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1 Introduction

Finitary endofunctors, i.e., those preserving filtered colimits, play an important
role in algebra and coalgebra. One indication of this is the sufficient conditions
for the existence of initial algebras and final coalgebras: the initial algebra for a
finitary functor F always exists and it is the colimit

µF = colim
n<ω

Fn0

of the initial ω-chain

0
ω

−−→ F0
Fω

−−−→ FF0
FFω

−−−−→ · · ·

see [2]. The final coalgebra exists whenever the base category is locally pre-
sentable, as proved by M. Makkai and R. Paré [11], see a shorter argument for
the category of sets in [6]. Moreover, if F preserves monomorphisms, the final
coalgebra has, for some ordinal α, the form

νF = lim
n<α

Fn1

of the limit of the dual (op-)chain of length α, see [5].
This paper presents some new results on finitary endofunctors. First, every

finitary endofunctor of a locally finitely presentable category has a presentation
by operations and equations. This is based on the idea of a (finitary) signature
in a category due to M. Kelly and J. Power [9]. We then turn to an endofunctor
of the categoryCMS of complete metric spaces of special interest: the Hausdorff
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functor H assigning to every space X the space H X of all non-empty compact
subsets of X with the Hausdorff metric. F. van Breugel et al [8] proved that H

is a λ-accessible functor for some cardinal λ. We sharpen their result here by
proving that H is finitary.

Related Work. Section 4 on presentation of functors is closely related to
the recent paper of A. Kurz and J. Velebil [12]. When the preliminary version of
Section 4 was presented at the PSSL Workshop in Braunschweig in April 2010,
J. Velebil told us about his parallel joint work and sent us a preliminary version
of the above paper. Since our presentation is quite different, we decided not
to change our section. We are grateful to J. Velebil for his comments on the
formulation of that section.

2 Locally Presentable Categories

This is a preliminary section: we recall the concept of a locally finitely pre-
sentable and locally countably presentable category and mention examples we
use throughout the paper.

Recall that a category is filtered if every finite subcategory has a cocone in
it, and filtered colimits are colimits of diagrams with filtered domains. A finitary

functor is a functor F : A → B such that A has filtered colimits and F preserves
them. An object A of A is finitely presentable if its hom-functor A (A,−) is
finitary.

Definition 2.1. A category A is locally finitely presentable if it has colimits

and a set F of finitely presentable objects such that every object is a filtered

colimit of objects from F . We consider F as a full subcategory of A .

Examples 2.2. (1) Set is locally finitely presentable; finite sets are precisely the
finitely presentable objects. For F we can choose the set F of all natural numbers
n = {0, 1, . . . , n− 1}.

(2) Pos, the category of posets and order-preserving functions, is finitely
presentable. Here F is a set of representatives of all finite (= finitely presentable)
posets up to isomorphism.

(3) K-Vec, the category of vector spaces over the field K, is locally finitely
presentable. Finitely presentable objects are the finite-dimensional spaces. We
can put F = {Kn;n ∈ N}.

(4) If A is a locally finitely presentable category, then every functor cate-
gory A C (C a small category) is also locally finitely presentable, (see [3]).

(5) The category
MS

of metric spaces with distances in [0, 1] and nonexpanding functions is not locally
finitely presentable. In fact, the only finitely presentable objects are the finite dis-
crete spaces (with all distances 0 or 1). The argument that the finitely presentable
objects in Set are the finite sets shows that finitely presentable objects in MS
must be finite spaces. Let (A, d) be finitely presentable. Denote by dn the metric
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defined by dn(x, y) = min(1, d(x, y)+ 1
n
) for x 6= y. The ω-chain of spaces (A, dn)

with connecting maps idA has the filtered colimit (A, d). Since the hom-functor
of (A, d) preserves this filtered colimit, for some n, idA : (A, d) → (A, d) factor-
izes through the colimit map idA : (A, dn) → (A, d). But distances in A which
are strictly between 0 and 1 are increased in An. So A must be discrete.

Remark 2.3. (1) Let A be a locally finitely presentable category. A finitary
endofunctor F is determined by its values on the full subcategory J : F →֒
A . In fact, F is a left Kan extension of its domain restriction to F : F =
LanJ(F ·J). Consequently, the category A F of all functors from F to A is
equivalent to the category of all finitary endofunctors of A . Thus, the category
of finitary endofunctors on a locally finitely presentable category is locally finitely
presentable.

(2) For A = Set a functor is finitary iff for every set X , every element of FX

lies in the image of Fm for some finite subset m : Y →֒ X . For example, the finite
power-set functor PfX = {M ;M ⊆ X,M finite} is finitary. Given a set A, the
functor FX = XA is finitary iff A is finite.

Remark 2.4. Let λ be a regular infinite cardinal (i.e., one that is not cofinal
to any smaller cardinal). A category is called λ-filtered for an infinite cardi-
nal λ (countably filtered in the case λ = ℵ1) if every subcategory of less than
λ morphisms (countable, in the case λ = ℵ1) has a cocone in it. For example, ω is
filtered, but not countably filtered. The first uncountable ordinal ω1 is countably
filtered. A functor F is called λ-accessible if its domain has λ-filtered colimits
and F preserves them. An object A of A is λ-presentable if its hom-functor
A (A,−) is λ-accessible.

