internet that enjoy a relation
or some personal value. The decision d0 has entropy h0. If no, then we follow
the left path, down to the face-recognition authentication with no additional
information. The adversary gets a screen showing m pictures, k of which should
be chosen. This choice d1 has entropy h1. Otherwise, if the internet does provide
some personal photo albums or other pictures that can be related to the subject
under attack, then how many of these have been used when the graphical pass-
word was chosen? Looking at decision d2 (having entropy h2), the user may have
taken 1, 2, . . . , k faces that looked familiar or are otherwise easily remembered.
If none of the photos served as a graphical mnemonic (0), then the information
from the web was worthless, and the entropy for the adversary is the same as
h1, making decision d20 basically identical to decision d1. In each other case,
we count the number of choices left to the adversary, and call the entropies
h21, . . . , h2k. We estimate each of these in the following, recursively combining
them into an overall measure of uncertainty about the graphical password, in
the light of ”Web 2.0” [22].

Lacking precise estimates for the probability p, as well as the probability
distribution on the set of decisions {d20, d21, . . . , d2k}, we can only search for
some upper bound to the entropy. Unfortunately, it will not suffice to choose the
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uniform distribution everywhere in order to maximize the overall entropy, as can
be illustrated using the first decision d0: fix h1 and h2 for the moment, then the
worst case value for p is determined via the following optimization problem:

maximize over p : H(p, 1− p) + ph1 + (1− p)h2

subject to p ∈ [0, 1]

The optimization goal can be simplified to H(p, 1− p) + p(h1 − h2), discarding
the constant additive term h2. As H is differentiable, the optimal p is found by

solving the equation dH(p)
dp

= h2 − h1 for p within the range [0, 1], giving

p∗ =
exp(h1 − h2)

1 + exp(h1 − h2)
, (1)

as the worst-case value for p. Though p is dependent on h1, h2, neither of them
is dependent on p, so we are free to maximize h1, h2 separately. We start with a
look at d2 and its entropy h2. Denote by π = (p0, p1, . . . , pk) the probabilities for
the events that 0, 1, 2, . . . , k pictures have been found in the dictionary obtained
through the internet. The entropy is found as H(p0, p1, . . . , pk) +

∑k

i=0 pih2i,
whereH(p0, p1, . . . , pk) ≤ log(k+1) with equality if π is the uniform distribution,

and
∑k

i=0 pih2i ≤ maxi h2i is trivial because a convex combination of values can
never exceed the maximum term. The latter bound can be further explicated:
suppose that i pictures have been found in the dictionary, then the remaining
k− i pictures are to be chosen from the given m− i pictures on the login screen.
Disregarding the order, this gives

(

m−i

k−i

)

possible choices, so that h2i = log
(

m−i

k−i

)

at most (again, using the fact that the entropy is maximal for the uniform
distribution [20]). The recursive definition of the binomial coefficient through
(

m
k

)

=
(

m−1
k−1

)

+
(

m−1
k

)

≥
(

m−1
k−1

)

, upon induction, instantly yields
(

m−i
k−i

)

≤
(

m
k

)

for all i ≥ 0, so that maxi h2i = h20 = h1 =
(

m

k

)

. Combining the bounds gives

h2 = H(π) +

k
∑

i=0

pih2i ≤ log(k + 1) + log

(

m

k

)

. (2)

Regarding h1, a much simpler consideration tells us that without any dic-
tionary of pictures, we are left with a choice of k pictures from a given set of
m pictures at the login. This gives

(

m

k

)

choices, and the entropy h1 satisfies

h1 ≤ log
(

m
k

)

. Plugging the last inequality as well as (2) into (1) gives (after
simplifying) p∗ = 1

k+2 , as the worst-case value for p. Combining the maximal
values into an overall upper bound for the entropy, we find that

H(p∗, 1− p∗) + p∗h1 + (1− p∗)h2 = H

(

1

k + 2
, 1−

1

k + 2

)

+
1

k + 2
log

(

m

k

)

+
k + 1

k + 2

[

log(k + 1) + log

(

m

k

)]

= log

[

(k + 2) ·

(

m

k

)]

,

after some messy algebra. Concluding all this, let Hpf denote the Shannon-
entropy of a face-recognition based authentication challenge, where k faces are
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chosen from a set of m given images. Then

0 ≤ Hpf ≤ log

[

(k + 2) ·

(

m

k

)]

, (3)

where the lower bound is sharp, because once the secret image sequence is known
to the adversary, the entropy vanishes. The accuracy of the approximation is
dependent on the true shape of the distribution π, as well as the probability
p. Both can only be determined through field trials, and are in turn depending
on what and how many social networking activities the subject participates in.
Hence, giving representative figures on the degree of approximation is beyond
the scope of this work.

The reader may wonder why the parameter n (the number of pictures that
have been obtained from the internet) nowhere appears throughout the whole
analysis. The parameter n would have affected the distribution π that we used
during the investigation of h2 above. The more pictures are available, the more
likely it is that some picture may have reminded the user of a face used for
authentication. Though the number n may enjoy strong influence on the dis-
tribution, its impact vanishes due to the maximization argument that we used.
Concluding that larger dictionaries give better chances to succeed in the au-
thentication appears correct, but interestingly, it has no influence on the overall
maximum entropy of the authentication challenge. This makes inequality (3)
particularly appealing, as its value is solely determined by the parameters of the
authentication challenge, and does not hinge on any unknown quantities.

