A Case Study: Formal Verification of Processor
Critical Properties

Emmanuel Zarpas

IBM Haifa Research Laboratory
zarpas@il.ibm.com

1 Introduction

Over the past ten years, the Formal Methods group at the IBM Haifa Research
Lab has made steady progress developing tools and techniques that bring the
power of model checking to the community of hardware designers and verification
engineers, making it an integral part of the design cycle for many projects. Sev-
eral IBM and non-IBM design teams have successfully integrated RuleBase [2],
the IBM formal methods tool, into their design cycles. In this paper we present
a case study describing the formal verification of critical properties in a recent
processor. Because the details of the design and the specifications are highly pro-
prietary, this paper focuses on the process, techniques and experience involved
in the formal verification of the critical properties. We report here experiences
on two units, named here for confidentiality reasons unit A and B.

2 Design Under Formal Verification

Unit A The original implementation of this unit had about 15,000 flip-flops and
220,000 gates, which is a challenge for complete formal methods. We checked
about 200 properties in order to verify the critical properties of the unit as
thoroughly as possible. We found 35 bugs. Three of these bugs were found after
the first tape out of the SoC. We were also able to highlight the remaining
weaknesses to the design team and the SoC architect (so they could fix them).

The design cannot reach one of the critical states in less than 600 cycles. This
was proved to be far too deep for Bounded Model Checking [3]. The Discovery
engine, the main BDD symbolic model checking engine used by RuleBase, proved
to be the only engine able to cope with the problem. Even so, as the design grew
larger and significantly more complex, we had to restrict the model. By the end of
the project, it became impossible to check properties without the use of severe
environment restrictions, see the first line of Table 1 for average data about
models and Discovery runs. SAT-based bounded model checking could still be
used for the design, but only for bounds lower than 200. We made a decision to
override internal design variables in order to allow the design to reach all critical
states within about twenty cycles and therefore achieve a reasonable level of
coverage.

At the very end of the project, progress made in model checking technologies
allowed us to check properties without overriding any internal variables or any
restrictions of the behavior of control input variables. Using interpolation-based
techniques as in [4] allowed us to prove two thirds of our properties, including
some of the most sensitive properties. Our interpolation-based engine was able to
prove these properties in a surprisingly short amount of time. Indeed when this
engine was able to prove a property it was usually with an interpolant computed
with a low bound (e.g. 10 or 15). In general, the engine was either able to
prove a property quickly or unable to do it. For the remaining properties, we
used incremental bounded model checking [5]. Second line of table 1 summarizes
average data about models and runs. Of course, using bounded model checking,
we could prove properties only with a bound. Reachability depths computed
for the intermediate models made us think that the bounds (in the k=1000-
1500 range) we used were probably high enough to prove most of the properties
checked. However, this approach implied solving extremely big CNFs, indeed
our SAT solver had to fight with CNFs of more than 20 million variables and
60 million clauses. With such CNFs memory becomes an issue, we had to work
on a 8 GB 64-bit machine. Even though, each property often took more than 24
hours to be checked up to the relevant bound.

Unit B The B unit we checked had two main phases. Phase 1 lasts for several
hundred thousand cycles. This makes model checking for these properties nearly
impossible as is. To circumvent this problem, we used a checkpoint generated by
simulation to give our model an initial state at the beginning of Phase 2 (main
unit B concerns are mainly for Phase 2). As initial states, we took a subset of
the reachable states in the first cycle of Phase 2. Consequently, we did not get
full coverage. A bug could be missed, for example, if the only path to this bug
is through a Phase 1 state that was outside the subset used. Nevertheless, using
this method, we obtained a level of verification far better than any that could
be obtained using simulation or semi-formal methods.

The original implementation of B unit had about 1200 flip-flops and 12500
gates. Because this not very large, we were able to check each rule in reasonable
amount of time (anywhere from a few minutes to less than an hour). The design
encompassed a 2'° counter making reachability analysis, and therefore on-the-
fly model checking, impracticable. The Discovery engine allowed us to perform
to perform an over-approximation of the reachable states by disregarding the
counter variables. At this point we were able to use a classical backward fix-
point computation search. In general, this proved to be a good solution for this
design (see third line of Table 1). As a results a dozen bugs were found very
quickly in an already mature design.

3 Lessons

According to users survey [2], the three most difficult activities related to Rule-
Base use are writing environments to cope with size, understanding design de-
tails and modifying design for size. As we saw in previous section, technology

progresses do make a difference in tackling big size designs, however in many
cases brute strength is not enough. The [2] discussion about dealing with the
size problem is still up to date, so we will focus here on processes considerations
usually disregarded in the literature, though critical for projects successes.

