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Abstract. We present ongoing work into the systematic study of the use
of dual adjunctions in coalgebraic modal logic. We introduce a category
of internal models for a modal logic. These are constructed from syntax,
and yield a generalised notion of canonical model. Further, expressivity of
a modal logic is shown to be characterised by factorisation of its models
via internal models and the existence of cospans of internal models.
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1 Introduction

The now standard approach to coalgebraic modal logic is through a so called
logical connection - a dual adjunction between two base categories X and A.
The category X represents state spaces, or sets of processes, and the category
A base logics, typically presented as algebras. The standard example is that
of the categories Set and BA, where the latter is taken to represent classical
propositional logics.

To these are added transition structures and modal operators. The modal
operators, added to the base logics, aim to capture the dynamics of the transition
structures. In choosing the modalities there is often a conflict between fully
capturing the dynamics, and choosing modalities with an intuitive meaning, as
logics with modalities that are hard to understand are unlikely to be adopted.

The transition structures are defined as coalgebras for an endofunctor T on
X, and the modal logics as algebras for an endofunctor L on A. The semantics
are then given by means of a natural transformation. Clearly this is a very
general framework. Our work aims to explore the rich structure of this framework
through the use of categorical techniques.

The first step is to make precise when a T -coalgebra is a model for an L-
algebra, and this requires the notion of a valuation of an L-algebra in a T -
coalgebra. A model then becomes a coalgebra, valuation pair. The models for an
L-algebra form a category, and the structure of this category determines many
of the properties of the modal logic that the L-algebra represents.

The main contribution of this paper is the observation that for each L-
algebra, there is a full subcategory of its category of models that in many cases
determines the logical properties of that L-algebra. These models we call the
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internal models, and as will be seen, they generalise the concept of canoni-
cal models found in Kripke semantics [2]. Like canonical models, they can be
thought of as being constructed from the syntax of the modal logic.

The most important property that an L-algebra can have, is that every model
factors via an internal model. If an L-algebra has this property, then the infor-
mation content of the category of models is contained entirely within the sub-
category of internal models, and the other models need not be considered. This
turns out to be very useful, since if X is wellpowered and certain morphisms are
monomorphisms, then because the category of internal models is thin, its objects
can be partitioned into a collection of equivalence classes that is a set (actually
a poset). Moreover, under similar conditions, and if X has an appropriate fac-
torisation system, the forgetful functor from the category of internal models to
X detects colimits. So if X is cocomplete, wellpowered, and has an appropriate
factorisation system, then the category of internal models is cocomplete, and a
final internal model exists as the coproduct of a representative from each of the
equivalence classes of internal models. This forms the basis of an adjoint functor
theorem between the categories Alg(L) and CoAlg(T ).

The factorisation of models via internal models is shown to follow from the
existence of a factorisation system (E,M) in X, and a condition that essentially
amounts to T preserving M , and a particular natural transformation being com-
ponentwise in M . This is a restatement of [8, Theorem 4.2] and [6, Theorem 4].

In [8,6] this result is used to prove expressivity results for coalgebraic modal
logics. We go beyond this, and show that under certain mild assumptions on the
category X and if T preserves M , then an L-algebra is expressive for its category
of models, if and only if, every model factors via an internal model, and for every
pair of internal models there exists a cospan. This result is a purely categorical
characterisation of expressivity, and provides strong support to the school of
thought that the correct way to formulate expressivity is via cospans, and not
by bisimulation relations represented as spans. This is particularly important
for labelled Markov processes, for which in [3], the authors point out that the
failure of T to preserve weak pullbacks, which is the case for the Giry monad
on measurable spaces, poses a severe difficulty to the construction of such a
bisimulation. In [6] the expressivity result of [3] is recast in our dual adjunction
framework, and we examine it in Example 24 (3) and Example 36 (3).

A general outline of this paper is as follows. In section 2 we recall the category
theoretic notion of a factorisation system. Then in section 3 we explain the dual
adjunction framework in which we work. In section 4 we define what we mean
by a model for a modal logic, and introduce the concept of an internal model.
Then in section 5 we show when colimits of models and internal models exist.
The proofs of these results are relatively straightforward, but long and tedious,
so we restrict our presentation to an outline of the proofs. In section 6 an adjoint
functor theorem is proved as a simple example of the utility of internal models.
Then in section 7 internal models are used to characterise expressivity.
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2 Preliminaries

In what follows we will need to be able to factorise morphisms. The standard
approach to this is via a factorisation system [1].

Definition 1. In a category C, a pair (E,M) of classes of morphisms is called
a factorisation system for C, if the following hold:

1. If e ∈ E, and h an isomorphism in C, then if h ◦ e exists, h ◦ e ∈ E.
2. If m ∈M , and h an isomorphism in C, then if m ◦ h exists, m ◦ h ∈M .
3. C has (E,M)-factorisations; i.e. every morphism f in C factors as f =

m ◦ e, with m ∈M and e ∈ E.
4. C has the unique (E,M)-diagonalisation property; i.e. every commuting

square in C with e ∈ E and m ∈ M , has a unique diagonal d such that the
following commutes

A
e //

f

��

B

g

��

d

~~
C

m
// D

Definition 2. In a category C a factorisation system (E,M) is called proper,
if E is a subclass of the epimorphisms of C, and if M is a subclass of the
monomorphisms of C.

Example 3.

1. In the category Set the obvious factorisation system (E,M), is to take E
to be all the epimorphisms (surjective functions), and M all the monomor-
phisms (injective functions).

2. In the category Top of topological spaces, (Epi, Mono) is not a factorisation
system, however (RegEpi, Mono) and (Epi, RegMono) are. Here, RegEpi is
the class of regular epimorphisms (quotients), and RegMono is the class of
regular monomorphisms (embeddings).

We shall also make use of the following proposition which is a statement of
parts of [1, Propositions 14.6, 14.9].

Proposition 4. Let C be a category with a factorisation system (E,M).

