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Abstract. A theme of recent side-channel research has been the quest
for distinguishers which remain e�ective even when few assumptions
can be made about the underlying distribution of the measured leak-
age traces. The Kolmogorov-Smirnov (KS) test is a well known non-
parametric method for distinguishing between distributions, and, as such,
a perfect candidate and an interesting competitor to the (already much
discussed) mutual information (MI) based attacks. However, the side-
channel distinguisher based on the KS test statistic has received only
cursory evaluation so far, which is the gap we narrow here. This contri-
bution explores the e�ectiveness and e�ciency of Kolmogorov-Smirnov
analysis (KSA), and compares it with mutual information analysis (MIA)
in a number of relevant scenarios ranging from optimistic �rst-order DPA
to multivariate settings. We show that KSA shares certain `generic' ca-
pabilities in common with MIA whilst being more robust to noise than
MIA in univariate settings. This has the practical implication that de-
signers should consider results of KSA to determine the resilience of their
designs against univariate power analysis attacks.

1 Introduction

Di�erential power analysis (DPA) is a form of side-channel analysis which em-
ploys some type of statistic (the distinguisher) to identify a correct hypothesis
about (part of) the secret key from within a set of possible alternative hy-
potheses. Popular distinguishers include the Pearson correlation coe�cient, the
distance-of-means test, and mutual information analysis (MIA). Mutual infor-
mation (MI) measures the total dependency between two random variables, and
was �rst proposed for use as a distinguisher at CHES 2008 ([1]). MIA's sell-
ing point is genericity : it is capable of key recovery even when the underlying
leakages satisfy few assumptions.

Previous work such as [2] and [3] demonstrated that the (notoriously problem-
atic) estimation of the leakage probability density functions for di�erent key-
dependent models is of decisive importance to the performance of MIA in prac-
tice. The authors of [2] suggested two alternative distinguishers based on statis-
tics which are conceptually similar to MI but do not require explicit density



estimation: the (two-sample) Kolmogorov-Smirnov (KS) test and the Cramér-
von-Mises criterion. Each essentially computes some notion of a `distance' be-
tween two distributions. Evaluations of these (and other similar) methods can be
found in the statistical literature (for example, [4]): whilst the Cramér-von-Mises
statistic performs particularly well (i.e. better than KS) for certain speci�c distri-
butions, the KS statistic is found to perform well across the board and therefore
represents the most generic, distribution-free method.

In this paper we demonstrate how the KS test statistic adapts to the purposes of
DPA and investigate the properties and practical performance of such attacks.
Alongside, we present an equivalent analysis of MIA�an ideal comparator be-
cause of its established role in the existing literature as well as its conceptual
similarity to Kolmogorov-Smirnov Analysis (KSA). We assess the distinguishers
as applied to key-recovery attacks against implementations of DES in four prac-
tically relevant leakage scenarios. Our results are interesting for academics and
practitioners alike: from an academic point of view it is interesting to investigate
how a conceptually similar approach such as the KS test performs in comparison
to MIA. From a practical point of view we are providing information about how
to choose the most appropriate distinguisher in certain settings. Speci�cally, in
the setting where the actual power model of a device is unknown to the attacker
and does not correspond to a `nice' Hamming weight leakage, and where a sub-
stantial amount of noise distorts the data-dependent signal, we show that KSA
actually outperforms MIA and hence is the best choice of a distinguisher (in this
setting) at present. This setting is practically relevant as it resembles what can
be expected when attacking devices that implement cryptography in hardware
and have measures in place to increase the level of noise.

Sect. 2 provides an introduction to di�erential power analysis (DPA). To explain
our comparison criterion we outline some key concepts related to the outcomes
of DPA attacks (i.e. the distinguishing vectors) in Sect. 3. We then explain how
the KS test adapts to DPA attacks (including considerations for higher-order
attacks) in Sect. 4. Section 5 reports the results of our analysis. We conclude
thereafter in Sect. 6.

