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Abstract. We discuss the use of relation lifting in the theory of set-
based coalgebra. On the one hand we prove that the neighborhood func-
tor does not extend to a relation lifting of which the associated notion
of bisimilarity coincides with behavorial equivalence.

On the other hand we argue that relation liftings may be of use for many
other functors that do not preserve weak pullbacks, such as the monotone
neighborhood functor. We prove that for any relation lifting L that is a
lax extension extending the coalgebra functor 7" and preserving diagonal
relations, L-bisimilarity captures behavioral equivalence. We also show
that if T is finitary, it admits such an extension iff there is a separating
set of finitary monotone predicate liftings for 7.
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1 Introduction

There are at least two reasons why the notion of relation lifting plays an impor-
tant role in the theory of (set-based) coalgebras: to characterize bisimulations,
and to define the semantics of Moss-type coalgebraic logics. In both cases, coal-
gebraists generally have the Barr extension T in mind, which, for a functor T
and a relation R C X x Y, is the relation given by

TR := {(Trx(p),Try(p)) e TX xTY | p€ TR},

where 7x : R — X and my : R — Y are the two projections. This relation
lifting characterizes a bisimulation between two coalgebras £ : X — TX and
v:Y — TY as arelation R C X x Y such that (£(z),v(y)) € TR whenever
(x,y) € R. It is well-known, however, that these applications only work properly
in case the functor T satisfies the category-theoretic property of preserving weak
pullbacks. The key observation here is that T distributes over relation composi-
tion iff T' preserves weak pullbacks. As an example, the above characterization
of bisimilarity only coincides with that of behavioral equivalence (that is the
relation of identifiability of two states by morphisms sharing their codomain) if
T has this property. For this reason relation liftings are often thought to be of
interest only in a setting of coalgebras for a weak pullback preserving functor.
On the other hand, the monotone neighborhood functor M is an important
example of a coalgebra functor which does not preserve weak pullbacks, but
which has a relation lifting M that is essentially different from the Barr extension
M and whose notion of bisimilarity exactly captures behavioral equivalence [4].



2 Johannes Marti and Yde Venema

And recently it has been shown that this notion of relation lifting can also be
used to define the semantics of a Moss-style coalgebraic modality [15].

For this reason we study the notions of relation lifting that can be associated
with a set functor T from a more general perspective. Here we take a relation
lifting for a set functor T to be a collection of relations LR for every relation
R, such that LR CTX xTY if R C X x Y (in the sequel we will give a more
precise definition). Such studies have already been undertaken in the past. In [18]
Thijs introduced a class of relation liftings, which he calls ‘relators’, to generalize
different notions of coalgebraic simulation. Later, Baltag used Thijs’ framework
in [2] to give a semantics for the coalgebraic cover modality nabla. In [7] Hughes
and Jacobs defined a generalization of the Barr extension for functors that carry
an order. Very recently, Levy investigated the relation between the concept of
similarity given by a relation liftings and final coalgebras [11].

In this paper, which forms part of the MSc thesis [12] authored by the first
author and supervised by the second, we focus on the question when such a
relation lifting captures behavioral equivalence, in the sense that L-bisimilarity
(defined in the obvious way) coincides with behavioral equivalence for any pair
of T-coalgebras. Our work concerns similar notions as Levy’s paper [11]. The
difference is that whereas Levy looks for endofunctors in some suitable order-
category such that the notion of behavioral equivalence for its coalgebras (in
his case: identification in the final coalgebra) coincides with similarity for a fixed
relation lifting, we go the other way round and try to find relation liftings, whose
notion of bisimilarity captures behavioral equivalence for a fixed functor.

Our main results can be summarized as follows. On the negative side, we
prove that there is no way to capture behavioral equivalence between coalgebras
for the (arbitrary) neighborhood functor A/ by means of relation lifting (The-
orem 2). On the other hand, an important notion studied here is that of a lax
extension of a functor T' [17]. We will see that if such a lax extension preserves
diagonals, then it captures behavioral equivalence indeed (Theorem 1) — this
takes care of all cases known to us. Furthermore, we will provide some additional
evidence that this combination of properties (lax extension preserving diagonals)
is a natural one: in Theorem 3 we will prove that any finitary functor 7" has such
an extension iff it admits a separating set of finitary monotone predicate liftings,
a notion that is familiar from the theory of coalgebraic modal logic [13].

2 Preliminaries

In this paper we presuppose knowledge of the theory of coalgebras [14]. We recall
some of the central definitions in this section, mainly to fix the notation.

2.1 Relations

In the following we consider relations to be arrows in the category of sets and
relations. That is, we think of a relation R : X - Y between sets X and Y as
not just a subset of X x Y but as also specifying its codomain X and domain
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Y. Nevertheless, we often write R =R, RC R, RUR,RNR : X - Y or
(z,y) € R as if the relations R, R’ : X + Y were sets. We use R9" C X x Y if
we want to make explicit that we mean the set of pairs, considered as an object
in the category of sets and functions, that stand in a relation R: X - Y.

We write R; S : X + Z for the composition of two relations R : X + Y,
S:Y -+ Z,and R° : Y + X for the converse of R : X + Y with (y,z) € R°
iff (z,y) € R. The graph of any function f : X — Y is a relation f : X + Y
between X and Y for which we also use the symbol f. It will be clear from the
context in which a symbol f occurs whether it is meant as a arrow in the category
of sets and functions or an arrow in the category of relations. The composition
of relations is written the other way round than the composition of functions.
So we have for functions f: X - Y andg:Y — Zthat gof=f;g.

