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Abstract. steganography of images based on the use of the LSB (Least
Significant Bit), SPA (Sample Pair Analysis), RS (Regular and Singu-
lar groups) method and DIH (Difference Image Histogram) method are
three powerful steganalysis methods. A comparison analysis among DIH,
SPA, and RS method is discussed, and a comparison of their proofs is
presented. The process of proving includes three parts, and an equiv-
alence relationship proposition is respectively proofed in every section.
This proving offers a theory base for the study of an approach that can
resist these three kinds of steganalysis methods synchronously.

1 Introduction

Steganography is one of the important research subjects in information security
field. As a new art of covert communication, the main purpose of steganography
is to convey messages secretly by concealing the very existence of messages under
digital media files, such as images, audio, or video files. Similar to encryption
and cryptanalysis, steganalysis attempts to defeat the goal of steganography. It
is the art of detecting the existence of the secret message. Steganalysis finds
applications in cyber warfare, computer forensics, tracking criminal activities
over the Internet and gathering evidence for investigation. Steganalysis is also
practiced for evaluating, identifying the weaknesses, and improving the security
of steganographic systems.

Among the many steganographic methods involving images, LSB Steganog-
raphy tools are now extremely widespread because of fine concealment, great
capability of hidden message and easy realization. Making the detection of LSB
steganography effective and reliable is a valuable topic for communication and
multimedia security. Presently, there are some powerful LSB steganalysis meth-
ods, such as χ2–statistical analysis[1], SPA method[2][3], RS steganalysis[4][5], DIH
steganalysis[6][7][11] and so on. SPA steganalysis can detected the LSB steganog-
raphy via sample pairs analysis. When the embedding ratio is more than 3%, it
can estimate the embedding ratio with relatively high precision, and the average
estimation error is 0.023. We improved SPA method, and proposed a more ac-
curate LSB steganalysis method, called LSM (least square method) steganalysis
in paper [8].

RS method, suitable for color and gray-scale images, is based on the number
of the regular group and the singular one, and constructs a quadratic equation.



The embedding ratio of message in image is then estimated by solving the equa-
tion. This method can accurately estimate the length of the embedded messages
when they are embedded randomly. An improved RS method based on dynamic
masks is present in paper [9], which dynamically selects an appropriate mask for
each image to reduce the initial deviation, and estimates the LSB embedding
ratio more accurately. In addition, Andrew D. Ker [10] estimated the reliabilities
of RS and SPA through a large number of experiments, and proposed some good
improvement measures.

T. Zhang et al. [6][7][11] introduced a steganalytic method for detection of
LSB embedding via different histograms of image, named DIH method. When
the embedding ratio is more than 40% or less than 10%, the result is more
accurate than that of RS method, and the speed of this method is faster.

In this paper, an equivalence analysis among DIH, SPA and RS method is dis-
cussed, and an equivalence proving of these three kinds of methods is presented.
The proving process includes three parts, and three propositions are respectively
proofed in these parts.

2 Principle of DIH, SPA, and RS Method

In this section, we simply describe the principle of DIH, SPA and RS method as
a base of the equivalence proving.

2.1 Principle of DIH Method

A digital image can be represented by a set of pixels s1, s2, · · · , sN , where the
index corresponds to the position of each pixel, and s̃k denotes the pixel adjacent
to sk (we consider adjacency in both dimensions, even though the indexes are
not sequential). T. Zhang et al.[11] defines the pixel sets as follows:

Hn = {sk|sk − s̃k = n, k = 1, 2, · · · , N, 0 ≤ n ≤ 255} (1)

G2m = {sk|int (sk/2)− int (s̃k/2) = m, k = 1, 2, · · · , N, 0 ≤ m ≤ 127} (2)

where int (x) is the maximal integer that are not larger than x. Based on the re-
lationship between G2m andHn, the following partition of G2m can be obtained:

G2m = A2m−1 ∪H2m ∪B2m+1 (3)

where
8<
:

A2m−1 = H2m−1 ∩ G2m = {sk|sk ∈ G2m, sk mod 2 = 0, s̃k mod 2 = 1, k = 1, · · · , N}
H2m = H2m ∩ G2m = {sk|sk ∈ G2m, (sk mod 2) = (s̃k mod 2), k = 1, · · · , N}
B2m+1 = H2m+1 ∩ G2m = {sk|sk ∈ G2m, sk mod 2 = 1, s̃k mod 2 = 0, k = 1, · · · , N}

.