1.1 Our Contributions

In Sect. 3 we adapt the ideas presented in [5] to our purposes and introduce the
measure of nearest-rival distinguishability to compare distinguishers. We argue
that this measure is relevant for practical considerations as it strongly in�uences
the number of traces required for successful key recovery: the smaller the nearest-
rival distinguishability score, the more traces will be necessary before the correct
key stands out from the alternative hypotheses when the vector comes to be
estimated in practice.

In Sect. 4 we show how the KS test statistic can be used to construct a distin-
guisher for power analysis attacks. We brie�y include relevant results from the



statistical literature and show how to apply them in the context of univariate and
multivariate attacks. An interesting conclusion that we can draw is that whilst
KSA shares many properties with MIA in the univariate setting, its extension
to general multivariate settings is problematic [6,7].

In Sect. 5 we analyse the application of the KS distinguisher to four relevant sce-
narios. An important phenomenon that we observe is that KSA is consistently
more robust to noise. Our results give conclusive evidence that it outperforms
MIA in univariate scenarios (our study ranges from the optimistic Hamming
weight assumption to realistic leakages including the assumption of an unknown
highly-nonlinear function). Interesting observations result from our study of bi-
variate extensions of KSA: here it clearly underperforms MIA both in the masked
and unmasked case, irrespective of noise. Our contribution thus gives a balanced
view of KSA; it shows both its strengths and weaknesses.

2 Di�erential Power Analysis

The context for all our analyses is a `standard DPA attack' scenario as de�ned
in [8]. We assume that the power consumption T of the target cryptographic de-
vice depends on some internal value (or state) fk∗(x). The state is a function of
some part of the plaintext x ∈ X , as well as some part of the secret key k∗ ∈ K.
Consequently, we have that T = L ◦ fk∗(X) + ε, where X is a random variable
taking values in X , L is some function which describes the data-dependent com-
ponent and ε comprises the remaining power consumption which can be modeled
as independent random noise. The attacker has N power measurements corre-
sponding to encryptions of N known plaintexts xi ∈ X , i = 1, . . . , N and wishes
to recover the secret key k∗. The attacker can accurately compute the internal
values as they would be under each key hypothesis {fk(xi)}Ni=1, k ∈ K and uses
whatever information he possesses about the true leakage function L to construct
a prediction model M : f(X ) −→M.

DPA is based on the intuition that the modeled power traces corresponding
to the correct key hypothesis should bear more resemblance to the true power
traces than the modeled traces corresponding to incorrect key hypotheses. An
attacker is thus concerned with comparing the degree of similarity between the
true and modeled traces. A range of comparison tools�`distinguishers'�can be
used, of which mutual information (MI) is an example. MI measures, in bits, the
total information shared between two random variables, and is most intuitively
expressed in terms of entropies via Shannon's formula: I(A;B) = H(A)−H(A|B).

It is employed as an attack distinguisher to compare the measured traces T with
the hypothesis-dependent predictions Mk = M ◦ fk(X):

DMI(k) = I(T ;Mk) = H(T )−H(T |Mk) = H(T )− E
m∈M

[H(T |Mk = m)] , (1)



and because the `unexplained' entropy (the second term) is smallest when the
predictions are good, we expect (1) to be maximised for the correct key hypoth-
esis k = k∗.

MI is particularly appealing for use in DPA because it compares distributions in
a general way, detecting not just linear relationships but nonlinear relationships
too. Thus MIA has been promoted as a `generic' distinguisher which potentially
remains e�ective even in the absence of a good power model. It also has natural
multivariate extensions, by which it can be straightforwardly adapted to higher-
order attacks (see [9] for an overview). However, estimation of MI is notoriously
problematic ([10]); all known estimators are biased and no `ideal' estimator exists
(di�erent estimators perform di�erently depending on the underlying structure
of the data). Consequently, MIA outcomes are highly sensitive to the estimation
procedure and parameters chosen by the attacker.