Notice that the bound (3) can only be attained if the pictures are chosen
such that no personal photograph (obtained from social networking websites)
would provide a clue to the adversary on what pictures are likely to be the right
ones. Furthermore, the probability p of finding such pictures has been optimized
to yield a worst case estimate, so the actual entropy may be lower.

3.2 Example and Comparison

The correct values of p and n are to be determined by empirical studies, being
subject of current and future research. Fortunately, neither of them appears in
the bound (3). Figure 2 displays the upper bound of entropy for the parameter
ranges k = 5, . . . , 8 and m = 16, . . . , 64. This corresponds to login masks dis-
playing a 4 × 4 through 8 × 8-matrix of faces, of which 5 to 8 pictures have to
be chosen. The numbers printed within the contour plot indicate the entropy
measured in bit.

Notice that inequality (3) is only an estimate, and does not account for any
psychological aspects that may have led to different choices. Taking those into
account means deciding upon some faces being more likely chosen than others.
Mathematically, this is expressed by deviating from the uniform distribution to a
more bell-shaped distribution (possibly multimodal). We took this into account
when we asked for the maximum entropy in our previous considerations. The
result we obtained is independent of empirical estimates, and as such can be
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Fig. 2. Contour plot of entropy upper bound for various parameters k,m

taken as a theoretical limit to the power of face-recognition based authentication
in terms of uncertainty for an adversary.

Let us compare the graphical face-recognition based authentication to a stan-
dard password authentication: assume that a password is chosen from the set of
letters (case-sensitive), as well as numbers and 5 special characters. The password
is required to contain at least 6 symbols, one of which must be a number, and
one must be a special character. Doing the combinatorics, we find that the num-
ber of passwords with 6 characters is N = 30226681500, giving ⌈log2 N⌉ = 35
bit entropy at best (notice that the true value will be smaller due to mnemonics
used to choose and correctly recall the password later). On the contrary, a face-
recognition authentication challenge asking for 8 pictures to be selected from a
8× 8-matrix on the login screen has about 34 bit of entropy at most. It follows
that, in this example, passwords are still superior to the graphical password
approach, because the entropy is most easily increased by different password
policies (simply set the length to 8 characters with the same constraints to get
more than 60 bit of entropy), while the face-recognition authentication enjoy less
degrees of freedom to do that. One way out of this dilemma, however, is to make
the authentication order-sensitive (i.e. the order in which faces are selected by
the user matters), so that additional uncertainty is introduced. We consider this
in future research, and briefly discuss the alter model below.

A standard PIN challenge (found at most ATMs) would ask for, say 5, digits
out of ten, giving log(105) ≈ 17 bit of entropy. Doing the same with a face-
recognition challenge presenting 25 images, 5 of which shall be selected, the
entropy comes to ≤ 19 bit. The true advantage, however, is the resilience against
shoulder surfing, because memorizing a PIN by looking over one’s shoulder is
much easier than memorizing a sequence of faces.

3.3 Variations of the Model

Inequality (3) can as well be used with more than a single source when we
consider a joint source of pictures being composed of the websites that a user
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most frequently visits. Such information can easily be obtained using Cookies,
as is common practice.

Another interesting variation is achieved by letting the graphical password
challenge account for the order in which the pictures are clicked by the user. This
introduces additional uncertainty in the overall process, as even if some photos
can be identified as similar to the given pictures, the order in which those are
to be clicked remains unknown. The above calculations can straightforwardly be
carried out by replacing the binomial coefficient

(

x

y

)

by y!
(

x

y

)

, which accounts

for the order too. In addition, to each h2i (for i = 0, 1, 2, . . . , k) one needs to
add the uncertainty about the permutation, which is log(k! ), if the graphical
password is composed of k pictures.

4 Conclusion

We presented an information-theoretic approach to measuring the quality of
face-recognition based authentication challenges. As being developed to be an
alternative to standard password authentication, graphical passwords call for
a measure of quality that make them comparable to standard authentication
mechanisms. As it turns out, upper bounds to the entropy can be derived with-
out empirical knowledge. The derivation of the upper bound (3) indicates that
this one might be crude, and could be improved upon empirical studies. These
in turn may lead to more complicated, but tighter bounds on the true quality of
a graphical password authentication. Psychological aspects, such as discussed in
section 2.1 are an important ingredient for constructing a more accurate model.
Nevertheless, the theoretical limit (3) that we obtained here already indicates
some limitations compared to standard password authentication. Considering
the numerical results obtained above, an authentication asking for a selection
of 8 pictures from a pool of 64 only has an entropy of ≈ 34 bit at best. How-
ever, this bound is only valid under worst-case assumptions, including that no
personal photograph obtainable for the adversary gives any clues for the au-
thentication challenge. As far as our results indicate, a face-recognition based
authentication (in a simple form) is not an attractive alternative to standard
passwords authentication.
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