(4)

Namely, for every sk in A2m−1, there is an adjacent pixels̃k, sk− s̃k = 2m−1,
and int (sk/2)−int (s̃k/2) = m; for every sk in B2m+1, there is an adjacent pixel
s̃k, sk − s̃k = 2m + 1, and int (sk/2)− int (s̃k/2) = m.



Define the transfer coefficient among the difference image histograms as fol-
lows:

a2m,2m−1 = ‖A2m−1‖/‖G2m‖, a2m,2m = ‖H2m‖/‖G2m‖,
a2m,2m+1 = ‖B2m+1‖/‖G2m‖ (5)

where ‖•‖ denotes the cardinality of set •. Forj = 0, ± 1, 0 < a2m,2m+j < 1
ora2m,2m+j = 0, and

a2m,2m−1 + a2m,2m + a2m,2m+1 = 1. (6)

DIH method denotes hm = ‖Hm‖, g2m = ‖G2m‖ and fm as the difference
histograms of the detected image, the image in which after the LSB of every
pixel is set as 0 and the image in which after the LSB of every pixel is flipped.

According to the definition of h2m+1, it is known that h2m+1 comprises of
a2m,2m+1g2m and a2m+2,2m+1g2m+2.A majority of statistical tests show that for
the natural images these two parts make an approximately equal contribution
toh2m+1, i.e.

a2m,2m+1g2m ≈ a2m+2,2m+1g2m+2. (7)

DIH method notes that αm = a2m+2,2m+1/a2m,2m+1, βm = a2m+2,2m+3/a2m,2m−1

and γm = g2m/g2m+2, and makes the statistical hypothesis that satisfies

αm ≈ γm, (8)

For the natural image; but for the stego-images with LSB plane fully embedded,
it satisfies

αm ≈ 1. (9)

Literature [6][11] selects the quadratic polynomial to simulate the relationship
between αm andp, and utilizes four key pointsP1 = (0, γm),P2 = (p, αm), P3 =
(1, 1) and P4 = (2− p, βm) to obtain the estimation equation:

2d1p
2 + (d3 − 4d1 − d2)p + 2d2 = 0 (10)

Whered1 = 1 − γm, d2 = αm − γm andd3 = βm − γm. DIH regards the root
of equation (10) whose absolute value is smaller as the estimate value of the
embedding ratiop.

2.2 Principle of SPA Method

S. Dumitrescu et al.[2] denotes a pair of pixels as a two-tuple(si, sj), 1 ≤ i, j ≤ N ,
where N is the total number of pixels of an image. Then an estimation equation
of the embedding ratio is based on the following important hypothesis:

E {‖X2m+1‖} = E {‖Y2m+1‖} , (11)



where X2m+1 is the multiset consisting of the adjacent pixel pairs, for each
(si, sj) in X2m+1, |si − sj | = 2m + 1 and the even component in X2m+1 is
larger; Y2m+1 is also the multiset consisting of the adjacent pixel pairs, for each
(si, sj) in Y2m+1, |si − sj | = 2m + 1 and the odd component in Y2m+1 is larger.

The other important multisets are defined in paper [2], such as Cm, Dn,
where Cm is the multiset consisting of the adjacent pixel pairs whose values
differ by m in the first b− 1 bits (b is the number of bits to represent each pixel
value) (i.e., by right shifting one bit and then measuring the difference), and Dn

is the multiset that consists of the adjacent pixel pairs whose values differ by
n. The D2m+1 can be partitioned into two submultiset X2m+1 and Y2m+1, and
they satisfy X2m+1 = D2m+1 ∩Cm+1, Y2m+1 = D2m+1 ∩Cm, 0 ≤ m ≤ 2b−1− 2,
and X2b−1 = φ, Y2b−1 = D2b−1.

Considering the estimating precision, the literature [2] uses the hypothesis

E

{∣∣∣∣∣
j⋃

m=i

X2m+1

∣∣∣∣∣
}

= E

{∣∣∣∣∣
j⋃

m=i

Y2m+1

∣∣∣∣∣
}

(12)

to replace (11), and then derives a more robust quadratic equations to estimatep.