1. Each of E and M is closed under composition.
2. If f ◦ g ∈M and f ∈M , then g ∈M .
3. If f ◦ g ∈ E and g ∈ E, then f ∈ E.

A class of monomorphisms defines a notion of subobject in a category, and it
is often important that for every object in a category its collection of subobjects
is a set. The following definitions are standard [1].
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Definition 5. Given a class M of monomorphisms in a category C we define
the following:

1. An M-subobject of an object A in C is a pair (S,m), where m : S → A is
in M .

2. Two M -subobjects (S,m) and (S′,m′) of A are isomorphic if there exists
an isomorphism h : S → S′ such that m = m′ ◦ h.

3. C is M-wellpowered if no object in C has a proper class of pairwise non-
isomorphic M -subobjects. Here by pairwise non-isomorphic we mean that
any pair of distinct subobjects are non-isomorphic.

Dually, for a class E of epimorphisms we can define an E-quotient object of
an object A as a pair (e,Q), where e : A→ Q is in E. The obvious dual notion
to C being M -wellpowered is that C is E-cowellpowered.

Definition 6. A category C is thin if each homset has at most one element.

Proposition 7. Given a class M of monomorphisms in a category C, the M -
subobjects of an object A form a thin category SubM (A), the objects of which
can be partitioned by isomorphisms into a collection of equivalence classes that
carries a partial order, and if C is M -wellpowered this collection is a set.

3 Dual-Adjunction Framework

Increasingly, the standard approach to coalgebraic modal logic is to formulate it
in a dual-adjunction framework [10,8,6].

A

S

&&
L

%%
X

P

ff T
yy

Briefly this consists of two categories A and X, and two contravariant functors
P and S that form a dual adjunction i.e. there exists a natural isomorphism

Φ : A(−1, P (−2))⇒ X(−2, S(−1))

Such a dual-adjunction is often referred to as a logical connection [12], and
we denote the unit and counit by

ρ : idA ⇒ PS

σ : idX ⇒ SP

The category X represents a collection of state spaces, and a collection of
generalised transition systems is defined on these state spaces as coalgebras for an
endofunctor T . Similarly, the category A represents a collection of base logics to
which modal operators are to be added. These are introduced via an endofunctor
L, and the corresponding modal logics are the L-algebras. The semantics of these
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modal logics is given in two stages. First the dual adjunction gives a semantics
for the base logics in terms of the state spaces, and then secondly, a natural
transformation

δ : LP ⇒ PT

gives the semantics of the modal operators in terms of the transition structures
introduced by T [9,11].

Example 8. Many examples of logical connections have appeared in the litera-
ture. A small sample includes:

1. The logical connection arising from the contravariant powerset functor on
Set, and the ultrafilter construction on the objects of BA [6].

2. Stone’s Representation Theorem arising from taking the clopen sets of the
objects of Stone, and an ultrafilter construction on the objects of BA [10].

3. The logical connection arising from the contravariant powerset functor on
Set, and the filter construction on the objects of MSL (meet semilattices
with top) [6].

4. The logical connection arising from taking the σ-algebra of the objects of
Meas (measurable spaces), and a filter construction on the objects of MSL
[6].

4 Models and Internal Models

The Kripke semantics for modal logic [2] introduces the concepts of frame, valu-
ation, and model, where a model is a pair consisting of a frame and a valuation.
There are obvious generalisations of these notions to coalgebraic modal logic.

Definition 9. Given an L-algebra (A,α) and a T -coalgebra (X, γ), if there ex-
ists a morphism f (not necessarily unique) such that the diagram below com-
mutes, then (X, γ) is called a frame for (A,α), and f is called a valuation of
(A,α) in (X, γ), and the pair is called a model for (A,α).

L(A)
L(f) //

α

��

LP (X)

δX

��
PT (X)

P (γ)

��
A

f
// P (X)

Clearly, if (A,α) is the initial L-algebra then every T -coalgebra is a frame,
but in general this is not the case.
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Remark 10. If we were following the conventions of Kripke semantics for modal
logic [2] we would call every T -coalgebra a frame irrespective of the choice of L-
algebra. We do not do this as we already have a name for such entities - they are
T -coalgebras. Therefore we reserve the name frame for only those T -coalgebras
for which valuations exists, and this necessarily makes the concept of a frame
one that is relative to a choice of L-algebra.

Now, as observed in [12], the logical connection allows every model diagram
in A to be redrawn in X as

X
f[

//

γ

��

S(A)

S(α)

��
SL(A)

T (X)
T (f[)

// TS(A)

δ∗A

OO

where f [ is the adjunct of f , and δ∗ : TS ⇒ SL is defined following [8] as

δ∗ = SLρ ◦ δ[S

where ρ is the unit of the logical connection. Such an f [ we will call a theory
map.

Definition 11 (Models). For an L-algebra (A,α) we define Mod(A,α), the
category of models for (A,α), with objects given by pairs

((X, γ), f : X → S(A))

where (X, γ) is a T -coalgebra, and f is a theory map (as above), and morphisms

g : ((X1, γ1), f1)→ ((X2, γ2), f2)

given by a T -coalgebra morphism g : (X1, γ1)→ (X2, γ2) such that f1 = f2 ◦ g.

In the above definition, the requirement on model morphisms that f1 = f2◦g
arises from the fact that theory maps need not be unique. In simple terms, we
have to ensure that any propositional variables are given interpretations in the
two models that are compatible with the T -coalgebra morphism.

In [4] a similar definition of a category of models for an L-algebra is made,
however this is done in terms of diagrams in A i.e. pairs of T -coalgebras and
valuations. In what follows next we prefer to work in X, but as already noted
above, and first observed in [12], the logical connection allows us to move freely
backwards and forwards between the two definitions. We can make this precise
with the following proposition.
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Proposition 12. The natural transformation δ : LP ⇒ PT defines a functor
P̃ : CoAlg(T )→ Alg(L) given by

P̃ (X, γ) = (P (X), P (γ) ◦ δX)

P̃ (f) = P (f) : P̃ (Z, ξ)→ P̃ (X, γ)

where f : (X, γ) → (Z, ξ), and for each L-algebra (A,α), Mod(A,α) is dually
isomorphic to the comma category ((A,α) ↓ P̃ ).