3 Evaluation Methodology

The aim of our paper is to compare KSA with MIA in practically relevant sce-
narios. It is imperative to understand that we are seeking to compare statistical
procedures and not attacks or devices: we thus test our methodology in a range
of practically meaningful and clearly de�ned hypothetical scenarios, as charac-
terised by cryptographic function (a non-linear substitution box from the DES
standard, as well as the Boolean exclusive-or), device leakage model (Hamming
weight, an unevenly weighted sum over the bits, and a highly-nonlinear function)
and noise (Gaussian noise of varying size). Our results will be relevant for all
devices which share the above mentioned characteristics.

Our approach is based on the recent work published in [5] which proposes to
study `complicated' distinguishers such as MIA by computing and estimating
(respectively) so-called theoretic and practical distinguishing vectors. The mo-
tivation for this is that distinguishers like MIA do not conform to the easily
understood behaviours of `simple' distinguishers such as correlation, which has
a known sampling distribution and responds to noise in a well-understood fash-
ion (e.g. see Chapters 4 and 6 in [11]). We have mentioned before that estimation
is notoriously di�cult [10]. Studying only practical distinguishing vectors does
not, in many cases (as illustrated by previous work such as [9]), allow us to draw
any de�nite conclusions about MIA because it is unclear from the practical vec-
tors whether it is a lack of good estimators or an inherent weakness of MIA
that causes its sometimes disappointing performance in practice. By contrast,
by studying both theoretic and practical vectors we can assess whether MI itself
is the problem or simply the estimation process.

Another contribution of [5] is that of de�ning measures for distinguishability.
This is motivated by the fact that the larger the theoretic (true) margins by
which the correct key is distinguished, the fewer traces we expect to require to



detect this di�erence in practice [12]. We use the following subsections to further
elaborate on the key concepts relevant to our study (theoretic and practical
distinguishing vectors, distinguishability).

3.1 Theoretic vs. Practical Distinguishing Vectors

We adopt the notation of [5], which de�nes the theoretic attack distinguisher as
D = {D(k)}k∈K = {D(L◦fk∗(X)+ε,M ◦fk(X))}k∈K, where the plaintext input
X takes values in X according to some known distribution (usually uniform).
The distinguisher D is chosen as some function, e.g. MI. For a de�ned leakage
function L and a power model M , the value D(k) can be precisely calculated.
It thus represents the `true' value of the distinguisher given M , L, and key
hypothesis k.

How to compute the `true' distinguisher values. For each possible input x ∈ X to
the cryptographic function we obtain a vector evaluating the (variance Var(ε))
Gaussian density centred at the corresponding data-dependent leakage value L◦
fk∗(x). The average of these vectors, weighted by the input probabilities P(X =
x), then gives the probability density of the power consumption evaluated over
the full range of possible leakage values. Conditional densities, corresponding to
each possible prediction value m ∈ M under each key hypothesis k ∈ K, are
constructed similarly. From these probability densities we are able to directly
compute (via numerical integration) MIA distinguishing vectors as per equation
(1). The same approach allows us to compute KSA distinguishing vectors (to be
de�ned in Sect. 4, equation (2)).

In practice D must be estimated as the true distribution of T is unknown (in
the unpro�led setting which we are examining). Suppose we have observations
corresponding to the vector of inputs x = {xi}Ni=1, and write e = {ei}Ni=1 to be
the observed noise (i.e. drawn from the distribution of ε). Then the estimated
vector is D̂N = {D̂N (k)}k∈K = {D̂N (L ◦ fk∗(x) + e,M ◦ fk(x))}k∈K.

The theoretic distinguishing vector D can thus be seen as representing the `best'
result one could hope to achieve when performing an analysis in practice.