Definition 2.5. A category A is called locally λ-presentable if it has colim-

its and a set Aλ of λ-presentable objects such that every object is a λ-filtered

colimit of objects of Aλ. In the case λ = ℵ1 we speak about locally countably

presentable category, and write C instead of Aℵ1 .

Examples 2.6. (1) Set, Pos and K-Vec are locally countably presentable (since
this is weaker than locally finitely presentable). In Set and Pos the countably
presentable objects are precisely the countable ones, in K-Vec precisely the
countably dimensional spaces.

(2) The category ωCPO of all posets with joins of increasing ω-chains (and
all ω-continuous functions) is not locally finitely presentable: no nontrivial object
is finitely presentable. However, it is locally countably presentable.

(3) The category MS is locally countably presentable. So is the larger cate-
gory

PMS

of all pseudometric spaces (where distinct elements may have distance 0) with
distances in [0, 1] and nonexpanding functions. Indeed, PMS is obviously co-
complete with colimits computed on the level of underlying sets (and endowed
with the supremum of all pseudometrics making all colimit maps nonexpand-
ing). Consequently, MS is cocomplete, since this full subcategory is reflective
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in CMS (see point (4) below): a reflection of a pseudometric space (X, d) is its
quotient modulo the equivalence x ∼ y iff d(x, y) = 0.

Every (pseudo)metric space is a countably filtered colimit of its countable
subspaces. In Lemma 2.7 we will see that these spaces are countably presentable.
This proves that MS and PMS are locally countably presentable categories. In
both cases C is a choice set of all countable spaces up to isometry.

(4) The full subcategory
CMS

of MS formed by all complete spaces (in which every Cauchy sequence has a
limit point) is also locally countably presentable. Indeed, CMS is a reflective
subcategory of MS, where the reflection of a space (X, d) is its Cauchy comple-
tion e : (X, d) → (X∗, d∗). Recall that e is an isometry such that every element
of X∗ is a limit of a Cauchy sequence in X . For every nonexpanding func-
tion f : (X, d) → (Y, d̄) where (Y, d̄) is complete we have the unique extension
f∗ : X∗ → Y defined in x ∈ X∗ by

f∗(x) = lim
n→∞

f(xn)

for an arbitrary Cauchy sequence (xn) converging to x. To see that f∗ is non-
expanding, use that f is, and that the distance of two elements x = limxn and
y = lim yn in X∗ is simply limn→∞ d(xn, yn).

Thus, CMS is cocomplete. Choose a set C of representatives of all separable
complete metric spaces (which means complete spaces with a countable dense
subset). We prove in Corollary 2.9 below that every separable space is countably
presentable in CMS. And every complete space X is a countably filtered colimit
of separable spaces: this follows from the fact that given M ⊆ X countable, the
closure of M in X is separable.

Thus, CMS is a locally countably presentable category.

Lemma 2.7. Given a countably filtered diagram in PMS with a colimit cocone

ct : Ct → C (t ∈ T ),

then for every countable subset M ⊆ C there exists t ∈ T and a countable subset

M ′ ⊆ Ct such that ct restricts to an isometry from M ′ to M .

Proof. Let dt denote the pseudometric of Ct and d that of C. Since our diagram
is filtered, it follows from Example 2.6(3) that for every pair x, y ∈ C we have

d(x, y) = inf dt(x
′, y′)

where t ranges through T and x′ ∈ c−1
t (x) and y′ ∈ c−1

t (y).
(a) Assume first that M consists of precisely two elements, M = {x, y}. For

every n ∈ N choose t(n) ∈ T and elements xn ∈ c−1
t(n)(x) and yn ∈ c−1

t(n)(y) with

dt(n)(xn, yn) ≤ d(x, y) +
1

n
. (2.1)
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Since our diagram is countably filtered, there exists s ∈ T and connecting mor-
phisms fn : ctn → cs for all n ∈ N.

The countable set {fn(xn);n ∈ N} is mapped by cs to the single element x,
since cs·fn = ct(n), thus, since our diagram is countably filtered, there exists
t ∈ T and a connecting morphism g : Cs → Ct also mapping all elements fn(xn)
to a single element x′ of Ct. Thus ct(x

′) = cs·g(xn) = x. Analogously for the
countable set {fn(yn);n ∈ N}; we can assume without loss of generality, using
that our diagram is filtered, that the choice of t and g is the same for the latter
set. Thus we have y′ ∈ Ct with ct(y

′) = cs·g(yn) = y. We now prove that the set
M ′ = {x′, y′} has the desired property:

dt(x
′, y′) = d(x, y).

In fact, since g·fn is nonexpanding, we derive from (2.1)

dt(x
′, y′) ≤ dt(n)(xn, yn) ≤ d(x, y) +

1

n

and since ct is nonexpanding, d(x, y) ≤ dt(x
′, y′).

(b) Let M ⊆ C be a countable set. Then so is M ×M . For every pair (x, y)
in M ×M find tx,y ∈ T and x′, y′ ∈ Ctx,y

as in (a). Since our diagram is
countably filtered, we can choose t independent of the given pair. Given x ∈ M ,
all the chosen elements x′ in Ct (for all y ∈ M) form a countable set that
ct maps to x. This implies, since our diagram is countably filtered, that there
exists a connecting map f : Ct → Ct̄ which also maps all these elements x′ to one
element, say x̄, of Ct̄. Moreover, since M is countable, we can assume that t and t̄

are chosen to be the same for all x ∈ M . It follows that the set M = {x̄;x ∈ M}
is mapped by ct̄ isometrically to M : for every pair x, y ∈ M we have unique
x̄, ȳ ∈ M with ct̄(x̄) = x and ct̄(ȳ) = y, and since f is nonexpanding

d(x, y) = dtx,y
(x′, y′) ≥ dt̄(x̄, ȳ).