We are now ready to introduce our key idea. Recall from Kripke semantics
the notion of a canonical model [2]. This is a model of a modal logic constructed
from the syntax itself. The idea is that when trying to prove completeness, by
the way the canonical model is constructed from the syntax, for every formula
that is not derivable, one can find a state that witnesses that the formula is not
valid.

In such a canonical model the possible worlds are the theories of the logic. In
our setup, S(A) is the collection of all possible theories of (A,α), so an obvious
question is when can we construct a model from S(A) i.e. when can we put a
T -coalgebra structure on S(A) such that it becomes a model for (A,α)?

In general this cannot be done, but in [14] conditions are given in the case
of the standard logical connection between BA and Set (Example 8 (1)) for
the existence of a, not necessarily unique, model for the initial L-algebra with
carrier set S(A). From this they derive a strong completeness result.

To illustrate our approach consider a toy example, where the logical connec-
tion consists of functors P and S given by the contravariant powerset functor
on Set, the functors L and T both map every object to the two element set
2, and δX(i) = {i} for i ∈ 2. Then the initial L-algebra is (2, id2), and a fi-
nal T -coalgebra is given by ({{0}, {1}}, γ), where γ({i}) = i. Here it should be
observed that the carrier set of the final coalgebra is clearly a proper subset of
S(2), so our approach is to consider not just models constructed from the whole
of S(A), but to consider models built from subobjects of S(A). In other words,
models where the theory map is a monomorphism.

Definition 13 (Internal Models). Given a class M of monomorphisms in X,
we define the category IntModM (A,α) to be the full subcategory of Mod(A,α)
where the theory maps are in M , and write

G : IntModM (A,α)→Mod(A,α)

for the corresponding inclusion functor.

We parameterise by the class M , as sometimes we require the morphisms of
M to have additional properties, for example, that the members of M are pre-
served by T . In Example 24 (3) the Giry functor does not preserve all monomor-
phisms, but does preserve a particular subclass of them.

Proposition 14. The category IntModM (A,α) is thin, and if for all m ∈ M
δ∗A ◦T (m) is a monomorphism, then the forgetful functor from IntModM (A,α)
to SubM (S(A)) is full.
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Proof. Since the theory maps of internal models are monomorphisms the cate-
gory IntModM (A,α) is thin. For the second part, consider a pair of internal
models I1 and I2, and a morphism g in SubM (S(A)) between the theory maps
of I1 and I2. We have to show that g is an internal model morphism, but this
can be seen to easily follow if δ∗A ◦ T (m2) is a monomorphism, where m2 is the
theory map of I2. ut

At this point we should provide some intuition for the condition on δ∗A◦T (m).
Indeed, in the rest of the paper we shall frequently see the slightly strengthened
condition m ∈M ⇒ δ∗A ◦ T (m) ∈M . The reason for this particular formulation
of the condition is a technical one relating to use of the unique diagonalisation
property of a factorisation system, but we can motivate this choice as follows.

If we consider the logical connection of Example 8 (1) between BA and
Set, and consider the finite powerset functor on Set, then as we shall see in
Example 24 (1), we can choose L to add a finite meet preserving operator �
to each Boolean algebra. Then given an L-algebra (A,α), say the Lindenbaum-
Tarski algebra of the logic S4 (for some set of propositional variables), every
state of an internal model for (A,α) has a distinct theory consisting of the set of
formulae that are satisfied in that state. Informally, 1 the function S(α) can then
be thought of as taking each such theory s, and generating the set of formulae a,
such that �a ∈ s. Since this set is an element in SL(A) it is also an ultrafilter.
The function δ∗A ◦ T (m) therefore sends the set U of successors of a state x, to
the set of formulae satisfied by all x′ ∈ U , and these are precisely those in the
theory of x that are prefixed with the � operator. In this example, the condition
that m ∈ M ⇒ δ∗A ◦ T (m) ∈ M means that in models where each state has a
distinct theory, that for each finite set of possible successors, the set of formulae
that are satisfied by all members of that set is also distinct.

The utility of internal models arises from the observation that in many cases
it is possible to take a model and ”quotient by behavioural equivalence” i.e.
produce a smaller model by identifying states that are behaviourally equivalent.
Such a quotiented model will be an internal model, and we say the model factors
via the internal model.

The above is not very precise as we have not said what we mean by quotient
and behavioural equivalence. This will become clear in Section 7, but first we
make the following definition.

Definition 15. We say a model X in Mod(A,α) factors via the internal
model I in IntModM (A,α) if there exists a morphism g : X → G(I) in Mod(A,α).

It is possible to give very general conditions under which models factor via
internal models. The following proposition is essentially a restatement of [8,
Theorem 4.2] and [6, Theorem 4].

1 The elements of L(A) are actually equivalence classes of elements of A arising from
a free Boolean algebra construction over the underlying meet semilattice of A [10,
Proposition 3.12].
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Proposition 16. If the category X has a factorisation system (E,M) and

m ∈M ⇒ δ∗A ◦ T (m) ∈M

then every model in Mod(A,α) factors via an internal model in IntModM (A,α).

Proof. Consider a model ((X, γ), f) in Mod(A,α). Then by the factorisation
system there exists e ∈ E and m ∈M such that f = m◦ e, and by the definition
of a model, the perimeter of the following diagram commutes

X
e // //

T (e)◦γ
��

I

S(α)◦m
��

ζ

zz
T (I) �

�

δ∗A◦T (m)
// SL(A)

and by assumption δ∗A ◦ T (m) ∈ M , and so by the diagonalisation property of
the factorisation system, there exists a unique ζ : I → T (I) making the diagram
commute.