Identity elements in the category of sets and relations are the diagonal rela-
tions Ax : X + X with (x,2') € Ax iff © = 2. Note that Ax = idx, if we
consider the identity function idx : X — X as a relation.

2.2 Set Functors

In the following we assume, if not explicitly stated otherwise, that functors are
covariant endofunctors in the category of sets and functions. A functor T is
finitary if it satisfies for all sets X:

TX = U{TLX',X[TX/] CTX| X' CX, X is finite} .

The idea behind this definition is that finitary functors have the property that
in order to describe an element £ € T'X one has to use only a finite amount of
information from the possibly infinite set X.

We now introduce some of the functors that we are concerned with in this
paper. The powerset functor P maps a set X to the set of all its subsets PX.
A function f: X — Y is sent to Pf : PX — PY,U > f[U]. The contravariant
powerset functor P also maps a set X to PX = PX. On functions P is the inverse
image map, that is for an f: X — Y we have Pf: PY — PX,V — vy

The neighborhood functor or double contravariant powerset functor N' = PP
maps a set X to VX = PPX and a function f: X — Y toNf = PPf: NX —
NY or more concretely for all £ € N X = PPX we have

N ={veY|flVleg}.

For any cardinal « there is an a-ary variant “N of N that maps a set X to
YN X = P((PX)®). This means that the elements of “A’ X are sets of a-tuples
of subsets of X. For an object U € (PX)* we write Upg for U(f) that is the §-th
component of U. So if « is a finite number, that is @« = n € w, then then we
have that U = (Up,Us,...,U,—1) for U € £. A function f : X — Y is mapped
by “N to N f : “N' X — ®N'Y such that for all £ € *N' X = P((PX)®)

NfE) ={V e (PY)* | (f ' [VsDpea € &} -
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A restriction of the neighborhood functor A is the monotone neighborhood
functor M. It maps a set X to the collection MX of objects £ in N'X that are
upsets, meaning that for all U, U’ C X, if U’ C U and U’ € £ then also U € &.
On functions M is the same as N. So we have for f: X — Y that

Mf: MX —- MY,
E={VCeY|fiv]iee.

It is straightforward to check that this is well-defined. There is also an a-ary
version *M of M that is defined analogously to “N where the monotonicity
requirement becomes that if U/; CUg for all € aand U' € £ then also U € €.
The next two functors F and P, are interesting examples for us, because
they, like the monotone neighborhood functor, do not preserve weak pullbacks
but still allow for a relation lifting that captures behavioral equivalence.
The functor F3 maps a set X to

F23X = {(3307.%‘1,1‘2) S X3 | ‘{x07.’L‘1,I2}| < 2}

the set of all triples over X that consist of at most two distinct elements. On
functions the functor F3 is defined exactly as (—)3, that is a function f: X — Y
is mapped by F3' such that F3 f(zo, x1,22) = (f(20), f(21), f(22)).

The restricted powerset functor P, for an n € w maps a set X to the set
PpX ={U C X | |[U| < n} of all its subsets of cardinality smaller than n. On
functions it has the same definitions as P, that is P, f(U) = f[U].

2.3 Coalgebras

A T-coalgebra for a covariant functor T' on a set X is a function £ : X — TX.
The elements of X are called the states of £ and the function £ is called the
transition structure. A T-coalgebra morphism from a T-coalgebra £ : X — TX
to a T-coalgebra ( : Z — T'Z is a function f: X — Z such that (o f =T fo¢.

The T-coalgebras together with the T-coalgebra morphisms are a category
where the identity arrows, and composition of arrows is the same as for the un-
derlying set functions. This category is cocomplete and all colimits are computed
as for the underlying sets.

The central notion of equivalence between states in coalgebra is behavioral
equivalence. Two states, zo in a T-coalgebra £ : X — T X and yq in T-coalgebra
v:Y — TY, are behaviorally equivalent if there exists a T-coalgebra ¢ and
coalgebra morphisms f from £ to ¢ and ¢ from v to ¢ such that f(zg) = g(yo).

2.4 Predicate Liftings

A notion from coalgebraic modal logic that we are using later are predicate
liftings. Predicate liftings for a functor 7" were originally introduced in [13], but
see also [16], to define a modal logic for T-coalgebras that resembles the standard
modal logic with boxes and diamonds on Kripke frames.
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An n-ary predicate lifting for T is a natural transformation A : P = PT.
The transposite \° : T = "N = PP™ of predicate lifting A for a functor T is a
natural transformation that is defined at a set X as

Ny i TX — "N X =P(PX)",
¢ {U e (PX)" [ €€ Ax(U)}.

An n-ary predicate lifting A : Pr = PT is monotone if U; C U! for alli e n
implies that A(U) € A(U") for any U,U’ € (PX)™. The following observation is
crucial for the proof of Theorem 3. The routine proof is left to the reader.

Proposition 1. If ) : P = PT is a monotone n-ary predicate lifting for T
then the codomain of its transposite X’ : T = "N can be restricted to "M. That
means X’ : T = "M defined as above is well-defined.

To avoid tiresome compatibility issues when dealing with the transposites
of multiple monotone predicate liftings of possibly different finite arity one can
compose them with the componentwise injective natural transformation e” :
"M = “M defined by

ey "MX - “MX |
£ {U e (PX) | (Up,Us,...,Up_q) €€} .

We just write eo X’ : T'= “M for " o \’, where n € w is the arity of .

A family F of functions from X to Y is jointly injective if given any x, 2’ € X
we have that f(x) = f(a') for all f € F implies that © = z’. A set A of
monotone predicate liftings for a functor T is separating if the set of functions
{eoX: TX — YMX}rca is jointly injective at every set X. Intuitively a set of
natural transformations for a functor 7' is separating if it is expressive enough
to recognize every difference between elements in T'X.