Since ct̄ is nonexpanding, d(x, y) ≤ dt̄(x̄, ȳ). ⊓⊔

Corollary 2.8. Every countable space in MS or in PMS is a countably pre-

sentable object.

Proof. Let A be a countable space in PMS. Consider a colimit as in Lemma 2.7.
The hom-functor of A preserves it because for every morphism f : A → C there
exists an essentially unique factorization through some ct: apply the lemma to
M = f [A].

The argument for MS is analogous: MS is clearly closed under (countably)
filtered colimits in PMS. ⊓⊔

Corollary 2.9. Every separable space in CMS is a countably presentable object.

Proof. Let A be a complete metric space with a countable dense set M ⊆ A.
To verify that CMS(A,−) preserves countably filtered colimits, we first observe
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that CMS is closed under such colimits in PMS. (To see this, consider a colimit
as in Lemma 2.7 and take a Cauchy sequence xn in C. There exists, for M =
{xn;n ∈ N}, an index t ∈ T and a Cauchy sequence x′

n in Ct with xn = ct(x
′
n)

for every n. Then x′
n has a limit y′ in Ct, yielding a limit y = f(y′) of xn

in C.) For every nonexpanding map f : A → C = colimCt there exists t and
M ′ ⊆ Ct such that the colimit map ct is an isometry between M ′ and f [M ]. It
follows easily that, since M is dense in A, there exists a factorization f = ct·f ′

where f ′ : A → Ct is nonexpanding. Consequently, CMS(A,C) is a colimit
of CMS(A,Ct) in Set, as required. ⊓⊔

Remark 2.10. No non-empty space is finitely presentable in CMS. To see this,
express the real interval [0, 1] as a filtered colimit in CMS of [ 1

n
, 1] for n =

1, 2, 3, . . . If A 6= ∅, then the constant map f : A → [0, 1] with value 0 does not
factorize through any of the colimit maps.

Fact 2.11. Remark 2.3(1) generalizes as follows: Let A be a locally λ-presentable
category. Every λ-accessible endofunctor F is determined by its values on Aλ:
we have F = LanJ(F ·J) for the full embedding J : Aλ → A .

Consequently, the category of all λ-accessible endofunctors on A is locally
λ-presentable.

3 The Hausdorff Functor

The aim of this section is to prove that on the categoryCMS of complete metric
spaces the Hausdorff functor H introduced in Example 3.12 below is finitary.

It was proved by F. van Breugel et al [8] that H X is the free semilattice onX

in CMS. Thus, this functor is a special case of the monad MT on CMS induced
by free T -algebras for a Lawvere algebraic theory T . We start by proving that
MT is a finitary functor for every algebraic theory T , then we turn to the
special case.

Recall from [10] that an algebraic theory (T , T ) is a category T whose
objects are natural numbers, together with a functor T : Fop → T (see Exam-
ple 2.2(1)) which is identity on objects and preserves finite products. This means
that in T the object n is a product n = 1× · · · × 1 with projections

Tp0, . . . , T pn−1 : n → 1

for the canonical injections pi : 1 → n in F.

Notation 3.1. Let A be a category with finite products. A T -algebra in A is a
functor A : T → A preserving finite products. The category of T -algebras,

AlgA T

is the full subcategory of the functor category A T . We denote by

UT

A : AlgA T → A

the forgetful functor defined by A 7→ A(1) for all algebras A : T → A .
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Example 3.2. Semilattices. These are algebras on one binary operation which
is commutative, associative, and idempotent. Let Ts be the corresponding al-
gebraic theory, i.e., its morphisms from n to 1 are the semilattice-terms on
n variables.

A Ts-algebra in a category A is an object A together with a morphism
α : A×A → A for which the following three diagrams

A×A A×A

A

σ

α α

A×A×A A×A

A×A A

id×α

α×id α

α
A

A×A A

∆ id

α

commute (where σ is the swapping isomorphism).
For example, AlgCMS Ts is the category of complete metric spaces with a

nonexpanding semilattice operation.

Proposition 3.3. Let (T , T ) be an algebraic theory. For every locally finitely

presentable category A the category AlgA T is also locally finitely presentable,

and UT
A

is a finitary functor having a left adjoint.

Proof. A T is locally finitely presentable, and it is clear that the category of
algebras is closed under limits and filtered colimits in it. Thus, it is also locally
finitely presentable category, see [3], Theorem 2.48. It is also clear that UT

A

preserves limits and is finitary, thus, it has a left adjoint by [3], Theorem 1.66.
⊓⊔

Remark 3.4. Analogously, if A is a locally countably presentable category, then
so is AlgA T , and UT is countably accessible.

Notation 3.5. We denote by FT
A

the left adjoint of UT
A
, and by

MT

A = UT

A ·FT

A : A → A

the corresponding monad on A .

Example 3.6. For A = PMS we conclude that UT
PMS

is countably accessible for
every algebraic theory T . But here we can do better: UT

PMS
is always finitary.