3.2 Notion of Distinguishability

It follows clearly from the working principle of the distinguishers (as explained
in previous sections) that the results of each will be on very di�erent scales:
MI is measured in bits and takes values between zero and the total entropy of
the measured traces, whereas the KS statistic measures the (absolute) di�erence
between probability distributions and therefore takes values in [0, 1]. In order
to make meaningful comparisons we need to de�ne an outcome measure which



is independent of the numerical results of distinguishers. One approach is to
look at how well the correct key hypothesis `stands out'. Previous work has
introduced measures for `standing out'; for instance a �DPA signal-to-noise ratio�
was de�ned in [13]. We seek to represent, more directly than the �DPA signal-
to-noise ratio�, the margin to be detected by a practical attack. Thus we look at
the distance of the correct key hypothesis from its nearest rival, and to scale this
by an appropriate normalising constant. Consequently, we de�ne the nearest-

rival distinguishability score as the di�erence between the true-key distinguisher
value and the highest incorrect-key value, divided by the standard deviation
of the `optimal' distinguishing vector: the theoretic output of an attack in a
noise-free setting with a known power model.

Nearest-rival distinguishability(D) =
D(k∗)−max{D(k)|k 6= k∗}√

Var{D(L ◦ fk∗(X), L ◦ fk(X))}k∈K
.

We stress again that this measure of theoretic distinguishability is a meaningful
indicator of the practical e�ciency of an attack as statistical theory (for example,
[12]) teaches us that the sample size required to detect a di�erence is strongly
related to the true size of that di�erence: the lower the score, the more traces
we expect to require for a successful attack in practice.

4 The Kolmogorov-Smirnov Distinguisher

The Kolmogorov-Smirnov (KS) test has been mentioned in [2] as a seemingly
attractive alternative to MIA: it is similarly able to generically compare the
distributions of two samples but achieves this without explicit estimation of their
probability density functions (PDFs). It also extends fairly straightforwardly to
bivariate distributions which makes it adaptable to second-order DPA attacks,
although (unlike MI) it becomes problematic in higher dimensions ([7]).

In this paper we are particularly interested in how KSA compares with MIA, in
`typical' scenarios and in some of the more speci�c scenarios for which MIA has
been promoted, namely unknown power model and higher-order attacks. The
remainder of this section introduces the KS test and discusses its application to
univariate and bivariate (second-order) DPA attacks.

4.1 Kolmogorov-Smirnov Based DPA Attacks

The (two-sample) KS test statistic measures the distance between the empiri-
cal cumulative distribution functions (CDFs) of two samples A = {Ai}ni=1 and
B = {Bj}mj=1, in order to test whether they have been drawn from the same



distribution. It is de�ned as supx∈A∪B |FA(x) − FB(x)| where FA, FB are the
empirical CDFs, i.e. FA(x) =

1
n

∑n
i=1 I{Ai≤x} (I{Ai≤x} is the indicator function,

taking the value 1 if Ai ≤ x and 0 otherwise).

Just as MIA can be understood to operate by comparing the global traces T with
the hypothesis-dependent conditional traces T |Mk�via the expected change in
entropy�a KS-inspired distinguisher measures the maximum distance between
the global and the conditional trace distributions, as averaged over the prediction
space:

DKS(k) = E[K(T ||T |Mk)] = E
m∈M

[
sup
t
|FT (t)− FT |Mk=m(t)|

]
. (2)

Under the correct key hypothesis we expect the test statistic to return a large
di�erence.

The particular appeal of the KS statistic as an alternative to mutual information
is that it does not require the explicit estimation of densities, but only the
calculation of empirical cumulative distribution functions.

Example: We illustrate the working principle of the KS test via a very simple
example consisting of a DES implementation leaking the Hamming weight (HW)

of the �rst S-Box with a signal-to-noise ratio (SNR, de�ned as Var(L◦fk∗ (M))
Var(ε) )

of 8. For each key hypothesis we estimate the empirical CDFs of the traces as
conditioned on the model predictions and compare them with the `global' CDF of
the traces by computing the expected largest di�erence between them according
to (2).