2.5 Relation Liftings and Bisimilarity

Fix a covariant set functor T'. A relation lifting L for T is a collection of relations
LR :TX - TY for every relation R : X + Y. Throughout this paper we shall
require relation liftings to preserve converses, this means that L(R°) = (LR)°
for all relations R. This restriction simplifies the presentation and is not essential
for our results because behavioral equivalence, the notion we want to capture
with relation liftings, is symmetrical.

Given a relation lifting L for a set functor T" and two T-coalgebras ¢ : X —
TX andv:Y — TY, an L-bisimulation between £ and visarelation R: X + Y
such that (£(z),v(y)) € LR for all (x,y) € R. The relation =f : X - Y of
L-bisimilarity between ¢ and v is defined as the union of all L bisimulations
between ¢ and v. We sometimes omit the subscripts and just write 2 < y
if the coalgebras = and y belong to are clear from the context. We also write
<:>5L = ﬁég : X + X for bisimilarity on one single coalgebra ¢ : X — TX.

A relation lifting L for T captures behavioral equivalence if for any states x
and y in T-coalgebras we have x <L y iff z and y are behaviorally equivalent.
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3 Lax Extensions

In this section we introduce lax extensions. These are relation liftings satisfying
certain conditions that make them well-behaved in the context of coalgebra. We
summarize some general properties of lax extensions and show that they capture
behavioral equivalence if they preserve diagonals. For some additional discussion
of lax extensions, although in a different context, we refer to [17]. For more about
the general 2-categorical concept of a lax functor consult [8].

Definition 1. A relation lifting L for a functor T is a lax extension of T if it
satisfies the following conditions for all relations R,R' : X -+ Z and S : Z + Y,
and functions f : X — Z:

(L1) R’ C R implies LR’ C LR,
(L2) LR;LS C L(R;YS),
(L3) Tf C Lf.

A lax extension L preserves diagonals if it additionally satisfies:
(L4) LAX Q ATX'

Condition (L3) in [17] additionally requires that (7'f)° C L(f°). For us this
follows automatically from the preservation of converses.

Only one inclusion is needed in (L4) for a lax extension to preserve diagonals.
This is enough because, as shown in Proposition 2 below, condition (L4) implies
together with condition (L3) that LAx = Arx.

Remark 1. In [7] a generalization of the Barr extension is defined with the name
‘lax relation lifting’. This lax relation lifting is in general not a lax extension in
our sense, even if we would not require preservation of converses, because it does
not satisfy (L2). The lax relation lifting of [7] always satisfies LR; LS O L(R;S)
which is exactly the condition that distinguishes lax extension that preserve
diagonals from the Barr extension and makes them useful for functors that do
not preserve weak pullbacks.

Lax extensions have already been studied in the context of coalgebra under
the name ‘monotone relator’ in [18, Section 2.1] and very recently in [11, Defi-
nition 6], where they are just called ‘relators’. In [18] it is additionally required
that composition of relation is preserved, that means = instead of C in our con-
dition (L2) of Definition 1, but it is noted that the D-inclusion can be omitted
for most of the proofs. Both [18] and [11] use a different set of conditions in their
definitions, but it can be checked that they are equivalent to our Definition 1.
Instead of (L3) [18] requires that

(R3) Arx C LAy,
(R4) Tf;LR;(Tg)° C L(f;R;g°).

In [11] condition (R4) has = instead of just C. This is superfluous, because we
can show that (R3) and (R4) imply (L3). Hence every relator is a lax extension
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and the equality in (R4) follows from Proposition 2 (ii) below. To see that (R3)
and (R4) imply (L3) counsider for any function f: X — Z
Tf=Tf;Arz;(Tidz)° CTf; LAz;(Tidz)* (R3)
CL(f;Azsidz) =Lf . (R4)
That every lax extension is a relator, that is every lax extension satisfies (R3) and

(R4) follows from our next Proposition that summarizes some basic properties
of lax extensions.

Proposition 2. If L is a lax extension of T then for all functions f: X — Z,
g:Y — Z and relations R: X + Z,S:Z + Y:

(i) Arx C LAx,

(it) Tf; LS = L(f ; S) and LR; (T'g)° = L(R ; g°),

and if L preserves diagonals then

(m) ATX = LAX and Tf = Lf

(w) Tf;(Tg)® =L(f;9°),

Proof. For (i) recall that we identify a function with the relation of its graph.
So we have that Ax = idy and we can calculate

ATX = idTX = TIdX T functor
C Lidx = LAx . (L3)

The C-inclusion of T'f;LS = L(f;S) in (ii) holds because T'f;LS C Lf;LS C
L(f ; S) where the first inclusion is condition (L3) and the second inclusion is
(L2). For the D-inclusion consider

L(f;8) CTf;(Tf)°;L(f;S) Arx CTf;(Tf)°
CTf; (L5 L(f;S) (L3)
CTf;Lf°;L(f;S) preservation of converses
CTfL(f°5f59) (L2)
CTf;LS. f°; f € Ay and (L1)

The other claim LR ; (Tg)° = L(R; g°) follows from Tf ; LS = L(f ; S) because
L preserves converses.

For (iv) and (iii) first notice that if L preserves diagonals then Apx = LAy
because of (L4) and (i).

The equation T'f = Lf from (iii) holds because of

Tf=Tf:LAx Arx = LAx
=L(f;Ax)=Lf. (ii)
For claim (iv) consider
Tf;(Tg)*=Tf;LAx;(Tg)° Arx = LAx

=L(f;Ax;9°)=L(f;9°) - (ii) twice
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Ezample 1. (i) For any functor T there is a trivial lax extension C' that maps
any relation R : X -+ Y to the maximal relation CR=TX xTY : TX + TY.
For most functors this lax extension does not preserve diagonals.