In fact, the functor from PMST to PMS given by evaluation at 1 preserves
colimits, and UT

PMS
is its composite with the full embedding Alg

PMS
T →֒

PMST . Thus, it is sufficient to show that T -algebras are closed under filtered
colimits in PMST . This follows from the next
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Lemma 3.7. Filtered colimits commute with finite products in PMS.

Proof. Let (A, d) = colimi∈I(Ai, di) and (A′, d′) = colimj∈J (A
′
j , d

′
j) be two

filtered colimits. Let (ci) and (c′j) be the colimit cocones. Then the product
(A, d)× (A′, d′) carries the maximum pseudometric d0:

d0
(
(a, a′), (b, b′)

)
= max

{
d(a, b), d′(a′, b′)

}

where
d(a, b) = inf

{
di(ai, bi); i ∈ I, ai ∈ c−1

i (a) and bi ∈ c−1
i (b)

}

and analogously d′(a′, b′).
We now form the filtered diagram of all

(Ai, di)× (A′
j , d

′
j)

indexed by I × J . Its colimit has the same underlying cocone ci× c′j : Ai×A′
j →

A×A′ as above. And its pseudometric is

d1
(
(a, a′), (b, b′)

)
= inf

{
max

{
di(ai, bi), d

′
j(a

′
j , b

′
j)
}
;

(i, j) ∈ I × J, ai ∈ c−1
i (a), bi ∈ c−1

i (b), a′j ∈ (c′j)
−1(a′) and b′j ∈ (c′j)

−1(b′)
}
.

This is the same pseudometric as d0. ⊓⊔

Corollary 3.8. The forgetful functor from Alg
PMS

T to PMS is finitary for

every algebraic theory T .

Remark 3.9. We have seen in Example 2.6 that CMS is a full reflective sub-
category of PMS, i.e., the embedding E : CMS → PMS has a left adjoint
R : PMS → CMS. Indeed, CMS is reflective in MS, where the reflector
R1 : MS → CMS is given by Cauchy completion, and MS is reflective in PMS,
where the reflector R2 : PMS → MS is the quotient modulo zero distance (see
Example 2.6(3)). Thus

R = R1·R2 : PMS → CMS

is a left adjoint to E.

Lemma 3.10. Let A be a cocomplete category with finite products and B a

full reflective subcategory whose reflector R : A → B preserves finite products.

For every algebraic theory T the forgetful functor UT
B

preserves every type of

colimits that UT
A

preserves.

Corollary 3.11. The forgetful functor of AlgCMS T is finitary for every alge-

braic theory T .

This follows from Lemma 3.10 applied to A = PMS, see Corollary 3.8, and
the observation that R in Remark 3.9 preserves finite products since both R1

and R2 do.
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Example 3.12. The Hausdorff functor H . Recall that for a metric space (X, d),
the distance of a point x ∈ X to a set M ⊆ X is d(x,M) = inf{d(x,m);m ∈ M}.
The Hausdorff distance of sets M,N in PX is

d∗(M,N) = max

{
sup
x∈M

d(x,N), sup
y∈N

d(y,M)

}
.

The Hausdorff functor is the endofunctor H of CMS defined on objects X by

H (X, d) = all non-empty compact subsets of X with the metric d∗,

and on morphisms by direct images. For the theory Ts of Example 3.2 this is an
algebra with the semilattice operation

α(M,N) = M ∪N.

As proved in [8], H (X, d) is the free semilattice in CMS over (X, d). In other
words, for the monad MT

A
of Notation 3.5 we have

H = MTs

CMS
.

Corollary 3.13. The functor H and all other endofunctors of CMS obtained

by combinations of it, the constant functors and the identity functor using com-

position, finite products or arbitrary coproducts, are finitary.

In particular, each such combination F : CMS → CMS has a final coalgebra
obtained by some transfinite iteration of F on 1. This follows from the fact that
F clearly preserves monomorphisms (since H does) and every finitary, monos-
preserving endofunctor F of a locally presentable category has the final coalgebra
of the form F i1 for some ordinal i, see [5].

Open problem 3.14. The Plotkin power-domain is a complete analogy of the
Hausdorff functor with CMS substituted by the category ωCPO of ω-cpo’s.
Indeed, the Plotkin power-domain can be characterized as a free semilattice
on ωCPO, see e.g. [1]. Is the corresponding endofunctor of ωCPO finitary?

4 Equational Presentation of Functors

Finitary set functors F can, as proved in [4], be presented by a signature Σ and
a set of “flat” equations. Then F -algebras are precisely the Σ-algebras satis-
fying those equations. We recall this quickly and then generalize it to finitary
endofunctors of all locally finitely presentable categories.

Example 4.1. The set functor

FX = all unordered pairs in X
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is presented by a single binary operation, corresponding to the polynomial func-
tor HX = X ×X, and the commutativity equation. The latter can be expressed
by the parallel pair of morphisms

u, u′ : 1 → H2

(recall 2 = {0, 1} from Example 2.2(1)) representing the elements (0, 1) and (1, 0)
of H2, respectively. In fact, the obvious natural transformation ε : H → F given
by (x, y) 7→ {x, y} is universal w.r.t. the property that ε2 merges u and u′.