Thus ((I, ζ),m) is an internal model in IntModM (A,α), and e is the mor-
phism by which ((X, γ), f) factors via ((I, ζ),m). ut

If the category X has a proper factorisation system (E,M), factoring a model
via an internal model, can be viewed as putting a T -coalgebra structure map on
an E-quotient object of the state space of the model. As we will see in Section 7,
this corresponds to quotienting with respect to behavioural equivalence.

We can also note that the construction of models is functorial. To see this,
observe that since δ∗ is a natural transformation, and (g ◦ f)[ = S(f) ◦ g[, that
we have the following proposition.

Proposition 17. For every L-algebra morphism f : (A,α) → (A′, α′) there ex-
ists a functor

Mod(f) : Mod(A′, α′)→Mod(A,α)

((X, γ), g[) 7→ ((X, γ), (g ◦ f)[)

h 7→ h

where h : ((X, γ), g[)→ ((X ′, γ′), g′[).

Can we construct a similar functor between the categories IntModM (A′, α′)
and IntModM (A,α) for such an L-algebra morphism? The answer is yes when-
ever all models in Mod(A,α) factor via an internal model in IntModM (A,α).

Theorem 18. If the category X has a factorisation system (E,M) and

m ∈M ⇒ δ∗A ◦ T (m) ∈M
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then for all L-algebra morphisms f : (A,α)→ (A′, α′) there exists a functor

IntModM (f) : IntModM (A′, α′)→ IntModM (A,α)

((X, γ), g[) 7→ ((I, ζ),m)

h 7→ µ

where h : ((X, γ), g[)→ ((X ′, γ′), g′[), (g ◦ f)[ = m ◦ e, (g′ ◦ f)[ = m′ ◦ e′, and µ
is the unique morphism in IntModM (A,α) such that

X
e // //

e′◦h
��

I � _

m

��

µ

}}
I ′ �
�

m′
// S(A)

Proof. By Proposition 16 ((X, γ), (g ◦ f)[) factors via ((I, ζ),m) with (g ◦ f)[ =
m ◦ e, and ((X ′, γ′), (g′ ◦ f)[) factors via ((I ′, ζ ′),m′) with (g′ ◦ f)[ = m′ ◦ e′.
Then by the diagonalisation property of the factorisation system, there is a
unique µ such that the above diagram commutes, and it is not hard to see that
δ∗A ◦ T (m′) ∈M means that µ is a morphism in IntModM (A,α). ut

5 Colimits in Mod(A,α) and IntModM(A,α)

As we shall see in future sections, one of the most important aspects of the
structure of the categories Mod(A,α) and IntModM (A,α) is the presence,
or otherwise, of colimits. In this section we shall see that in the case of the
category Mod(A,α), the forgetful functor from Mod(A,α) to X creates small
colimits, but that for the category IntModM (A,α), the corresponding forgetful
functor does not. However, under certain additional conditions it does detect
small colimits, but does not necessarily preserve them.

We define the following forgetful functors

U : CoAlg(T )→ X
V : Mod(A,α)→ X
V ∗ : Mod(A,α)→ CoAlg(T )

W : IntModM (A,α)→ X

where V = UV ∗ and W = V G.
To start we state without proof the well known result (see for example [13]

for the case in Set) that the forgetful functor U : CoAlg(T )→ X creates small
colimits.

Theorem 19. The forgetful functor U : CoAlg(T )→ X creates small colimits.

The case for the forgetful functor V : Mod(A,α) → X follows in a similar
fashion, with the additional detail that a theory map must be constructed for
the colimit.
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Theorem 20. The forgetful functor V : Mod(A,α)→ X creates small colimits.

Proof. Consider a small category J and a functor D : J → Mod(A,α), and
suppose that X has colimits of shape J. Then we have that V D has a colimit
(C, φj : V D(j)→ C)j∈J. We now proceed as follows (sketch):

1. Use the functor V ∗ and Theorem 19 to construct a colimiting T -coalgebra
(C,χ).

2. Use the theory maps and the universal property of C to construct a morphism
g from C to S(A).

3. Use the universal property of C to show that there is a unique morphism
from C to SL(A) and that this makes g into a theory map, ((C,χ), g) a
model, and the φj model morphisms.

4. For another cocone of D use the functor V ∗ and the universal property
of (C,χ) to construct a unique mediating morphism to the underlying T -
coalgebra.

5. Use the uniqueness of g to show that the mediating morphism is a model
morphism, and thus ((C,χ), g) is the colimit of D.

It is clear that (((C,χ), g), φj : D(j) → ((C,χ), g))j∈J is the unique cocone for
D that is mapped by V to the colimit (C, φ) of V D. Thus we can conclude that
V creates colimits of shape J. ut

For the category IntModM (A,α) the details are more complicated. The
approach we take is that the colimit is constructed in Mod(A,α), and then the
resulting colimiting model is factored via an internal model using Proposition 16.

Theorem 21. Given an L-algebra (A,α), if the following hold:

1. the category X has a factorisation system (E,M),
2. m ∈M ⇒ δ∗A ◦ T (m) ∈M ,

then the forgetful functor W : IntModM (A,α)→ X detects small colimits.

Proof. Consider a small category J and a functor D : J→ IntModM (A,α), and
suppose that X has colimits of shape J. Then by Theorem 20, the functor GD
has the colimit (((C,χ), g), τj : GD(j) → ((C,χ), g))j∈J in Mod(A,α). We now
proceed as follows (sketch):

1. Use Proposition 16 to factor ((C,χ), g) via an internal model ((I, ζ),m) by
e : ((C,χ), g)→ ((I, ζ),m).

2. For another cocone (((Z, ξ), h), ψj : D(j) → ((Z, ξ), h))j∈J of D there is a
unique mediating morphism µ : ((C,χ), g)→ ((Z, ξ), h) in Mod(A,α).

3. The uniqueness of g means g = h ◦ V (µ), then use the diagonalisation prop-
erty of the factorisation system to construct a unique η : I → Z.