(ii) The Egli-Milner lifting P is a lax extension of the covariant powerset
functor P that preserves diagonals. It is defined such that PR : PX —+ PY for
any R: X + Y and (U,V) € PR iff

— for all u € U there is a v € V such that (u,v) € R (forth condition), and
— for all v € V there is a w € U such that (u,v) € R (back condition).

— — “—
More concisely we can write PR = P RN P R where we use the abbreviations

PR={(U,V)ePX xPY |VYu e Uve Vi(u,v) € R},
PR={(U,V)ePX xPY |Vve VIueU(uv)cR}.

(iii) The Egli-Milner lifting from item (ii) is an instances of a relation lifting
that is definable for arbitrary functors T. The Barr extension T of a functor T
is a relation lifting for T' that defined on a relation R : X - Y with projections
nx : R— X and my : R — Y such that

TR = {(Tnx(p), Try(p)) | p € TR},

It is easy to see that the Barr extension T of a functor T satisfies (L1). One can
also show that T'f = T'f for all function f : X — Y. This means that T satisfies
(L3) and (L4). For proofs of this basic properties of the Barr extension consult
for instance [9].

Condition (L2) is more difficult. It is the case that TR;T'S = T(R; S) for all
relations R: X + Z and S : Z + Y iff T preserves weak pullbacks [9, Fact 3.6].
So we have that the Barr extension T of a weak pullback preserving functor T
is a lax extension that preserves diagonals.

(iv) Even though one can show that the Barr extension M of the monotone

neighborhood functor does not satisfy (L2), there is a lax extension M of M

that preserves diagonals. For the Definition recall the notation ?R and %R
from item (ii). The lax extension M is defined on a relation R: X + Y as

MR : MX + MY
MR=PPRNPPR.
One can also define the a-ary version of M that maps an R: X + Y to
CMR: “MX -+ “MY
SMR = {(€,0) | VU € £3V € v¥B € a.(Us, Vs) € PR} N
{(€,0) | YV € 03U € Y3 € a.(Us, Vy) € PR).

It is easy to check the conditions (L1) and (L2) for M. To check (L3) we
show that (§, Mf(§)) € Mf for all functions f : X — Y and £ € MX. For
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(E,Mf(E)) € 3(73]‘ observe that (U, f[U]) € (73f and f[U] € Mf(§) for any
U € € because £ is an upset. To get (£, M f(£)) € %?f take any V € Mf(&).
By the definition of M on morphisms this means that f~1[V] € £ and for this
we have (f~1[V],V) € ?f To check condition (L4) we prove that £ C ¢’ for any
(&¢) e MAx. A similar argument shows ¢ D ¢ and hence (&,&) € Apx. So
take any U € . It follows that there exists a U’ € ¢’ such that (U,U’) € (’EAX.
This means that U 2 U’ and because £’ is an upset, we get that U € ¢'.
Completely analogously one can verify that “M is a lax extension of *M that
preserves diagonals.

(v) The F3 functor has a lax extension L3 that preserves diagonals. L3 is
defined componentwise for any relation R : X + Y:

LiR: F}X -+ F}Y,
LgR = {((1’0,$17$2), (y07y17y2)) | (‘r07y0)7 (xlayl)a ($2,y2) € R}

There is an easy counterexample to (L2) for the Barr extension F3 of F.

(vi) There is a lax extension P,, of the restricted powerset functor P, that
preserves dlagonalb It 15 deﬁned in the same way as the Egli-Milner lifting P
of P, that is 7D R = PRN PR for any relation R : X - Y. Nevertheless,
Pn is distinct from the Barr extension P, of P,. As for Fj F3 one can given a
counterexample to (L2) for P, provided that n > 3.

The conditions (L1), (L2) and (L3) of a lax extension L directly entail use-
ful properties of L-bisimulations. The condition (L1) ensures that the union of
L-bisimulations is again an L-bisimulation, (L2) yields that the composition of
L-bisimulations is an L-bisimulation and because of (L3) coalgebra morphisms
are L-bisimulations. Note also that our requirement that relation liftings preserve
converses immediately implies that the converse of a bisimulation is a bisimula-
tion. This facts are summarized in the following Proposition whose easy proof is
left to the reader.

Proposition 3. For a lax extension L of T and T-coalgebras & : X — TX,
v:Y —=>TY and (: Z — TZ it holds that

(i) The graph of every coalgebra morphism f from & to v is an L-bisimulation
between € and v.

(is) If R : X + Z respectively S : Z -+ Y are L-bisimulations between & and
¢ respectively ¢ and v then their composition R;S : X + Y is an L-
bisimulation between & and v.

(iti) Every union of L-bisimulations between £ and v is again an L-bisimulation
between € and v.

Corollary 1. Let L be a lax extension of T and & : X —-TX andv:Y —=TY
be two T'-coalgebras. The relation of L-bisimilarity < fg » between & and v is itself
an L-bistmulation between & and v. Moreover L-bisimilarity ‘ng : X + X on
one single coalgebra & is an equivalence relation.
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We are now ready to prove that lax extensions that preserve diagonals capture
behavioral equivalence. Note that in the proof the preservation of diagonals is
only used for the application of Proposition 2 (iv) at the end of the direction
from bisimilarity to behavioral equivalence.

Theorem 1. If L is a lax extension of T that preserves diagonals then L cap-
tures behavioral equivalence.