Example 4.2. The functor Pf of all non-empty finite subsets can be presented by
the signature Σ of one n-ary operation σn for every n = 1, 2, . . . , corresponding
to the polynomial functor

HΣX = X +X ×X + · · · = X+

via all the equations

σl(x0, . . . , xl−1) = σk(y0, . . . , yk−1)

where for some l ≤ k in N we have {x0, . . . , xl−1} = {y0, . . . , yk−1}. Again, each
such an equation corresponds to a parallel pair

u, u′ : 1 → HΣk

and the obvious natural transformation ε : HΣ → Pf is universal w.r.t.

εk·u = εk·u
′ for each u, u′ above.

Remark 4.3. (1) Recall that for every signature Σ = (Σk)k∈N the classical Σ-
algebras are precisely the algebras for the polynomial endofunctor for Set given
by

HΣX = Σ0 +Σ1 ×X +Σ2 ×X2 + · · ·

(2) An equation u = u′ is just a notation for a pair of terms. We call it flat
if both of the terms have the form σ(x1, . . . , xn) for some σ ∈ Σn and some
n-tuple of variables. This is precisely a parallel pair

u, u′ : 1 → HΣX where X = {x1, . . . , xn}.

Definition 4.4 (See [4]). A set functor F is presented by a signature Σ and a

set of flat equations ui, u
′
i : 1 → HΣXi (i ∈ I) provided that there exists a natural

transformation ε : HΣ → F universal w.r.t. the commutativity of the squares

1 HΣXi

HΣXi FXi

ui

u′

i εXi

εXi

(4.2)
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Remark 4.5. We will see later that every presentation defines a finitary set func-
tor, and every finitary set functor has a presentation.

Remark 4.6. As we pointed out in Remark 2.3(2), the category of finitary func-
tors on a locally finitely presentable category A is equivalent to the presheaf
category A F . Hence, from now on we will not distinguish between a finitary
endofunctor on A and the corresponding presheaf.

Observation 4.7. The signature Σ can be considered as a functor from F
0, the

discrete category of natural numbers, into Set. We thus obtain the category

Sgn = SetF
0

of signatures as a functor category. Its morphisms are functions f : Σ → Σ′

preserving the arity (or, equivalently, collections of functions fn : Σn → Σ′
n).

Denote by
I : F0 → F

the non-full embedding. Then the polynomial functor HΣ , considered as an
object of SetF, can be characterized, up to natural isomorphism, as the left Kan
extension of Σ : F0 → Set along I:

HΣ = LanI Σ.

That is, given a finitary functor considered as G ∈ SetF, natural transformations
α : HΣ → G correspond bijectively to natural transformations ᾱ : Σ → G·I via
precomposition with I (see Lemma 4.17).

Definition 4.8 (M. Kelly and J. Power [9]). Let A be a locally finitely

presentable category. By a signature is meant a collection Σ = (Σn)n∈F of

objects of A indexed by representatives of finitely presentable objects.

A Σ-algebra is an object A of A together with a function assigning to mor-

phisms in A (n,A) morphisms in A (Σn, A):

n
f

−−→ A

Σn
f̂

−−→ A

for every n ∈ F .

Given another Σ-algebra B, a Σ-homomorphism is a morphism h : A → B

of A satisfying

h·f̂ = ĥ·f for all n ∈ F and f : n → A.

Example 4.9. Set. For F of Example 2.2, signature has the usual meaning. And
the same holds for Σ-algebras: given a set A with n-ary operations σA : An → A

for all σ ∈ Σn, we obtain a map assigning to every n-tuple in A, f : n → A, the
function

f̂ : Σn → A, σ 7→ σA(f).

Conversely, given a Σ-algebra A as in Definition 4.8, define for every σ ∈ Σn the
n-ary operation σA : f 7→ f̂(σ).

Under this bijective translation homomorphisms in the sense of Definition 4.8
are the usual homomorphisms of Σ-algebras.
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Example 4.10. Pos. Here Σ is indexed by (representatives of) finite posets. We
denote for every n ∈ N by c(n) the chain of length n and by d(n) the discretely
ordered set of n elements. We also denote by 0 the initial (empty) poset and by
1 = d(1) the terminal one.

(1) The signature Σ with

Σd(2) = c(2) and Σn = 0 for all n 6= d(2)

corresponds to algebras on posets (A,≤) with two binary operations σ, τ satis-
fying σ(x, y) ≤ τ(x, y) for all pairs (x, y). In fact, this is the same as giving a
function

d(2)
f

−−→ A

c(2)
f̂

−−→ A

An example of a Σ-algebra: N\{0, 1} where σ is addition and τ is multiplication.
(2) The signature Σ′ with

Σ′

c(2) = 1 and Σn = 0 for all n 6= c(2)

corresponds to algebras given by a binary operation σ defined iff the pair (x, y)
satisfies x ≤ y. This is the same as giving a function

c(2)
f

−−→ A

1
f̂

−−→ A

An example of a Σ-algebra: N\{0} ordered by divisibility, where the operation σ

is division.

Example 4.11. K-Vec. Here F = {Kn;n ∈ N} and signatures thus have the
same form as in Set. However, due to the coincidence of binary products and
coproducts, formally different signatures yield equal categories of algebras. For
example, let us consider the signature that in Set corresponds to one binary and
one unary operation:

ΣK2 = K, ΣK = K and Σn = 0 else.

Then aΣ-algebra is given by a vector spaceA and two linear functions A×A → A

and A → A. This is equivalent to giving three linear functions A → A, thus, the
signature

Σ′
K = K3 and Σ′

n = 0 else

yields the same algebras.