4. Use δ∗A ◦ T (h) ∈M and thus a monomorphism to show that η is an internal
model morphism, and (((I, ζ),m), e◦τj : D(j)→ ((I, ζ),m))j∈J is the colimit
of D.

ut
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6 An Adjoint Functor Theorem

As a simple example to show the utility of the categories IntModM (A,α) we
prove an adjoint functor theorem.

To find a functor S̃ : Alg(L) → CoAlg(T ) that together with P̃ forms a
dual adjunction between Alg(L) and CoAlg(T ) we must show that for every
L-algebra there is a universal morphism to P̃ . But this is the same as requiring
that each comma category ((A,α) ↓ P̃ ) has an initial object.

Theorem 22. If for all L-algebras (A,α) the following hold:

1. every model in Mod(A,α) factors via some model in IntModM (A,α),
2. IntModM (A,α) has a final object,

then there exists a dual adjunction between Alg(L) and CoAlg(T ).

Proof. We are required to show that for any L-algebra (A,α) that ((A,α) ↓ P̃ )
has an initial object. But by Proposition 12 this is the same as requiring that
each Mod(A,α) has a final object.

Consider such a Mod(A,α). By the two premises above, every model in
Mod(A,α) factors via the final object in IntModM (A,α), and since the theory
map of the final internal model is a monomorphism, the morphism from a model
in Mod(A,α) to the final internal model is unique. Thus the final object in
IntModM (A,α) is the final object in Mod(A,α). ut

In the above proof, no explicit use was made of the class M , only that
IntModM (A,α) is a special subcategory of Mod(A,α) - it has a final object,
and for all objects in Mod(A,α) there exists a unique morphism to an object in
IntModM (A,α). Therefore for each L-algebra a different class M of monomor-
phisms could in principle be chosen, but typically the same class would be used
for all L-algebras. Indeed, the choice of M is likely to be driven by the properties
of the base category X and the functor T , as in the following corollary.

Corollary 23. If the following hold:

1. X has a factorisation system (E,M), is M -wellpowered, and has small co-
products,

2. for all L-algebras (A,α) we have m ∈M ⇒ δ∗A ◦ T (m) ∈M ,

then there is a dual adjunction between Alg(L) and CoAlg(T ).

Proof. By Proposition 16, for every L-algebra, every model in Mod(A,α) factors
via an internal model in IntModM (A,α).

Now since X is M -wellpowered, by Proposition 7, the objects of SubM (A)
can be partitioned into a set of equivalence classes. Also by Proposition 14, the
forgetful functor from IntModM (A,α) to SubM (A) is full and IntModM (A,α)
is thin. Therefore the objects of IntModM (A,α) can also be partitioned into
a set of equivalence classes, and since X has small coproducts, by Theorem 21,
the coproduct of a representative from each equivalence class exists. Further,
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since IntModM (A,α) is thin, and between each pair of representatives of an
equivalence class there exists an isomorphism, the injections into the coproduct
yield a unique morphism from each object of IntModM (A,α) to the coproduct.
Thus the coproduct is the final object in IntModM (A,α).

Finally by Theorem 22 we have the result. ut

In most cases, for a particular choice of X, the existence of a factorisation
system, wellpoweredness, and the existence of small coproducts, is well known.
Further, it is often straightforward to show that T preserves M , thus by Proposi-
tion 4, what is left to show is that δ∗ is componentwise in M , and this is typically
where the bulk of the work lies.

Example 24.

1. Example 8 (1): Set clearly satisfies the premises of Corollary 23 with the
usual factorisation system given by surjective and injective functions. Then if
we take T to be the finite powerset functor Pf , and L to be the functor that
adds a finite meet preserving operator � to a Boolean algebra, it is shown
in [6, Theorem 9] that for a natural choice of δ, that δ∗ is componentwise
injective. From this, and that Pf preserves injections, Corollary 23 yields a
dual adjunction between Alg(L) and CoAlg(Pf ).

2. Example 8 (3): Again take Set with the usual factorisation system. This
time take T to be the valuation functor VO of [6, Section 3.1]. This is a gen-
eralisation of the finite powerset, finitely supported discrete subdistribution,
and finitely supported multiset functors. O is a downward-closed subset of a
partially ordered commutative cancellative monoid M , and M also has the
property x ≤ x+ y for all x, y ∈M . Then the valuation functor sends a set
to the set of its valuations in O

VO(X) = {φ : X → O | supp(φ) is finite and
∑
x∈X φ(x) ∈ O}

The analogous generalisation of L in the previous example is KÔ, where Ô
is a dense subset of O, and this functor adds to a meet semilattice an order
preserving modality �o for each o ∈ Ô. It is shown in [6, Theorem 13] that for
a natural choice of δ, that the resulting δ∗ is componentwise injective. From
this, and that VO preserves injections, Corollary 23 yields a dual adjunction
between Alg(KÔ) and CoAlg(VO).

3. Example 8 (4): Since σ-algebras are closed under intersection, Meas is topo-
logical over Set, and since Meas is fibre-small, by [1, Theorem 21.16], Meas
is wellpowered and cocomplete. Also in [6, Section 3.1] it is observed that
morphisms with surjective underlying functions, and morphisms with in-
jective underlying functions and surjective inverse image functions, form
a factorisation system (E,M). Moreover, the Giry functor (or monad) G
is observed to preserve M . For L take K, an instance of KÔ above, for

Ô = Q∩ [0, 1]. Then for a natural choice of δ, it is shown in [6, Theorem 17]
that δ∗ is componentwise in M . From this, Corollary 23 yields a dual ad-
junction between Alg(K) and CoAlg(G).
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7 Expressivity

The notion of expressivity for a coalgebraic modal logic states that two states are
logically equivalent if and only if they are behaviourally equivalent. Here logically
equivalent means ”have the same theory”, and behaviourally equivalent means
”can be identified in a model”, where the identification is by means of coalgebra
homomorphisms.