Proof. We have to show that a state xg in a T-coalgebra £ : X — TX and a
state yo in a T-coalgebra v : Y — TY are behaviorally equivalent iff they are
L-bisimilar.

For the direction from left to right assume that xy and yg are behaviorally
equivalent. That means that there are a T-coalgebra ( : Z — T'Z and coalgebra
morphisms f from £ to ¢ and g from v to ¢ such that f(zg) = g(yo). To see
that zo and yo are L-bisimilar observe that by Proposition 3 (i) and (ii) the
relation f;¢°: X -+ Y is an L-bisimulation between ¢ and v because it is the
composition of graphs of coalgebra morphisms. This implies that x¢ and yo are
L-bisimilar because (zo,y0) € f; ¢°.

In the other direction we have to show that for any pair (z,y) € R, for an
L-bisimulation R : X + Y between £ and v, the states x and y are behaviorally
equivalent. Without loss of generality we can consider the case of two states z
and 2’ in one single coalgebra ¢ : Z — T'Z with an L-bisimulation S : Z + Z on
¢ such that (z,2') € S. This is because otherwise we let ¢ be the coproduct of £
and v with injections ¢x and iy and then consider the relation S = i% ; R ; iy
which, using Proposition 3, can be shown to be an L-bisimulation on (.

Now consider the relation <:>£ : Z -+ Z of L-bisimilarity on ¢ which by
Corollary 1 is both an equivalence relation and an L-bisimulation. Our goal is to
put a transition structure 0 : Z/<:>£ — T(Z/t%) on the quotient Z/<:>£‘ such
that the projection p : Z — Z/<L 2+ [2] becomes a coalgebra morphism from
¢ to 4. Since we assume that z <} 2’ it follows then that p(z) = p(z) which
witnesses that z and 2’ are behaviorally equivalent.

We intend to define the transition function § on Z/ (jCL such that

§([z]) = Tpo((z) .

This definition clearly satisfies § o p = T'p o { which means that p is a coalgebra
morphism from ¢ to ¢ as required. But we have to show that ¢ is well-defined.
To prove this we need that Tp o &£(z) = Tpo &(Z') for arbitrary 2,2 € Z with
z t’f z'. Because ‘jf is an L-bisimulation it follows that ({(z),((z")) € Lt’é
and moreover

Leé = Lip;p°) =b=pip°
=Tp; (Tp)° . Proposition 2 (iv)

So we get (((2),((2")) € Tp; (Tp)° which entails Tp o {(z) = Tpo ((2'), as
required.
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4 (No) Bisimulations for Neighborhood Frames

Already the papers [5] and [6] examine different relation liftings for the neigh-
borhood functor A/, and the notions of bisimilarity they give rise to. It is found
that none of the proposed relation liftings captures behavioral equivalence. In
this section we show that this is indeed not possible. Nevertheless, it should
be mentioned that, for the simpler case of behavioral equivalence on one single
coalgebra, already the Barr extension N of the neighborhood functor captures
behavioral equivalence [5, Proposition 4].

Theorem 2. There is no relation lifting for the neighborhood functor N that
captures behavioral equivalence.

Proof. For the proof we need the fact that for any two functions f : X — Z and
g : Y — Z we have that N f({0}) # Ng(D). This holds because otherwise we
would get by unfolding the definition of A on functions that

De{wcz|f W e{0}} fH =0
=Nf({0}) definition of N
= Ng(0) assumption
={(WcCZzZ|g W e definition of N
=0, V¢forall V

which is clearly impossible.

Now suppose for a contradiction that there is a relation lifting L for N
that captures behavioral equivalence. Consider an example with the coalgebras
£: X — NX, where X = {z1,12, 23} with 7 — {{z2}}, 22,25 — {0}, v :
Y — NY where Y = {y1} with y3 — 0, and ¢ : Z — NZ with Z = {21,292}
with z1 +— ), 20 — {0}. For these coalgebras, one can verify, that the functions
f:X — Zxy — z1,09,23 — 29 and g : Y — Z,y; — 21 are coalgebra
morphisms from & to ¢ and from v to ¢. Because f(z1) = g(y1) this shows that
x1 and y; are behaviorally equivalent. The situation is depicted in the figure:

?

{{xZ}}%xl """"" f —————— 21 < 9 (T p—
{0} <—— 22 Lo > 2
]
o 0}

It follows from the assumption that L captures behavioral equivalence that
there is an L-bisimulation R : X - Y between ¢ and v such that (z1,11) € R.
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Moreover we can show that (x2,y1), (z3,y1) ¢ R. We do this only for (x2,y1)
since the argument for (z3,y;) is similar. Suppose for a contradiction that o
and y; are L-bisimilar. Because L captures behavioral equivalence, it follows
that there is a coalgebra (" : Z7 — N'Z"” and coalgebra morphisms j from £ to
¢"” and [ from v to ¢ such that j(z3) = I(y1). Using that j and [ are coalgebra
morphisms we get following contradiction to what we showed above:

Ni({0}) = Njo&(wz) = ("o j(x2) = ("o l(yr) = Nlow(yr) = Ni(0) .

So it follows that R = {(z1,y1)} and because R is an L-bisimulation we find

that ({{z2}},0) = (§(z1),v(y1)) € LR.

Next we replace & with the coalgebra ¢ : X — NX, 21 — {{z2}},22 —
{0}, z3 — (. We still have that (&'(z1),v(y1)) = ({{z2}},0) € LR which entails
that R = {(x1,y1)} is an L-bisimulation linking z; in & and y; in v. Because L
captures behavioral equivalence it follows that there is a coalgebra ¢’ : Z/ — N'Z'
and there are coalgebra morphisms h from £ to ¢’ and k from v to ¢’ such that
h(z1) = k(y1). Because h and k are coalgebra morphism this implies that

Nh({{z2}}) = Nhog(x1) = (o h(xr) = ("o k(yr) = Nkowv(yr) = Nk(0) .