Designer support is critical For verification engineers, their relationship with
designers is one of the main challenges in verification projects, especially when
the verification engineers act de facto as consultants. It is not surprising that
we found it far easier to collaborate with skilled designers. Even if designers
do not carry out any formal verification on their own, they need the time and
availability to support the verification efforts being done on their design. First,
the specifications are generally not detailed enough for formal verification work.
The designer therefore has to give further explanations to the formal verification
engineers and help them define properties and models. In addition, the designer
plays an essential role in reviewing traces (either false negatives or real bugs)
and giving feedback in a timely manner.

Have the “classical” verification team involved The more formal verification is
embedded into the “classical” verification process, the better. Ultimately, the use
of formal verification should be a part of the entire verification strategy. Even
the system architecture should accommodate formal verification, for example by
taking into account that formal works better on small blocks than on big ones
(a very light case of design for verifiability). However, if the formal verification
engineers do not belong to the “classical” verification team, as it is often the
case, coordination should be established. The verification lead should closely
review the bugs found by formal methods on a regular basis, including properties
checked or not and model restrictions made. This is very important in order to
get a good cooperation with simulation teams and the maximum benefit and
return on investment for formal verification.

Write general environments (top down approach) In order to create a model, the
behavior of input signals of the designs need to be defined. We model input sig-
nals behavior using the PSL [1] modeling layer. A safe approach involves starting
with an environment as general as possible. A non-existential property proved
with an abstract environment will still hold for the “real life” environment. If
false negatives appear, the environment can be refined during the verification
process. In addition, abstract environments tend to be simpler and easier to
write. As a result, it is usually better to start with a general environment and
refine it when needed. Indeed, starting with a very precise, very detailed environ-
ment will take a long time to write, debug and tune and therefore waste designer
time, a most precious resource. By refining a general environment, you very well
could never have to reach such a level of detail, and even so, it is likely to be at
a late stage of the verification project and after achieving some results. Bottom
up approach is more risky: it is very easy to lose considerable time in tuning in a
precise way complex behaviors for some inputs signals with no significant gains.
Very often some abstracted behavior would have done as well.

Write simple properties The RuleBase property language is PSL. PSL is simple
to learn, yet the way it is used to write properties can have a significant impact
on a formal verification project. The simpler the property the better. Simpler
properties are easier to write, easier to understand, and easier to maintain. Even
more important, the more complex a property is, the more difficult it will be to
tune it and the more designer time, a rare and precious resource, will be required.
It makes sense to start writing the simplest properties you can imagine for your
model. This will allow you to assess your model and determine if it represents
the design, its complexity, whether it is suitable for formal methods, or whether
it should be made smaller by some restrictions. Many very important properties
can be expressed in a relatively simple manner. We found that checking even
trivial properties uncovered bugs. For example we found two bugs in A unit by
checking that a signal was actually a pulse. When you want to write a complex
rule, there is often a simpler version, or a simpler rule (either stronger or weaker)
that will find the same bugs. It makes sense to first seek out the simpler rule.
You may not be able to avoid writing and checking complex properties, however
it is a safe policy to write them during a second iteration.

4 Conclusions

In this paper, we showed how skilled use of a state-of-art formal methods tool can
allow checking critical properties in very important designs, in spite of technical
difficulties. The author wishes to thank I. Holmes, J. Liberty and Kanna Shimizu
for their support on design verification.

Depth |#State|#gates| BDD nodes|Memory Usage|Discovery| BMC|Interpolant
vars allocated (MB)| runtimes|runtimes| runtimes
Unit A (int.) | 1420] 520 4670] 1.3%107 260 10 h
Unit A (final) 1760| 24000 48 h + 1h
Unit B 979 305] 7640] 6.7 % 10° 63| 0.25h

Table 1. Average values for Unit A and B models and engines runs. Depth is the
number of cycles needed to complete reachability analysis.

References

1. Accelera. PSL LRM. http://www.eda.org/vfv/

2. S. Ben-David et al. Model Checking in IBM. In Formal Methods in System Design,
22, 2003.

3. A. Biere et al. Symbolic Model Checking Without BDDs. TACAS’99.

4. K. L. McMillan. Interpolation and SAT-based Model Checking. CAV’03.

5. O. Shtrichman. Pruning techniques for the SAT-based bounded model checking
problem. CHARME’01, 2001.