2.3 Principle of RS Method

RS method partitions an image into
⌈

N
n

⌉
groups of n adjacent pixels, where N

is the total number of pixels in an image. In [5], the authors considered the case
ofn = 4. A discrimination function f (•) captures the smoothness of a group of
pixels; and, we define three invertible operationsFn (x), n = −1, 0, 1 on a pixelx,
where F1 and F−1 are applied to a group of pixel values through the mask M
and−M . MaskM , an n-tuple with components 0 and 1, specifies where and how
pixel values are to be modified;−M is the n-tuple with the minus components
ofM ,for example, ifM = (1, 0, 1, 0), then −M = (−1, 0,−1, 0). Given a mask,
operations F1 andF−1, and the discrimination functionf , a pixel group G can
be classified into one of the three categories described below:

G ∈ R(M) ⇔ f(F (G)) > f(G)

G ∈ S(M) ⇔ f(F (G)) < f(G)

G ∈ U(M) ⇔ f(F (G)) = f(G) (13)

WhereR(M), S(M) and U(M) are respectively called Regular, Singular, and
Unusable Groups. RS method is based on the statistical hypothesis that when
no message is embedded in an image, the following equations hold:

E{‖R(M)‖} = E{‖R(−M)‖} (14)

E{‖S(M)‖} = E{‖S(−M)‖}. (15)

RS method builds a quadratic equation to estimate the embedding ratio p based
on above-mentioned hypotheses (14) and (15), and the coefficients of the equa-
tion can be obtained by counting the number of Regular and Singular Groups
with mask M and −M in the examined image.



3 Comparison among DIH, SPA and RS Method

In this section, the comparative analysis among DIH, SPA and RS method will
be given to prove their equivalence.

3.1 Equivalence between DIH and SPA Method

Proposition 1: The hypothesis (7) of DIH method is equivalent to the hypoth-
esis (11) of SPA method.

Prove:
From equation (5), the following equations can be obtained:

a2m,2m+1g2m = (‖B2m+1‖/‖G2m‖) ‖G2m‖ = ‖B2m+1‖ ,

a2m+2,2m+1g2m+2 = (‖A2m+1‖/‖G2m+2‖) ‖G2m+2‖ = ‖A2m+1‖ .

Thus, the hypothesis (7) of DIH method can be converted into

‖A2m+1‖ = ‖B2m+1‖ . (16)

From (1), we can denote Hn as a set of pixel sk whose value is larger than that
of an adjacent pixel s̃k byn. And Dn is a set of all pairs of adjacent pixels whose
values differ byn. Thus, the adjacent pixels sk and s̃k whose values differ by n
are the elements of Hn and H−n respectively, and the pixel pairs (sk, s̃k) and
(s̃k, sk) are both the elements ofDn. Therefore, the result ofHn ∪H−n is Dn.

From (2), we can denote G2m as a set of pixel sk whose value is larger
than that of an adjacent pixel s̃k by n in the first b − 1 bits. And Cm is a set
of all pairs of adjacent pixels whose values differ by n in the first b − 1 bits.
So, the above adjacent pixels sk and s̃k are respectively the elements of G2m

andG−2m, and the pixel pairs (sk, s̃k) and (s̃k, sk) are the elements ofCm. Thus,
G2m ∪G−2mequalsCm.

From (4), it follows: denote A2m+1 as a set of pixel sk whose value is larger
than that of an adjacent pixel s̃k by 2m+1 and in the first b−1 bits sk is larger
than s̃k bym+1. And X2m+1 is a set of all pairs of adjacent pixels whose values
differ by 2m + 1 and m + 1 in the first b − 1 bits. Hence, the above adjacent
pixels sk and s̃k are the elements of A2m+1 and A−2m−1 respectively, and the
pairs (sk, s̃k) and (s̃k, sk) are the elements of X2m+1. Thereby, A2m+1∪A−2m−1

is equivalent toX2m+1.
As above, it follows: denote B2m+1 as a set of pixel sk whose value is larger

than that of an adjacent pixel s̃k by 2m+1 and sk is larger than s̃k by m in the
first b − 1 bits. And Y2m+1 is a set of all pairs of adjacent pixels whose values
differ by 2m+1 and m in the first b−1 bits. Therefore, the above adjacent pixels
sk and s̃k are the elements of B2m+1 and B−2m−1 respectively, and the pixel
pairs (sk, s̃k) and (s̃k, sk) are the elements ofY2m+1. Thus, B2m+1 ∪ B−2m−1 is
equivalent to Y2m+1.