Example 4.12. MS. Let δ be the metric space of two elements of distance 1
2 .

The signature
Σδ = 1 and Σn = 0 else

corresponds to algebras on a metric space (A, d) with one binary operation de-
fined in precisely the pairs (x, y) with d(x, y) ≤ 1

2 .
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Definition 4.13. The polynomial functor

HΣ : A → A

of a given signature Σ is defined on objects X by

HΣX =
∐

n∈F

A (n,X) •Σn

where M •Σn denotes a copower of M copies of the object Σn.

Example 4.14. For Set this is the formula of Remark 4.3, since Set(n,X)•Σn =
Σn ×Xn.

The polynomial functors of Example 4.10 are

HΣ(X,≤) = (X ×X) • c(2) and HΣ′(X,≤) = Pos
(
c(2), (X,≤)

)
.

Lemma 4.15. The category of Σ-algebras and homomorphisms is equivalent

to AlgHΣ.

Proof. EveryΣ-algebraA defines for every n ∈ F a morphism from A (n,A)•Σn

to A whose component at f : n → A is f̂ : Σn → A. We thus obtain a HΣ-algebra
where

α :
∐

n∈F

A (n,A) •Σn → A

has the above components. Conversely, given an HΣ-algebra α : HΣA → A the
function

n
f

−−→ A

Σn
f̂

−−→ A

is defined by having f̂ equal to the component of α corresponding to f ∈ A (n,A).

It is easy to see that the above functions extend to functors Σ-Alg →
AlgHΣ and AlgHΣ → Σ-Alg which form an isomorphism of categories. In
fact, a homomorphism h of HΣ-algebras:

∐
A (n,A) •Σn A

∐
A (n,B) •Σn B

α

∐
A (n,h)•id h

β

is precisely a morphism h : A → B in A such that h·f̂ = ĥ·f for every n ∈ F

and f ∈ A (n,A). ⊓⊔
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Notation 4.16. Generalizing Observation 4.7, F 0 denotes the discrete category
on objects from F , and

I : F
0 → F

is the non-full embedding.

A signature is nothing else than a functor from F 0 to A , thus we call A F
0

the category of signatures.

Lemma 4.17. For every signature Σ the polynomial endofunctor HΣ can, as

an object of A F , be characterized as the left Kan extension of Σ:

HΣ = LanI Σ.

Proof. It is our task to show that for every finitary endofunctor considered as
G ∈ A F the natural transformations α from Σ to G·I (i.e., collections of mor-
phisms αn : Σn → G(n) indexed by n ∈ F ) correspond bijectively to natural
transformations from HΣ to G. Indeed, to give a natural transformation

∐

n∈F

A (n,−) •Σn → G

means to give, for every n ∈ F , a natural transformation β : A (n,−)•Σn → G.
By Yoneda Lemma, β is determined by the idn-component αn : Σn → G(n)
of βn. ⊓⊔

Remark 4.18. In particular, given a signature morphism u : Σ → Σ̄ = HΣ̄ ·I the
corresponding natural transformation ū : HΣ → HΣ̄ has components

ūA = [HΣ̄I(f)·un] :
∐

n∈F

∐

f : n→A

Σn → HΣ̄A

for all A.

Definition 4.19. By a flat equation in a signature Σ is meant a parallel pair

u, u′ : n → HΣk for n, k ∈ F .

A finitary functor considered as G in A F is said to be presented by a signa-

ture Σ and flat equations ui, u
′
i : ni → HΣki (i ∈ I) provided that there exists

a natural transformation ε : HΣ → G universal w.r.t. the commutativity of the

squares

ni HΣki

HΣki Gki

ui

u′

i εki

εki

(i ∈ I). (4.3)
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Example 4.20. The endofunctor G of Pos defined by

G(X,≤) =
{
(x, y) ∈ X2;x < y

}
∪ {∗}

on objects and on morphisms f : (X,≤) → (Y,�) by

Gf(x, y) =
(
f(x), f(y)

)
if f(x) ≺ f(y)

whereas Gf has else the value ∗, has the presentation by the signature Σ′ of
Example 4.10 and the flat equation

σ(x, x) = σ(y, y).

Construction 4.21. A finitary endofunctor presented by a given set ui, u
′
i : ni →

HΣki (i ∈ I) of flat equations.
Define a signature Σ̄ by

Σ̄k =
∐

i∈I,ki=k

ni for all k ∈ F .

Then the morphisms ui define a natural transformation from Σ̄ to HΣ ·I: its
component at k ∈ F is simply

[ui] :
∐

i∈I,ki=k

ni → HΣk.

From Lemma 4.17 we obtain the corresponding natural transformation

ū : HΣ̄ → HΣ .

Analogously for u′ : HΣ̄ → HΣ . In the (cocomplete) category A F of all finitary
endofunctors form the coequalizer

HΣ̄ HΣ F.
ū

ū′

ε

Then F is presented by the given flat equations.
Indeed, for every k the equation εk·uk = εk·u′

k guarantees that ε satisfies
the equations ui, u

′
i for all i ∈ I. Conversely, let ε′ : HΣ → F ′ be a natural

transformation with ε′ki
·ui = ε′ki

·u′
i for all i ∈ I. Then obviously ε′·ū = ε′·u′,

thus, ε′ factorizes uniquely through ε.

Proposition 4.22. Every finitary endofunctor of a locally finitely presentable

category has a presentation by a signature and a set of flat equations.