To investigate expressivity we need to access individual states of objects in
X, so we make the additional assumption:

Assumption 1. The category X is a concrete category [1] i.e. the objects are
sets with some additional structure, and the morphisms have underlying func-
tions. Technically this means we assume there is a faithful forgetful functor from
X to the category Set.

Definition 25. Given two models X1, X2 in Mod(A,α), and states x1 ∈ X1,
x2 ∈ X2, we say x1 and x2 are logically equivalent if

f1(x1) = f2(x2)

where f1 and f2 are the theory maps of X1 and X2 respectively.

Definition 26. Given two models X1, X2 in Mod(A,α), and states x1 ∈ X1,
x2 ∈ X2, we say x1 and x2 are behaviourally equivalent if there exists in
Mod(A,α) a cospan

X1
g1 // X3 X2

g2oo

such that g1(x1) = g2(x2).

Our definition extends the standard definition of behavioural equivalence.
The forgetful functor from Mod(A,α) to CoAlg(T ) yields the usual definition
of behavioural equivalence as a cospan in CoAlg(T ) [9], but in addition, the
forgetful functor to X yields a condition that the theory maps are compatible.
This is because we are working with arbitrary L-algebras, and not just the initial
L-algebra, and is similar to the definition of bisimulation in [2].

We have the following obvious result and definition.

Proposition 27. Given two models X1, X2 in Mod(A,α), and states x1 ∈ X1,
x2 ∈ X2, if x1 and x2 are behaviourally equivalent then x1 and x2 are logically
equivalent.

Definition 28. An L-algebra (A,α) is expressive for Mod(A,α) if for all
models in Mod(A,α), states are logically equivalent if and only if they are be-
haviourally equivalent.

To use internal models to investigate the phenomena of expressivity we must
choose the class M to be a subclass of the class of monomorphisms that have
injective underlying functions. See Example 36 (3) for a case where M is chosen
to be a strict subclass.
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Theorem 29. Given an L-algebra (A,α), and if M is a subclass of the class
of monomorphisms in X that have injective underlying functions, then if the
following hold:

1. every model in Mod(A,α) factors via some model in IntModM (A,α),
2. for every pair I1, I2 in IntModM (A,α) there is a cospan I1 → I3 ← I2 in

IntModM (A,α),

then (A,α) is expressive for Mod(A,α).

Proof. Take any pair of models X1 and X2 in Mod(A,α). Then these factor via
the internal models I1 and I2 respectively, and by assumption there exists an in-
ternal model I3 such that there exists a cospan I1 → I3 ← I2 in IntModM (A,α).
Thus both X1 and X2 factor via I3.

Spelling this out, the models ((X1, γ1), f1) and ((X2, γ2), f2) factor via the
internal model ((I3, ζ3),m3) via T -coalgebra morphisms g1 : (X1, γ1) → (I3, ζ3)
and g2 : (X2, γ2)→ (I3, ζ3) such that f1 = m3 ◦ g1 and f2 = m3 ◦ g2.

Now suppose two states x1 ∈ X1 and x2 ∈ X2 are logically equivalent for
(A,α). Then f1(x1) = f2(x2), which means m3 ◦ g1(x1) = m3 ◦ g2(x2), and since
m3 is injective, g1(x1) = g2(x2), and x1 and x2 are behaviourally equivalent.

The converse direction is given by Proposition 27. ut

In addition to Assumption 1, for several of the results that follow we will
also need to make assumptions about the category Mod(A,α). Whenever we
require these additional assumptions this will be indicated in the premises of the
relevant proposition, lemma, or theorem.

Assumption 2. Given an L-algebra (A,α) the category Mod(A,α) has small
pushouts, a factorisation system (EMod(A,α),MMod(A,α)), and is EMod(A,α)-
cowellpowered, where MMod(A,α) is a subclass of those morphisms in Mod(A,α)
with injective underlying functions, and EMod(A,α) is a subclass of those mor-
phisms in Mod(A,α) with surjective underlying functions.

Note that there is a forgetful functor from Mod(A,α) to Set since X is a
concrete category, and further, since faithful functors reflect monomorphisms
and epimorphisms [1, Propositions 7.37 and 7.44], we have

MMod(A,α) ⊆ InjectMod(A,α) ⊆ monos in Mod(A,α)

EMod(A,α) ⊆ SurjectMod(A,α) ⊆ epis in Mod(A,α)

where InjectMod(A,α) is the class of morphisms in Mod(A,α) with injective un-
derlying functions, and SurjectMod(A,α) those with surjective underlying func-
tions.

Using Assumption 2 we can prove a converse to Theorem 29. The most dif-
ficult part is the proof that expressivity of (A,α) for Mod(A,α) implies that
all models factor via internal models. The reason for this is that, whilst it is
intuitively obvious that since we think of a theory map as having an underly-
ing function it ought to factor via its image, the construction of a T -coalgebra
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structure map on this image need not be straightforward. We therefore need
to ensure that any operations we might perform on a model always result in
another model.

Theorem 30. Given an L-algebra (A,α), and with the following assumptions:

1. the conditions of Assumption 2 hold,

2. the class M of monomorphisms used to define IntModM (A,α) is precisely
the class of morphisms with injective underlying functions,

if (A,α) is expressive for Mod(A,α) then every model in Mod(A,α) factors
via an internal model in IntModM (A,α).

Proof. We proceed as follows:

1. All model morphisms have an (EMod(A,α),MMod(A,α))-factorisation:

Any model morphism g : ((X, γ), f) → ((X ′, γ′), f ′) factors via a model
((I, ζ), f ′ ◦ m), where g = m ◦ e, and e : ((X, γ), f) → ((I, ζ), f ′ ◦ m) is
in EMod(A,α) and m : ((I, ζ), f ′ ◦m)→ ((X ′, γ′), f ′) is in MMod(A,α).