By writing out the definition of N one can see that this means
Ol e {{z2}} iff k7YC)e® forallCC Z'.

Because the right hand side is never true it follows that h=[C] # {z2} for
all C C Z’. In the special case C' = {h(x2)} this means h=1[{h(z2)}] # {z2}.
Certainly zo € h™1[{h(x2)}] so it must be that z; € h™'[{h(z2)}] or a3 €
h=[{h(x2)}]. Thus h(z2) = h(z1) or h(zy) = h(xs). Using that h and k are
coalgebra morphisms we can calculate in the former case that

Nh({0}) = Nho&'(z2) = ("o h(xg) = ¢ o h(x1) = (o k(y1) = Nk ov(y1)
)

and in the latter case that
Nh({D}) = Nho&'(x9) = ("o h(za) = ("o h(z3) = Nho &' (x3) = Nk(0) .

Hence it follows in both cases that N'h({0}) = N'k(D) which, as argued above,
leads to a contradiction.

As a Corollary we obtain that the neighborhood functor has no lax extension
that preserves diagonals, since we know from Theorem 1 that such a relation
lifting would capture behavioral equivalence.

Corollary 2. There is no lax extension that preserves diagonals for the neigh-
borhood functor N.
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5 Predicate Liftings and Lax Extensions

In the previous section we saw that the neighborhood functor does not have
a lax extension that preserves diagonals. If we add the requirement that the
neighborhoods are monotone, that is we look at the monotone neighborhood
functor M, then we have the lax extension M that preserves diagonals. In this
section we show that some sense of monotonicity is exactly what is needed from
a functor in order to have a lax extension that preserves diagonals. Our goal is
to prove following Theorem:

Theorem 3. A finitary functor T has a lax extension that preserves diagonals
iff there is a separating set of monotone predicate liftings with finite arity for T.

Proof. This is the overview of the proof that brings together all the results from
this Section.

For the direction from left to right assume that T has a lax extension L
that preserves diagonals. Because T is finitary it has a finitary presentation
(X, E) as demonstrated in Example 3. We use this together with the natural
transformation A\X : TP = PT from Definition 3 to construct the Moss liftings
for T defined as in Definition 5. In Proposition 6 we prove that the Moss liftings
are monotone and in Proposition 7 that set of all Moss liftings is separating.

For the direction from right to left assume we have a separating set A of
monotone predicate liftings with finite arity for T'. By Proposition 1 the mono-
tonicity of each X\ € A entails that we can take A’ : T'— "N to have codomain
"M. We can then apply the initial lift construction from Definition 2 to the set
of natural transformations I' = {eo > : T' = “M} 4, where e : "M = “M is
the embedding as defined in Section 2.4, and obtain a relation lifting (“M)”" for
the functor T. We show in Proposition 4 that the relation lifting (*M) is a lax
extension for T that preserves diagonals, since @M is a lax extension for “M
that preserves diagonals and the set of functions {ex o A'fx TX = “MX}aea
is jointly injective at every set X because A is assumed to be separating.

We now describe the two constructions, initial lift and Moss liftings, that are
used in the proof of Theorem 3. The initial lift of a lax extension along a set of
natural transformations is taken from [17]. In the proof of Theorem 3 we use it
to build a lax extension for T' from the lax extension “M and a separating set
of predicate liftings.

Definition 2. Let L be a relation lifting for T, and A = {X\: T = T}rca a set
of natural transformations from another functor T' to T'. Then we can define a
relation lifting L for T called the initial lift of L along A as

LAR:ﬂ(AX;LR;/\OY), for all sets X, Y and R: X - Y .
A€

Equivalently to the above Definition, one can define LAR : T'X - T'Y for an
R: X + Y such that

(€, v) e L'R iff (Ax(€),\y(v)) € LRforall A€ A.



14 Johannes Marti and Yde Venema

Next we show that the initial lift construction preserves laxness and, which
is essential for Theorem 3, it also preserves condition (L4), if the set of natural
transformations is jointly injective for every set.

Proposition 4. Let A = {\: T' = T}xca be a set of natural transformations
from a functor T' to a functor T and let L be a relation lifting for T. Then LA
is a laz extension for T' if L is a lax extension of T. Moreover, L preserves
diagonals, if L preserves diagonals and {\x : T'X — T X }xca is jointly injective
at every set X.

Proof. Tt is routine to verify that all the conditions (L1), (L2) and (L3) are
preserved by the initial lift construction. That the elements of A are natural
transformations is only used for the preservation of (L3).

Here we give the proof for the claim that L4 preserves diagonals, if L does,
and {Ax : T'X — TX}xca is jointly injective at every set X. We first show that
if {\x :T'X — TX}xen is jointly injective at every set X then

ﬂ (Ax 3 A%) = Arx . (1)
Aed

For the C-inclusion take £,& € T"X with (§,£') € (Nyea (Ax 5 A% ). This means
that Ax(§) = Ax (&) for every A € A. Because the Ax for A € A are jointly
injective this implies that & = & and hence (£,£’) € A x. The D-inclusion
follows from the fact that f; f°© O Ay for any function f: X — Y.