Proof. Precomposition with I : F 0 → F defines a functor

−·I : A
F → A

F
0

which is monadic. Indeed, this functor has both a left and a right adjoint, and
it reflects isomorphisms: given a morphism α : F → G in A F which is invert-
ible in A F

0

(i.e., has invertible components), then α is a natural isomorphisms,
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i. e., it is invertible in A F . Thus, monadicity follows from Beck’s Theorem, see
e.g. [7], Theorem 4.4.4. Consequently, finitary endofunctors of A are precisely

the monadic algebras of the corresponding monad T on the category A F
0

of
signatures. It follows from Lemma 4.17 that this monad assigns to every signa-
ture Σ the signature T (Σ) = HΣ ·I. The free T-algebra on Σ is then HΣ .

Every finitary endofunctor F , i.e., every Eilenberg-Moore algebra for T, is a
coequalizer of a parallel pair of homomorphisms between free T-algebras:

HΣ̄ HΣ F.
u

u′

ε

Consider, for every k ∈ F , the object HΣ̄k as a filtered colimit of objects ni

(i ∈ Ik) in F with the colimit cocone v
(k)
i : ni → HΣ̄k. Then the flat equations

uk·v
(k)
i , u′

k·v
(k)
i : ni → HΣk

(where k ranges through F and i through Ik) form an equational presentation
of F .

Indeed, from ε·u = ε·u′ it follows that each of the above parallel pairs is
merged by εk. Let ε̂ : HΣ → F̂ another morphism of A F such that each of
the above parallel pairs is merged by ε̂k. To prove that ε̂ uniquely factorizes
through ε we need to verify that ε̂·u = ε̂·u′. Equivalently, ε̂k·uk = ε̂k·u′

k for

every k ∈ F . This follows from ε̂k·uk·v
(k)
i = ε̂k·u′

k·v
(k)
i since the cocone v

(k)
i ,

i ∈ Ik, is collectively epic (being a colimit cocone). ⊓⊔

Remark 4.23. (1) The above proof shows that we always have a canonical pre-
sentation of a finitary functor F : take the signature Σ defined by

Σn = F (n)

for all n ∈ F . Obtain a canonical natural transformation ε : HΣ → F whose
component

εk :
∐

n∈F

A (n, k) • Fn → Fk

is given by [Ff ] :
∐

f∈A (n,k) Fn → Fk. Then consider all the flat equations
formed by all parallel pairs

u, u′ : n → HΣk (n, k ∈ F ) with εk·u = εk·u
′.

(2) We can, as we have seen e.g. in Example 4.1, often obtain a much simpler
equational presentation. Another example:

Example 4.24. Let F be the set-functor obtained from X 7→ X ×X by merging
the diagonal to a single element ∗:

FX =
{
(x, y);x, y ∈ X, x 6= y

}
∪ {∗}.

F has a presentation using a single binary operation σ and the equation

σ(x, x) = σ(y, y).
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Definition 4.25. A Σ-algebra A is said to satisfy a flat equation morphism

u, u′ : n → HΣk provided that its algebra structure α : HΣA → A merges HΣf ·u
and HΣf ·u

′ for all f : k → A.

Example 4.26. In Set this is the usual concept of fulfilling an equation with
k variables: given any interpretation f : k → A of the variables, the elements
of A computed from the two sides of the equation are equal.

Lemma 4.27. If a functor F is presented by a signature Σ and flat equa-

tions u, u′ (i ∈ I), then the category AlgF of F -algebras is equivalent to the

category of all Σ-algebras satisfying those equations.

Remark 4.28. There is an alternative definition of what it means for a Σ-algebra
A to satisfy a flat equation morphism—and fortunately, the result is the same
as above. This is based on the following idea of M. Kelly and J. Power [9]: given
objects A and B of A , let 〈A,B〉 be the endofunctor of A assigning to X the
power of B to the set A (X,A):

〈A,B〉X = BA (X,A ).

In other words, 〈A,B〉 is the following composite

A
A (−,A)

−−−−−−→ Setop
B(−)

−−−−→ A .

Then natural transformations from F to 〈A,A〉 are, for every endofunctor F ,
in a canonical bijective correspondence to F -algebra structures on A. In fact,
to every algebra α : FA → A assign α∗ : F → 〈A,A〉 where the components
α∗
X : FX → AA (X,A) are given by

α∗
X = 〈α·Ff〉f : X→A : FX → 〈A,A〉X = AA (X,A).

It is now natural to say that an Σ-algebra α : HΣA → A satisfies a flat
equation u, u′ : n → HΣk iff

α∗
k·u = α∗

k·u
′ : n → 〈A,A〉k.

But this tells us precisely that α·HΣf ·u = α·HΣf ·u′ for all f : X → A .

Remark 4.29. Everything above generalizes without any problem from finitary
functors to accessible ones. Let A be a locally λ-presentable category (see Defi-
nition 2.5).

By a λ-ary signature is meant a collection Σ = (Σn)n∈Aλ
of objects of A .

The corresponding polynomial endofunctor HΣ is given by

HΣX =
∐

n∈Aλ

A (n,X) •Σn.