The left panel of Fig. 1 shows (in grey) the conditional CDFs under the correct
key hypothesis, where the `weight' of the lines indicates the relative contribution
of the prediction-speci�c KS statistics to the expectation which comprises the
KS distinguisher as in equation (2). The di�erence�and most pertinently the
maximum (vertical) distance�between these conditional CDFs and the global
CDF (in black) is visibly substantial. By comparison the right panel shows the
same conditional CDFs as induced by an incorrect key hypothesis. These more
closely resemble the global CDF; it is clear to see that the expected maximum
distance will be substantially smaller. The same behaviour can be observed for
all other incorrect key hypotheses, hence providing the rationale for our KS-
inspired distinguisher: we expect only the correct key hypothesis to produce a
large average di�erence.

Note that, by design, the test is very sensitive to any distributional di�erence;
this is one of the features which makes it popular as a general, non-parametric
method of comparison. But for the purposes of DPA there is a potential downside
to this sensitivity: the statistic will detect even the subtle di�erences induced by
the incorrect hypotheses, to the detriment of the margin by which the correct
key is distinguished.
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Fig. 1. The KS test is based on the largest distance between the CDFs of two samples.
The left and right panels show the CDFs as conditioned on the model predictions under
the correct key hypothesis and an incorrect key hypothesis, respectively.

4.2 Multivariate Extensions

Standard �rst-order DPA attacks apply a distinguisher to a single point in a
trace. It is appealing to suppose that including more than one data point might
be bene�cial. In the case of attacks against unprotected implementations this
could produce better results as more data points potentially imply that more
information can be exploited (this has been argued speci�cally for template
attacks [14]). In the case of masked implementations it could provide a way to
defeat the masking scheme as the joint distributions of two or more trace points
might be related to unmasked model values.

Peacock ([6]) introduces a bivariate KS test statistic for comparing two-dimensional
samples (A1,A2) = {(A1,i, A2,i)}ni=1 and (B1,B2) = {(B1,j , B2,j)}mj=1, which
he de�nes as:

sup
(x,y)∈(A1∪B1)×(A2∪B2)

|FA1,A2
(x, y)− FB1,B2

(x, y)|.

However, this extension is more problematic than the univariate case as it re-
quires a meaningful construction of bivariate empirical CDFs.

The distribution-free property of the KS test rests on being able to map any
distribution function on to any other distribution function using a transforma-
tion that preserves the ordering of the data. In the one-dimensional case this is
trivially ful�lled: there are only two ways of ordering data, namely P(A ≥ x)
and P(A ≤ x). As we have that P(A ≥ x) = 1 − P(A ≤ x) the choice is in fact
arbitrary.

In higher dimensions the empirical CDF can be de�ned as:

FA1,A2
(x, y) =

1

n

n∑
i=1

n∑
j=1

IA1,i≤x,A2,j≤y



for all pairs (x, y). However, in the general case the choice of ordering now does

a�ect the test statistic: there is no direct way to map (e.g.) between P(A1 ≤
x,A2 ≤ y) and P(A1 ≥ x,A2 ≤ y). In fact for d di�erent random variables,
there are 2d possible orderings we need to consider. The simplest solution to this
problem, as suggested by [6], is to �nd the maximum distributional di�erence
arising from all 2d possible orderings. The computational complexity of this
approach is exponential in the number of variables (O(2d ∗ nd)). Peacock shows
in his work that a bivariate KS test statistic according to his suggestion is close
enough to being distribution-free to be useful in practice.

Fasano and Franceschini [7] propose an optimisation whereby the test statistic
is evaluated only at the points which are observed in the sample, i.e. at every
(x, y) ∈ (A1,A2)∪ (B1,B2) rather than every (x, y) ∈ (A1 ∪B1)× (A2 ∪B2).
They are able to show that this leads to a linear increase in speed without
compromising on the power of the test or the distribution-free property.

We next explain how this bivariate extension of the test statistic can be adapted
to DPA attacks in which two trace points are exploited, and present analo-
gous distinguishers based on multivariate extensions to mutual information. Note
that, whilst the latter has natural extensions to dimensions greater than 2, the
KS statistic is shown to be problematic in higher dimensions. The authors of
[7] do present a three-dimensional test but this is not achieved without some
di�culty and a substantial increase in complexity (now 23 orderings need to be
considered); as such we choose not to make use of it ourselves.