Now assume that L satisfies (L4) that is LAx C Arx for every set X. It
follows that LAAx C A x because

LY'Ay = ﬂ (Ax ; LAx ; A%) definition
A

- m (Ax ; Arx ; A%) assumption
A€EA

= ﬂ Ax 3 A%) Arx neutral element
AeA

= AT’X . (1)

This shows that L? satisfies (L4).
Ezample 2. Consider the natural transformations <, 0 : P = M with
Oox(U)={VCX|UNV£0}, OxU)={VCX|UCV}.

These natural transformation are clearly injective at every set X and hence
it follows with Proposition 4 that M{®} and M{7} are lax extensions of the
powerset functor P that preserve diagonals. Indeed, one can easily verify that
they are both equal to the Barr extension P of P.

For the left-to-right direction of Theorem 3 we use the so called Moss liftings.
It is shown in [10] that if we consider the Barr extension of a weak pullback
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preserving functor then the Moss liftings are monotone predicate liftings. Here
we check that the argument also works for arbitrary lax extensions.

The first step in the construction of the Moss liftings is to use the lax ex-
tension L of T to define a distributive law between T and the contravariant
powerset functor P.

Definition 3. Given a lax extension L of a functor T we define for every set
X the function

My TPX — PTX
E={eTX|(£E5)e Lex),

where €x: X - PX denotes the membership relation between elements of X
and subsets of X.

Proposition 5. For a lax extension L the mapping ™ : TP = PT from Defi-
nition 8 is a natural transformation.

Proof. We have to verify that the following diagram commutes for any function
f: X->Y:

)\L
TPX —= PTX (2)
TP fT Tﬁ'T f
. Ay
TPY — = PTY
First observe that
Lex; (TPf)°=Tf;Ley . (3)
This is shown by the calculation
Lex; (TPf)° =1L (EX ; (75f)°) Proposition 2 (ii)
=L(f;€ey) direct verification
=Tf;Ley . Proposition 2 (ii)

To check the commutativity of (2) take an 1" € TPY. We need that PTf o
M(T) = AL o TP#(T). This holds because for any ¢ € TX we have that

Ee s oTPF(Y) iff (&, TPf(Y)) € Lex definition of \*
iff (6,7) € Lex ; (TPf)° basic set theory
ift (£7)eTf;Ley (3)
ift (Tf(),T) € Ley basic set theory
iff Tf(E) e () definition of \*

iff &€ePTfolA(T). definition of P
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Apart from the natural transformation AX : TP = PT we need a finitary
presentation of the functor T' to define the Moss liftings. For more about pre-
sentations of set functors consult [1].

Definition 4. A finitary presentation (X, E) of a functor T is a functor X of
the form
X =[] Znxx"
necw

together with a surjective natural transformation E : X = T.

One can show, as we do in Example 3, that every finitary functor has a finitary
presentation. A finitary presentation of T allows us to capture all the information
in the sets T X for a possibly very complex functor 7" by means of a relatively
simple polynomial functor X'. This is, because for every & € T'X there is at least
one (r,u) € X, x X" for an n € w for which £ = Ex(r,u) and that behaves in a
similar way as &, since E is a natural transformation. In order to define predicate
liftings for an arbitrary finitary functor 7' it is necessary that we can somehow
decompose it into pieces of the form X™. This is exactly what the polynomial
functor of a finitary presentation does.

The availability of a finitary presentation of T' is the only part in the proof
of Theorem 3 where we need that the functor T is finitary. If we had allowed
for predicate liftings of infinite arity then we could generalize the construction
of the Moss liftings to arbitrary accessible functors.

Ezxample 3. The next example shows that every finitary functor has a finitary
presentation. The canonical presentation of a finitary functor T is defined such
that X, = Tn for every cardinal n € w and FE is defined at a set X as

Ex:[[TnxXx"—TX,
necw

(v,u) = Tu(v), whereveTnandue X" forann € w.

In this definition we take u € X™ to be a function uw : n — X. It is routine to
check that this definition indeed provides a finitary presentation of T', meaning
that E is a natural transformation and surjective at every set X.

The next Lemma shows how a lax extension of T interacts with a finitary
presentation of T. This Lemma is similar to one direction of [10, Lemma 6.3]
where this result is proved for the Barr extension. One can use the lax extension
L3 of F§ to construct an example which shows that the back direction of [10,
Lemma 6.3] does not hold for lax extensions in general.

Lemma 1. Let (X, E) be a finitary presentation of a functor T with lax exten-
sion L, and let R : X -+ Y be any relation. Then we have for alln € w, r € X,
u€ X" andv e Y™ that if u;Rv; for alli € n then (Ex(r,u), Ey(r,v)) € LR.

Proof. Let my : R — X and my : R — Y be the projections of R. For these
it holds that R = 7% ; my. Because (u;,v;) € R for all i € n we have that
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p = (r,((uog,vo), (u1,v1)s .-, (Un-1,0n-1))) € ZRI". With the definition of X
on morphisms it holds that Xmx (p) = (r,u) and Xmy (p) = (r,v). Since F is a
natural transformation from X to T" we also get that Fx (r,u) = Ex(X7nx(p)) =
Trx(Egr(p)) and Ey (r,v) = Ey (Xny(p)) = Tny (Er(p)). It is entailed by these
identities that (Ex (r,u), Er(p)) € (T'rx)° and that (Eg(p), Ey(r,v)) € Tny.
So we obtain
(Ex(r,u), By (r,v)) € (Tnx)°; (Tny) C Lrk ; Lmy (L3)
C L(n% ;my) = LR. (L2)

‘Which is what we had to show.

We can now define the Moss lifting for a finitary functor 7' by composing the
finitary presentation of 7" with the natural transformation \Z.