If an arbitrarysk belongs to Hn, G2m, A2m+1 or B2m+1, there must be a
corresponding adjacent element s̃k belonging to H−n, G−2m, A−2m−1 or B−2m−1

respectively and vice versa. Consequently, it is held that



‖Hn‖ = ‖H−n‖ , ‖G2m‖ = ‖G−2m‖ ,

‖A2m+1‖ = ‖A−2m−1‖ , ‖B2m+1‖ = ‖B−2m−1‖ ,

That is,

‖Hn‖ =
1
2

(‖Hn‖+ ‖H−n‖) , ‖G2m‖ =
1
2

(‖G2m‖+ ‖G−2m‖) ,

‖A2m+1‖ =
1
2

(‖A2m+1‖+ ‖A−2m−1‖) , ‖B2m+1‖ =
1
2

(‖B2m+1‖+ ‖B−2m−1‖) .

(17)
In brief, DIH and SPA method adopt different means to build estimation equa-
tions: DIH method utilizes the similarity degree αm = a2m+2,2m+1/a2m,2m+1

between A2m+1/B2m+1 and g2m/g2m+2, the ratio between a2m,2m+1g2m and
a2m+2,2m+1g2m+2 in h2m+1, to model the relationship between αm and p; and
SPA method constructs the estimation equation of p through the transform
probability among states that the adjacent pixel pairs belong to before and after
embedding. However, the assumption (7) of DIH method is equivalent to the as-
sumption E {‖Y2m+1‖} = E {‖X2m+1‖} of SPA method in nature. In fact, both
of them are based on the same hypothesis: for an natural image, in the adjacent
pixels differing by2m + 1, their probabilities differing by m or m + 1 are equal.
Consequently, The combination of (7) inm = 0, · · · , j,

∑j
m=i a2m,2m+1g2m =∑j

m=i a2m+2,2m+1g2m+2, namely
∥∥∥∥ j⋃

m=i

A2m+1

∥∥∥∥ =
∥∥∥∥ j⋃

m=i

B2m+1

∥∥∥∥, is equivalent to

the assumption (12) of SPA method.

3.2 Equivalence between DIH and RS Method

Proposition 2: Whenn = 2,m = 0, · · · , 2b−1−2, the hypotheses (14) and (15)
of RS method is equivalent to the combination of hypothesis (7) of DIH method.

Prove:

Whenn = 2, M can be one of the four cases:(1, 0),(0, 1),
(

1
0

)
and

(
0
1

)
.

Consider the case M = (1, 0), the process of prove is as follows.
When M = (1, 0), the pixels sk and s̃k are horizontally adjacent. Two pixel-

sets H00,2m and H11,2m are defined here, both of whichsk is larger than s̃k by 2m.
Furthermore, the LSBs of sk in H00,2m and its adjacent pixel s̃k are both zeros
and the LSBs of sk in H11,2m and its adjacent pixel s̃k are both ones. Applying
M = (1, 0) into the detecting image, all the horizontal adjacent pixel pairs in
the image can be partitioned by two means: R(M)+S(M) andR(−M)+S(−M).

1. If the adjacent pixel pair (sk, s̃k) belongs to R(M), then sk and s̃k are
equivalent, or the larger sk becomes more larger, or the smaller sk becomes
more smaller through applying the operation F1 into sk. Namely, (sk, s̃k)
may be under one of the below cases:



sk > s̃k, if sk mod 2 = 0
sk < s̃k, if sk mod 2 = 1
sk = s̃k

.

Therefore,sk belongs to(
2b−1−1
∪

m=1
A2m−1

)
∪

(
2b−1−1
∪

m=1
A−2m+1

)
∪

(
2b−1−1
∪

m=0
H00,2m

)
∪

(
2b−1−1
∪

m=0
H11,−2m

)
.