Extensions for Masked Implementations In a second-order attack against
a masked implementation we make univariate leakage predictions based on the
(unmasked) target value and then exploit what this `tells' us about the joint
distribution of the mask and the target value combined. For the KS distinguisher
this means that we are comparing the global joint CDF of the traces with the
conditional joint CDFs as partitioned by the model predictions under each key
hypothesis:

D2OKS(k) = E[K(T1, T2||T1, T2|Mk)]

= E
m∈M

[
sup
t1,t2

{
|FT1,T2(t1, t2)− FT1,T2|Mk=m(t1, t2)|

}]
.

(3)

Previous work (such as [9]) has explored the various ways in which mutual in-
formation generalises to higher orders and how these di�erent notions can be
adapted to the purposes of DPA. For the purposes of comparison we focus on
the extension which is most analogous to the KS distinguisher, namely the in-
formation shared between the pair of trace points taken jointly and the model



prediction, as follows:

D2OMI(k) = I((T1, T2);Mk) = H(T1, T2)−H(T1, T2|Mk). (4)

Extensions for Unprotected Implementations In an unprotected imple-
mentation we can use multivariate extensions of our distinguishers to exploit the
joint leakage of two target values simultaneously, for example key addition and
the output of the �rst DES S-Box.1 This approach makes use of a bivariate model
prediction and thus calls for slightly di�erent constructions of the distinguishers
to those employed in the context of masked implementations.

For the KS distinguisher we simply condition the joint CDFs by the bivariate
prediction and proceed as before:

DMKS(k) = E[K(T1, T2||T1, T2|(M1,M2)k)]

= E
(m1,m2)∈
M1×M2

[
sup
t1,t2

{
|FT1,T2(t1, t2)− FT1,T2|(M1,M2)k=(x1,x2)(t1, t2)|

}]
.

(5)

Analogously we consider the MI between the pair of trace values and the pair of
predictions:

DMMI(k) = I((T1, T2); (M1,M2)k) = H(T1, T2)−H(T1, T2|(M1,M2)k). (6)

5 Results

For each scenario that follows we �rst analyse theoretic KSA and MIA vectors for
varying levels of Gaussian noise. These are derived from (respectively) true distri-
butional di�erences and true entropies, computed directly from the trace density
functions as explained in Sect. 3. We complement this theoretic analysis�which
gives an indication of the underlying potential of a distinguisher�by estimat-
ing `practical' attack vectors against simulated traces and reporting on trace
requirements (again as noise varies).2

1 This choice is meaningful as the model predictions are in this case statistically in-
dependent.

2 For MIA estimations we employ the heuristic rule favoured by the literature, and
estimate PDFs via histograms with the number of bins equal to the cardinality of the
power model image (i.e. 5 for the HW power model, 16 for the identity power model).
Therefore, though these are not `de�nitive' results (as no universally `best' estimator
exists) they do represent an established methodology and, as such, a meaningful basis
for comparison with KSA.



5.1 Optimistic Scenario: DES S-Box With (Known) Hamming
Weight Leakage

We �rst consider the simple and often-studied scenario in which the power con-
sumption comprises a data-dependent component proportional to the Hamming
weight of the (�rst) DES S-Box plus some independent Gaussian noise. Assum-
ing Hamming-weight leakage is realistic for implementations on simple micro-
controllers (e.g. [11] use this as their running example).

Theoretic Outcomes

Pure-Signal Leakage: Figure 2 shows the theoretic distinguishing vectors for
MIA and KSA attacks using a Hamming weight (HW) power model against
noise-free Hamming weight leakage of the �rst DES S-Box. It also illustrates
our notion of distinguishability. Both distinguishers are capable of identifying
the correct key; MIA achieves a slightly higher distinguishability score of 5.6
compared with 4.2 for KSA. Equivalent attacks using the identity (ID) power
model were less distinguishing, with scores of 3.8 and 3.1 for MIA and KSA
respectively: evidently, the generic capabilities of the distinguishers are not useful
in this `known power model' scenario.
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Fig. 2. Theoretic distinguishing vectors for MIA(HW) and KSA(HW) in attacks
against HW leakage of the �rst DES S-Box with zero noise.