2. Take the pushout of the EMod(A,α)-quotient objects of ((X, γ), f):

Given a model ((X, γ), f), since Mod(A,α) is EMod(A,α)-cowellpowered, the
collection of equivalence classes of EMod(A,α)-quotient objects is indexed by
a set J , and we can therefore take the pushout of a representative from each
equivalence class

∐
<ej>

((Ij , ζj), fj), which by Theorem 20 we can write as

((
∐
<ej>

Ij , ζ), f†) for some ζ and f†. This gives the following diagram

X

f

��

g

$$ej // // Ij
� � mj //

fj

;;
pj

��

X ′
f ′ // S(A)

∐
<ej>

Ij
f†

EE

where any g : ((X, γ), f) → ((X ′, γ′), f ′) factors via a representative of one
of the equivalence classes.

3. Construct a model epimorphism h : ((X, γ), f)→ ((
∐
<ej>

Ij , ζ), f†):

By the definition of a pushout there is a morphism h = pj ◦ej for all j ∈ J in
Mod(A,α). To show that this is an epimorphism we use the fact that the for-
getful functor V : Mod(A,α)→ X reflects epimorphisms. Given any parallel
pair of morphisms u and v in Mod(A,α) where V (u), V (v) :

∐
<ej>

Ij → Y ,
if u ◦ h = v ◦ h, then u ◦ pj ◦ ej = v ◦ pj ◦ ej , but since ej is an epimorphism,
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we must have u ◦ pj = v ◦ pj = qj as in the following diagram

X

h
##

ej // // Ij
qj

##

pj

��∐
<ej>

Ij
u //

v
// Y

Clearly the qj form a cocone for the pushout, so by the universal property
of the pushout u = v, and thus h is an epimorphism.

4. Show h, pj ∈ EMod(A,α) for all j ∈ J :
If we take the (EMod(A,α),MMod(A,α))-factorisation of h in Mod(A,α) given
by e and m, then by the diagonalisation property of the factorisation system,
there exists a unique Mod(A,α) morphism µj for each j ∈ J such that the
following diagram commutes

X
ej // //

e
����

Ij

pj

��

µj

{{
I
� �

m
// ∐

<ej>
Ij

Once again the µj form a cocone for the pushout, so there exists a unique
Mod(A,α) morphism η :

∐
<ej>

Ij → I such that µj = η ◦ pj . Now trivially
idI ◦ e = e, and also η ◦m ◦ e = η ◦m ◦ µj ◦ ej = η ◦ pj ◦ ej = µj ◦ ej = e
so since e is an epimorphism we must have η ◦m = idI . Similarly, we have
id∐

<ej>
Ij ◦ h = h, and m ◦ η ◦ h = m ◦ η ◦ pj ◦ ej = m ◦ µj ◦ ej = pj ◦ ej = h

and since h is also an epimorphism, we must have m ◦ η = id∐
<ej>

Ij . From

this we deduce that m is an isomorphism, and therefore h ∈ EMod(A,α), and
so by Proposition 4, pj ∈ EMod(A,α) for all j ∈ J .

5. Show that f† has an underlying injective function:
Since

∐
<ej>

Ij has an underlying set we can pick a pair of states w1, w2 ∈∐
<ej>

Ij . Now since h ∈ EMod(A,α) is a surjective function, there ex-

ists states x1, x2 ∈ X such that w1 = h(x1) and w2 = h(x2). Thus if
f†(w1) = f†(w2) then f(x1) = f(x2), and by expressivity there must exist a
g : ((X, γ), f)→ ((X ′, γ′), f ′) such that g(x1) = g(x2), and therefore a j ∈ J
such that mj◦ej(x1) = mj◦ej(x2). However, since mj ∈MMod(A,α), we have
that mj is injective, therefore ej(x1) = ej(x2). Thus pj ◦ej(x1) = pj ◦ej(x2),
which implies h(x1) = h(x2), and therefore w1 = w2. Therefore f† has an
injective underlying function.

6. Observe that this makes ((
∐
<ej>

Ij , ζ), f†) an internal model:

Since IntModM (A,α) is defined in terms of precisely those morphisms with
underlying injective functions, the model ((

∐
<ej>

Ij , ζ), f†) is an object in

IntModM (A,α).
ut
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Remark 31. It should be noted that the statement of Theorem 30 requires that
the category of internal models that we consider include all models with an
injective theory map. If we had instead tried to consider only models with theory
maps that are, say, embeddings, Theorem 30 would fail to hold, as expressivity is
not in general a strong enough condition to ensure f† is an embedding (consider
topological spaces where injective continuous functions need not be embeddings).

Corollary 32. Given an L-algebra (A,α), and with the following assumptions:

1. the conditions of Assumption 2 hold,
2. Mod(A,α) has binary coproducts,
3. the class M of monomorphisms used to define IntModM (A,α) is precisely

the class of morphisms with injective underlying functions,

if (A,α) is expressive for Mod(A,α) then for every pair I1, I2 in IntModM (A,α)
there is a cospan I1 → I3 ← I2 in IntModM (A,α).

Proof. Given two internal models I1 and I2, since they are also models their
coproduct exists, and by Theorem 30 the coproduct factors via an internal model,
say I3, and this induces an obvious cospan between I1 and I2. ut

From Theorems 29, 30, and Corollary 32 we obtain our main expressivity
result - an abstract, category theoretic, characterisation of expressivity.

Theorem 33. Given an L-algebra (A,α), and with the following assumptions:

1. the conditions of Assumption 2 hold,
2. Mod(A,α) has binary coproducts,
3. the class Mof monomorphisms used to define IntModM (A,α) is precisely

the class of morphisms with injective underlying functions,

(A,α) is expressive for Mod(A,α) if and only if

1. every model in Mod(A,α) factors via an internal model in IntModM (A,α),
2. for every pair I1, I2 in IntModM (A,α) there is a cospan I1 → I3 ← I2 in

IntModM (A,α).

The conditions of Assumption 2 follow from appropriate conditions on the
category X and the functor T . Indeed, such conditions on X essentially sum-
marise the category theoretic properties of Set that underpin the intuitive un-
derstanding that models with injective theory maps fully capture the notion of
expressivity. This is made precise in the following corollary.