Replacing m by m + 1 in the above formula, it follows that(
2b−1−2
∪

m=0
A2m+1

)
∪

(
2b−1−2
∪

m=0
A−2m−1

)
∪

(
2b−1−2
∪

m=−1
H00,2m+2

)
∪

(
2b−1−2
∪

m=−1
H11,−2m−2

)
,

Namely,

(
2b−1−2
∪

m=0
A2m+1

)
∪

(
2b−1−2
∪

m=0
A−2m−1

)
∪H00,0 ∪H11,0 ∪

(
2b−1−2
∪

m=0
H00,2m+2

)
∪

∪
(

2b−1−2
∪

m=0
H11,−2m−2

)
. (18)

If sk belongs to
(

2b−1−2
∪

m=0
A2m+1

)
∪

(
2b−1−2
∪

m=0
A−2m−1

)
∪ H00,0 ∪ H11,0, then

its adjacent pixel s̃k must also belong to
(

2b−1−2
∪

m=0
A2m+1

)
∪

(
2b−1−2
∪

m=0
A−2m−1

)
∪

H00,0∪H11,0 and (sk, s̃k) must be ofR(M). If sk belongs to
(

2b−1−2
∪

m=0
H00,2m+2

)
∪(

2b−1−2
∪

m=0
H11,−2m−2

)
, then (sk, s̃k) must be ofR(M), but s̃k must not be an

element of
(

2b−1−2
∪

m=0
H00,2m+2

)
∪

(
2b−1−2
∪

m=0
H11,−2m−2

)
. Therefore,

‖R(M)‖ = 1
2

(∥∥∥∥2b−1−2
∪

m=0
A2m+1

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

A−2m−1

∥∥∥∥ + ‖H00,0‖+ ‖H11,0‖
)

+
∥∥∥∥2b−1−2

∪
m=0

H00,2m+2

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

H11,−2m−2

∥∥∥∥
(19)

1. If (sk, s̃k) belongs toR(−M), then sk and s̃k are equivalent, or the larger sk

becomes smaller or the smaller sk becomes larger through applyingF1 into
sk. Namely, (sk, s̃k) may be under one of the following cases:sk > s̃k, if sk mod 2 = 1

sk < s̃k, if sk mod 2 = 0
sk = s̃k

,



Similar to i), we can obtain

‖R(−M)‖ = 1
2

(∥∥∥∥2b−1−1
∪

m=0
B2m+1

∥∥∥∥ +
∥∥∥∥2b−1−1

∪
m=0

B−2m−1

∥∥∥∥ + ‖H00,0‖+ ‖H11,0‖
)

+
∥∥∥∥2b−1−1

∪
m=1

H11,2m

∥∥∥∥ +
∥∥∥∥2b−1−1

∪
m=1

H00,2m

∥∥∥∥ .

(20)
The proving process will be specified in Appendix.

1. If (sk, s̃k) belongs to S(M), then (sk, s̃k) may be classified into two cate-
gories: {

sk > s̃k, if sk mod 2 = 1
sk < s̃k, if sk mod 2 = 0 .

Similar to i) and ii), we can prove

‖S(M)‖ =
1
2

(∥∥∥∥2b−1−1
∪

m=0
B2m+1

∥∥∥∥ +
∥∥∥∥2b−1−1

∪
m=0

B−2m−1

∥∥∥∥)
+∥∥∥∥2b−1−2

∪
m=0

H11,2m+2

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

H00,−2m−2

∥∥∥∥ . (21)

1. If (sk, s̃k) belongs to S(−M), (sk, s̃k) may be classified into two classes:{
sk > s̃k, if sk mod 2 = 0
sk < s̃k, if sk mod 2 = 1 .

Similar to i), we can obtain that

‖S(−M)‖ =
1
2

(∥∥∥∥2b−1−2
∪

m=0
A2m+1

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

A−2m−1

∥∥∥∥)
+

∥∥∥∥2b−1−2
∪

m=0
H00,2m+2

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

H11,−2m−2

∥∥∥∥ . (22)

From the definitions of A2m+1, B2m+1, H00,2m and H11,2m, it can be shown that:

if a arbitrary pixel sk belongs to
2b−1−2
∪

m=0
A2m+1,

2b−1−1
∪

m=0
B2m+1,

2b−1−2
∪

m=0
H00,2m+2 or

2b−1−2
∪

m=0
H11,2m+2, then there must be only one adjacent s̃k belonging to

2b−1−2
∪

m=0
A−2m−1,

2b−1−1
∪

m=0
B−2m−1,

2b−1−2
∪

m=0
H00,−2m−2 or

2b−1−2
∪

m=0
H11,−2m−2. Hence∥∥∥∥2b−1−2

∪
m=0

A2m+1

∥∥∥∥ =
∥∥∥∥2b−1−2

∪
m=0

A−2m−1

∥∥∥∥ ,

∥∥∥∥2b−1−1
∪

m=0
B2m+1

∥∥∥∥ =
∥∥∥∥2b−1−1

∪
m=0

B−2m−1

∥∥∥∥ ,

∥∥∥∥2b−1−2
∪

m=0
H00,2m+2

∥∥∥∥ =
∥∥∥∥2b−1−2

∪
m=0

H00,−2m−2

∥∥∥∥ ,∥∥∥∥2b−1−2
∪

m=0
H11,2m+2

∥∥∥∥ =
∥∥∥∥2b−1−2

∪
m=0

H11,−2m−2

∥∥∥∥ . (23)



Based on hypotheses (14) and (15), we can obtain

1
2

(∥∥∥∥2b−1−2
∪

m=0
A2m+1

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

A−2m−1

∥∥∥∥ + ‖H00,0‖+ ‖H11,0‖
)

+
∥∥∥∥2b−1−2

∪
m=0

H00,2m+2

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

H11,−2m−2

∥∥∥∥
= 1

2

(∥∥∥∥2b−1−1
∪

m=0
B2m+1

∥∥∥∥ +
∥∥∥∥2b−1−1

∪
m=0

B−2m−1

∥∥∥∥ + ‖H00,0‖+ ‖H11,0‖
)

+
∥∥∥∥2b−1−2

∪
m=0

H11,2m+2

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

H00,−2m−2

∥∥∥∥
, (24)

and

1
2

(∥∥∥∥2b−1−1
∪

m=0
B2m+1

∥∥∥∥ +
∥∥∥∥2b−1−1

∪
m=0

B−2m−1

∥∥∥∥)
+

∥∥∥∥2b−1−2
∪

m=0
H11,2m+2

∥∥∥∥+∥∥∥∥2b−1−2
∪

m=0
H00,−2m−2

∥∥∥∥ = 1
2

(∥∥∥∥2b−1−2
∪

m=0
A2m+1

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

A−2m−1

∥∥∥∥)
+∥∥∥∥2b−1−2

∪
m=0

H00,2m+2

∥∥∥∥ +
∥∥∥∥2b−1−2

∪
m=0

H11,−2m−2

∥∥∥∥
. (25)

From (23), (24) and (25), it can be further obtained that∥∥∥∥2b−1−2
∪

m=0
A2m+1

∥∥∥∥ =
∥∥∥∥2b−1−1

∪
m=0

B2m+1

∥∥∥∥ . (26)

Usually, when b = 8, the probability of two adjacent pixels differing by 255,
viz.2b − 1, is nearly zero. As a result, (26) can be shown in the following way∥∥∥∥2b−1−2

∪
m=0

A2m+1

∥∥∥∥ =
∥∥∥∥2b−1−2

∪
m=0

B2m+1

∥∥∥∥ . (27)

Accordingly, when M = (1, 0), the assumptions (14) and (15) of RS method are
equivalent to the combination of assumption (7) of DIH method.

In the same way, the equivalence relationship can be proofed when M =

(0, 1),
(

1
0

)
or

(
0
1

)
.

To sum up, when n = 2, m = 0, · · · , 2b−1 − 2, the assumptions (14) and
(15) of RS method are equivalent to the combination of assumption (7) of DIH
method.

3.3 Equivalence between RS and SPA Method

Proposition 3: Whenn = 2, the hypotheses (14) and (15) of RS method are
equivalent to the combination hypothesis

E

{∥∥∥∥∥2b−1−2⋃
m=0

X2m+1

∥∥∥∥∥
}

= E

{∥∥∥∥∥2b−1−2⋃
m=0

Y2m+1

∥∥∥∥∥
}

of SPA method.



Prove:
In section 3.1, the hypothesis (7) of DIH method is equivalent to the hypoth-

esis (11) of SPA method. And in section 3.2, when n = 2, m = 0, · · · , 2b−1 − 2,
the assumptions (14) and (15) of RS method are equivalent to the combi-
nation of assumption (7) of DIH method. Hence, when n = 2, the assump-
tions (14) and (15) of RS method are equivalent to the combination hypothesis

E

{∥∥∥∥∥2b−1−2⋃
m=0

X2m+1

∥∥∥∥∥
}

= E

{∥∥∥∥∥2b−1−2⋃
m=0

Y2m+1

∥∥∥∥∥
}

of SPA method.