Definition 5. Given a finitary functor T and a lax extension L for T take any
finitary presentation (X, E) of T according to Definition 4 and let \F be the
natural transformation of Definition 3. For every r € X, of any n € w the Moss
lifting of 7 is an n-ary predicate lifting for T that is defined as

u Pt = PT,
p=AoEx(r,—).

This definition yields the following diagram for every set X :

§ Epx(ro)
(PX)" —— TPX
\ lx@

Hx
PTX

We use Lemma 1 to show that the Moss liftings are monotone.

Proposition 6. The Moss liftings of a functor T with finitary presentation
(X, E) and lax extension L are monotone.

Proof. Take any Moss lifting p" = A" oEx(r,—): P = PT of anr € X, for an
n € w. Now assume we have U, U’ € (PX)" for any set X such that U; C U/ for
all 4 < n. To prove that x” is monotone we need to show that u’ (U) C u% (U').

So pick any £ € pu’x (U) = A5 0 E;5 (1, U). By the definition of A this means
that (£, Ej5(r,U)) € LEx. Moreover, we get from the assumption that U; C U]
for all i € n and Lemma 1 that (Ejs(r,U), Exy(r,U’)) € L(C). Putting this
together yields

(& Epx(r,U") € Lex ; LC C L(ex ; ) (L2)
C Lex . (L1)
For the last inequality we need that €x ; C C €x which is immediate from the

definition of subsets. So we have that (£, Ex(r,U’)) € Lex and hence by the
definition of A\* that £ € Ay o Ex(r,U’) = px (U”).
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The last thing we have to show is that the set of all Moss liftings is separating.
This is the only place in the construction of the Moss liftings where we actually
need that the lax extension L preserves diagonals.

Proposition 7. If L is a lax extension of a finitary functor T that preserves
diagonals and let (Zu', E) be a finitary presentation of T'. Then the set of all Moss
liftings M = {u" : P* = PT | r € X,,,n € w} is separating.

Proof. To show that M is separating suppose for arbitrary £,& € TX of any set
X that (u")% (&) = (1")% (&) for all r € X, of all n € w. We need to prove that
£ = ¢, By the definition of the transposite of a natural transformation it follows
that for all n € w and r € X,

{U e (PX)" | ¢ epk(U)} ={U € (PX)" | ¢ € uix(U)}.
This is equivalent to
ceui(U) iff € e pu(U), forall U e (PX)".

Unfolding the definitions of u" = Ao Ex(r, —) andv M(EY={¢eTX|(5) e
Lex} yields that for all n € w, r € X, and U € (PX)"
(&E’/ﬁx(rv U)) S LEX iff (§I,E75X(’I“, U)) S LGX .

Because Ej y is surjective, and the variables n, r and U quantify over the full
domain of Ej : [, c.,(Zn x (PX)") — TPX, it follows that for all = € TPX

new
(&, 5)e Lex iff (¢,%2)€ Lex. (4)
To get £ = ¢ from (4) consider the map
sx: X - PX,
x— {z}.

Because of (L3) we have that (§,Tsx(£)) € Tsx C Lsx. Moreover we clearly
have that sx C €x and because of (L1) it follows that (§, T'sx(£)) € Lex. With
(4) we get that (¢, Tsx(§)) € Lex. Then we compute

(&,&') € Lsx ; Loax C L(sx ;2x) (L2)
= LAx sx;3x = Ax
C Arx . (L4)

From this it follows that £ = ¢, which finishes the proof.

6 Conclusions and Open Questions

In this paper we showed that lax extension that preserve diagonals can be used
in the theory of coalgebra to give a relational characterization of behavioral
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equivalence. This together with the fact that lax extensions can be used to
define the semantics of an adequate cover modality indicates that lax extensions
provide an adequate generalization for the role that the Barr extension of weak
pullback preserving functors has played so far in the theory of coalgebras and
coalgebraic modal logic. In this way the use of relation liftings in the theory of
coalgebras can be extended to set functors that do not preserve weak pullbacks
but nevertheless admit a lax extension that preserves diagonal relations.

The importance of lax extensions that preserves diagonals would motivate
to study their properties on their own right. A pressing question, that we were
unable to answer, concerns the uniqueness of such lax extensions. We do not know
of an example of a functor with two distinct lax extension that both preserve
diagonals. It would be interesting to find such an example or otherwise prove
that any set functor has at most one lax extensions that preserve diagonals.

A negative result of this paper is that the neighborhood functor does not
allow for a relational lifting that captures behavioral equivalence. This shows
that there are limits to the use of relation liftings in the theory of coalgebras. A
goal for further research would be to determine which functors have a relation
lifting that captures behavioral equivalence. All the examples of such functors we
know of also have a lax extension that preserves diagonals. So it might turn out,
that whenever a functor allows for a relational characterization of behavioral
equivalence it has a lax extension that preserves diagonals.

A further, probably easier, problem would be to characterize the functors that
have a lax extension that preserves diagonals. Our Theorem 3 is a first step into
this direction but it only applies to finitary functors and the condition it gives,
that the functor has a separating set of monotone predicate liftings, is not more
fundamental than what it is supposed to characterize. It might be interesting
to look for a more elementary definition for the kind of monotonicity a functor
needs to posses in order to allow for a separating set of monotone predicate
liftings or, respectively, for a lax extension preserving diagonals. As a start one
could look at the weak limit preservation properties, that are investigated in [3].
Moreover, it would be nice to have a canonical way to obtain a lax extension that
preserves diagonals for the functors that posses one, similar to the definition of
the Barr extension for weak pullback preserving functors.

We plan to write an other paper about the logic that results when one uses
a lax extension to give a semantics to a Moss-style coalgebraic cover modality
in the spirit of [2]. Some of this results can already be found in [12].
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