Corollary 34. Given an L-algebra (A,α), and with the following assumptions:

1. X is a concrete category (over Set) that is cocomplete, has a factorisation
system (EX,MX), and is EX-cowellpowered, where MX is chosen to be a sub-
class of those morphisms in X with injective underlying functions, and EX is
chosen to be a subclass of those morphisms in X with surjective underlying
functions,
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2. T preserves MX i.e. m ∈MX ⇒ T (m) ∈MX,
3. the class M of monomorphisms used to define IntModM (A,α) is precisely

the class of morphisms with injective underlying functions i.e. MX ⊆M ,

(A,α) is expressive for Mod(A,α) if and only if

1. every model in Mod(A,α) factors via an internal model in IntModM (A,α),
2. for every pair I1, I2 in IntModM (A,α) there is a cospan I1 → I3 ← I2 in

IntModM (A,α).

Proof. We have to show that the premises of Theorem 33 hold. Firstly we observe
that by Theorem 20 Mod(A,α) is cocomplete.

To show that the factorisation system of X lifts to Mod(A,α) we note that in
[6] it is observed that if T preserves MX, and the members of MX are monomor-
phisms, then the factorisation system of X lifts to CoAlg(T ), and it is easy to
see that this extends to Mod(A,α).

Finally, Mod(A,α) is EX-cowellpowered since the morphisms in EX are epi-
morphisms, and this ensures that given a span in Mod(A,α) where the under-
lying morphisms are in EX, there is an isomorphism between the two so defined
EX-quotient objects in Mod(A,α), if and only if, there is an isomorphism be-
tween the underlying EX-quotient objects in X. ut

The above characterisation of expressivity, whilst providing a neat, element
free definition of expressivity, is not very useful for proving a given L-algebra
is expressive for its category of models. For this we have a direct corollary of
Theorem 29 that generalises [8, Theorem 4.2] and [6, Theorem 4] (they only
consider the initial L-algebra and pairs of states in the same T -coalgebra).

Corollary 35. If given an L-algebra (A,α) the following hold:

1. X is a concrete category (over Set) with binary coproducts, and a factorisa-
tion system (E,M), where M is a subclass of the class of monomorphisms
in X that have injective underlying functions,

2. m ∈M ⇒ δ∗A ◦ T (m) ∈M ,

then (A,α) is expressive for Mod(A,α).

Proof. By Proposition 16 every model in Mod(A,α) factors via an internal
model in IntModM (A,α). Also since X has binary coproducts, by Theorem 21
the coproduct of every pair of objects in IntModM (A,α) exists. So by Theo-
rem 29 we have the result. ut

An examination of corollaries 23 and 35 reveals that with the exception of the
exact choice of the class M , the primary difference is between requiring the base
category X have all small coproducts or just binary coproducts. In most cate-
gories of interest finite cocompleteness usually also means cocompleteness, and
so the existence of a dual adjunction between Alg(L) and CoAlg(T ) essentially
amounts to every L-algebra being expressive for its class of models.
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Example 36.

1. Example 24 (1): Every L-algebra (A,α) is expressive for Mod(A,α).
The category Alg(L) ∼= MA (the category of modal algebras). Thus given a
set of propositional variables, the free modal algebra over that set, quotiented
by a set of axioms, represents a basic modal logic that is expressive for the
image finite transition systems that are models for that logic.

2. Example 24 (2): Every KÔ-algebra (A,α) is expressive for Mod(A,α).
The category Alg(KÔ) is isomorphic to the category of meet semilattices

each with a set of order preserving unary operations of cardinality |Ô|. Thus
if

(a) Ô = O = M = N, the monoid with (0,+), then Alg(KÔ) is isomorphic
to the algebras for the signature {>,∧,♦k}k∈N, where {>,∧} define a
meet semilattice with top, and the ♦k are order preserving. Thus the
conjunction fragment of graded modal logic, over an arbitrary set of
proposition variables and axioms, is expressive for the multi-transition
systems that are models for that logic.

(b) Similarly, if M = (R≥0,+, 0), O = [0, 1], and Ô = Q ∩ [0, 1], then finite
conjunction modal logic, over an arbitrary set of proposition variables
and axioms, with the standard probabilistic modalities, is expressive for
the Markov chains that are models for that logic.

3. Example 24 (3): Every K-algebra (A,α) is expressive for Mod(A,α).
The category Alg(K) is isomorphic to the category of meet semilattices each
with a countable set of order preserving unary operations. Thus a modal logic
with finite conjunctions and probabilistic modalities, over an arbitrary set
of propositional variables and axioms, is expressive for the Markov processes
that are models for that logic.

These examples are generalisations of the results in [6] to arbitrary L-algebras,
not just the initial L-algebra, and thus in particular to modal logics with propo-
sitional variables and additional axioms. The results of [6] can be retrieved by
taking the intitial L-algebra, and then every T -coalgebra can be made into a
model via a unique choice of theory map (forced by initiality).

8 Conclusions and Future Work

We have introduced internal models for a modal logic, and shown their utility for
exploring properties of a logic. Indeed, it should be noted that with the exception
of the proofs of the existence of colimits in Mod(A,α) and IntModM (A,α),
and the proof that expressivity implies that models factor via internal models,
the proofs using internal models are relatively short. Most of the structure of
Mod(A,α) is related to whether models always factor via internal models.

The category IntModM (A,α) is not yet fully understood, and indeed, an
obvious question is that, given that internal models can be thought of as gen-
eralisations of the canonical models of Kripke semantics, do internal models
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have anything to say about completeness? To answer this will require a sys-
tematic treatment of the different possible notions of semantic consequence that
can be defined for the coalgebraic semantics of modal logics - local/global, and
frame/model.

Several authors have used enriched categories in their work on coalgebras
[5,7], and an interesting question is how much of the work of this paper will
translate to the enriched setting, and what new phenomena can be addressed
in such an enriched framework? Some preliminary work towards answering this
question has been started.
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