A flat λ-ary equation is a parallel pair of morphisms u, u′ : n → HΣk with
n, k ∈ Aλ. A λ-accessible endofunctor F is said to have a λ-ary presentation

if there exists a λ-ary signature Σ and a collection ui, u
′
i : ni → HΣki of λ-ary

flat equations such that there is a universal natural transformation ε : HΣ → F

w.r.t. εki
·ui = εki

·u′
i for every i.
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Proposition 4.30. Every λ-accessible endofunctor of a locally λ-presentable

category has a λ-ary presentation, and every λ-ary presentation defines a λ-

accessible endofunctor.

The proof is completely analogous to Construction 4.21 and Proposition 4.22.

Example 4.31. The countable power-set functor Pc is presented by one ℵ0-ary
operation σ and one constant together with the flat equations

σ(x0, x1, x2 . . . ) = σ(y0, y1, y2 . . . ) whenever
{
xi

}
i∈N

=
{
yi
}
i∈N

.

5 An Equational Presentation of the Hausdorff Functor

We end this paper with a concrete presentation of H . This happens to be
the same presentation that Pf has in Set. More to the point, consider the
parallel pairs u, u′ : 1 → k+ presenting Pf in Example 4.2. We interpret X+ =∐

n>0 X
n, using the coproduct of finite powers in CMS; this is the disjoint union

of the spaces of finite tuples with the maximum metric. Notice that this is not a
polynomial functor in the sense of Definition 4.13; in fact, the polynomial functor
given by the signature with one operation symbol of arity n for any non-empty
finite discrete space n maps a space X to

∐
n>0 X

n with the discrete metric.
We now use the same family of pairs u, u′ : 1 → k+ as in Example 4.2. We

claim that the joint coequalizer in CMS of this family is the natural transfor-
mation ε : (−)+ → H given by

εX : X+ → H X (x1, . . . , xn) 7→ {x1, . . . , xn}.

The set Pf (X) of all non-empty finite sets is dense in H X for any space
X . To see this, let C be a non-empty compact subset of X . Fix δ > 0. The
collection of open balls of radius δ which meet C covers C. By compactness,
there is a finite subcollection which covers C. The set of centers gives a finite,
hence compact, F ⊆ X , and its distance to C in the Hausdorff metric is at most
δ.

And since ε·u = c·u′ for all the above pairs u, u′ : 1 → k+, our claim that ε
is their joint equalizer follows from the following fact.

Lemma 5.1. For every pair M,N of non-empty finite subsets of a complete

metric space X, there are words m,n ∈ X+ so that εX(m) = M , εX(n) = N ,

and

dX+(m,n) = dH X(M,N).

Proof. Put M = {x0, . . . , xp} and N = {y0, . . . , yq−1}. We may assume that x0

and y0 are such that dH X(M,N) = dX(x0, y0). Define (p+ q)-tuples in X by

m = (x0, . . . , xp−1, x[y0], . . . , x[yq−1])
n = (y[x0], . . . , y[xp−1], y0, . . . , yq−1)

where we choose x[yi] such that d(xi, x[yi]) ≤ d(x0, y0) for all i, and analogously
d(x[yj ], yj) ≤ d(x0, y0) for all j. Then dX+(m,n) = d(x0, y0). Moreover, εX(m) =
M and εX(n) = N .
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Proposition 5.2. The Hausdorff functor is presented in CMS by all the parallel

pairs u, u′ of Example 4.2, with the discrete metric on k = {0, ..., k − 1}.

Proof. It is our task to prove that for the above endofunctor (−)+ of CMS,
the natural transformation ε : (−)+ → H is a joint coequalizer of all pairs
ui, u

′
i. Clearly ε is non-expanding. Let X and Y be complete metric spaces,

and let f : X+ → Y satisfy f · ui = f · u′
i for all i ∈ I. There is a unique

g0 : Pf (X) → Y such that g0 · εX+ = f . By Lemma 5.1 and since f is non-
expanding, g0 is non-expanding, too. Since Pf (X) is dense in H (X), g0 extends
to a unique g : H (X) → Y .

Remark 5.3. We find it surprising that H has the same presentation in CMS
that Pf has in Set. Let us observe that, nonetheless, this presentation is not a
finitary presentation in the sense of Definition 4.4 for two reasons: (a) (−)+ is
not a polynomial functor and (b) no non-empty space is finitely presentable (see
Remark 2.10).

Ad (a) one can define the notion of presentation in an enriched setting as
in [9], and then (−)+ is indeed a polynomial functor so that, ad (b), the pre-
sentation of the Hausdorff functor we showed in this section is then a countable
presentation (even though only operations of finite arity are used).

Also notice that A. Kurz and J. Velebil [12, Proposition 5.4] provide (in the
enriched setting) a presentation of a related functor mapping a complete metric
space X to the space of its closed and separable subsets with the Hausdorff
metric. Their presentation is countable using besides n-ary operations as above
also an ω-ary operation.

6 Conclusions

We have shown that finitary endofunctors of locally finitely presentable cate-
gories have an equational presentation using finitary signatures in the sense of
M. Kelly and J. Power [9]. There are important categories which are not locally
finitely presentable, but are locally countably presentable, e.g. ωCPO andCMS
(complete metric spaces). There every countably accessible endofunctor has an
equational presentation using signatures of countable arity. The main result of
our paper is that the Hausdorff functor on CMS, which was proved to be acces-
sible by F. van Breugel et al [8], is in fact finitary. It has a presentation which
is completely analogous to the presentation of the finite non-empty power set
functor on Set.
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4. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic
Publ., Dordrecht 1990
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