From 3.1, 3.2 and 3.3, it can be found that all of three methods depend
on the weak correlation between the LSB plane and the remained bit planes
though the different implementation methods. This weak correlation decreases
with the increase of the embedded message and is represented as the assump-
tion (12). From this section, the assumptions (7) and

∑j
m=i a2m,2m+1g2m =∑j

m=i a2m+2,2m+1g2m+2 in DIH method are equivalent to (11) and (12) in SPA
method; when n = 2, the assumptions (14) and (15) based on RS method equal

to the special example of (12), viz.
∥∥∥∥2b−1−2

∪
m=0

A2m+1

∥∥∥∥ =
∥∥∥∥2b−1−2

∪
m=0

B2m+1

∥∥∥∥. Conse-

quently, it is concluded that DIH, SPA and RS methods are based on the same
kind of hypothesis and are virtually similar.

4 Conclusions

Image steganalysis has attracted the increasing attention recently, and the LSB
steganalysis is one of the most active research topics. SPA, RS and DIH are
three powerful LSB steganalysis methods. In this paper, we make a comparison
analysis among SPA, RS and DIH method, and present an equivalence proving
of them. The proving process includes three parts, and three propositions are
respectively proofed in these sections. This equivalence proving offers a theory
base for the study of an approach that can synchronously resist these three kinds
of steganalysis methods, which we will aim at.
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Appendix

If (sk, s̃k) belongs to R(−M), then sk and s̃k are equivalent, or the larger sk

becomes smaller or the smaller sk becomes larger through applying F1 into sk.
Namely, (sk, s̃k) may be under one of the following three cases:sk > s̃k, if sk mod 2 = 1

sk < s̃k, if sk mod 2 = 0
sk = s̃k

,

Then,sk belongs to(
2b−1−1
∪

m=0
B2m+1

)
∪

(
2b−1−1
∪

m=0
B−2m−1

)
∪

(
2b−1−1
∪

m=0
H11,2m

)
∪

(
2b−1−1
∪

m=0
H00,−2m

)
.

Replacing m by m + 1 in
(

2b−1−1
∪

m=0
H11,2m

)
∪

(
2b−1−1
∪

m=0
H00,−2m

)
of the above

formula, the below formula can be obtained:(
2b−1−1
∪

m=0
B2m+1

)
∪

(
2b−1−1
∪

m=0
B−2m−1

)
∪

(
2b−1−2
∪

m=−1
H11,2m+2

)
∪

(
2b−1−2
∪

m=−1
H00,−2m−2

)
,

viz.(
2b−1−1
∪

m=0
B2m+1

)
∪

(
2b−1−1
∪

m=0
B−2m−1

)
∪H00,0 ∪H11,0 ∪

(
2b−1−2
∪

m=0
H11,2m+2

)
∪

(
2b−1−2
∪

m=0
H00,−2m−2

)
. (28)

If sk belongs to
(

2b−1−1
∪

m=0
B2m+1

)
∪

(
2b−1−1
∪

m=0
B−2m−1

)
∪ H00,0 ∪ H11,0, then its

adjacent pixel s̃k must also be one element of



(
2b−1−1
∪

m=0
B2m+1

)
∪

(
2b−1−1
∪

m=0
B−2m−1

)
∪H00,0 ∪H11,0 and the pixel pair (sk, s̃k)

must be the element of R(−M). If sk belongs to(
2b−1−2
∪

m=0
H11,2m+2

)
∪

(
2b−1−2
∪

m=0
H00,−2m−2

)
, then (sk, s̃k) must belong to R(−M),

but s̃k must not be the element of(
2b−1−2
∪

m=0
H11,2m+2

)
∪

(
2b−1−2
∪

m=0
H00,−2m−2

)
. Therefore, we can obtain the equation

(20),

‖R(−M)‖ = 1
2

(∥∥∥∥2b−1−1
∪

m=0
B2m+1

∥∥∥∥ +
∥∥∥∥2b−1−1

∪
m=0

B−2m−1

∥∥∥∥ + ‖H00,0‖+ ‖H11,0‖
)

+
∥∥∥∥2b−1−1

∪
m=1

H11,2m

∥∥∥∥ +
∥∥∥∥2b−1−1

∪
m=1

H00,2m

∥∥∥∥ .