As SNR Varies: Figure 3 shows how the distinguishability scores vary with the
strength of the data-dependent signal (relative to the Gaussian noise). The KSA
attacks, though less distinguishing than their MIA counterparts in strong-signal
scenarios, are more robust to noise and therefore attain a theoretic advantage in
weak-signal scenarios.
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Fig. 3. Theoretic distinguishing power as SNR varies, for attacks against the �rst DES
S-Box with HW leakage.

Practical Outcomes (Simulations) The �rst panel of Figure 4 shows the
mean number of traces needed to recover the key; the second panel shows the
90th-percentile, i.e. the number needed to achieve a 90% success rate. KSA(HW)
performs almost identically to MIA(HW) (as could be expected from the theo-
retic vectors), with some evidence of a small advantage in weak-signal settings
(again in keeping with the theoretic vectors). The ID attacks are more data
intensive in both cases, but KSA(ID) exhibits consistently better performance
than MIA(ID), probably due to the heavy estimation overhead incurred by the
large number of bins required by the latter.
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Fig. 4. Mean and 90th percentile of the trace requirement for key recovery, in repeated
experiments against simulated HW leakage of the �rst DES S-Box, as SNR varies.

5.2 Realistic Scenario: DES S-Box With Unknown Power Model

We next consider the performance of the two distinguishers in the case that the
attacker does not have a precise power model. As motivated by [15] we focus on
the case that the device leaks�instead of the Hamming weight�an unevenly
weighted sum of the bits. This is realistic for typical micro-processors especially



in the low-cost range (as reported by [15]). In our experiments, we assume that
the least signi�cant bit dominates in the leakage function with a relative weight
of 10; in the experiments of [2] this was su�cient distortion to render MIA
more e�ective than correlation DPA. To extend this analysis we also consider
theoretic vectors assuming a highly non-linear power model3. This is relevant
for hardware implementations, e.g. often non-linear functions are implemented
via combinational logic in hardware and it is well known (see [16], [17]) that
such implementations show leakage characteristics which are unrelated to linear
leakage models.

Theoretic Outcomes

Pure-Signal Leakage: Both the HW and the generic ID variants of KSA are
theoretically successful in a noise-free environment, but once again are slightly
disadvantaged relative to MIA with distinguishing scores of 2.8 and 3.4 compared
with 4.8 and 4.8 respectively.

As SNR Varies: The impact of noise is more marked than that observed for the
known power model scenario, as can be seen in Figure 5; all attacks require a
stronger signal before converging to their noise-free outcomes.

It is particularly notable that in high-noise settings the KSA attacks are actually
more distinguishing than their MIA counterparts. Also of interest is the fact
that the ID variants exhibit stronger outcomes and greater robustness to large
amounts of noise than attacks using the (now imprecise) HW power model. Thus
we con�rm the existence of conditions under which KSA has the same `generic'
potential as MIA.

Practical Outcomes (Simulations) The theoretic KSA vectors show more
distinguishing power than MIA in noisy scenarios so we have su�cient reason
to expect that this translates to a practical advantage in terms of trace require-
ments, which we test by estimating the practical distinguishing vectors against
simulated trace measurements.

Figure 6 plots the results (in terms of sample size requirements) of the practical
distinguishing vectors as estimated from simulated traces with Gaussian noise.
These tally well with the results of the theoretic vectors: ID attacks substantially
outperform HW attacks when the leakage signal is weak, but this advantage
is less clear in high-signal settings. KSA(ID) is particularly e�ective relative
to MIA(ID) as estimated with 16 bins (we note that this does not necessarily

3 To achieve a high-degree of non-linearity we use the Hamming weight of output of
the AES SubBytes function.
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Fig. 5. Theoretic distinguishing power as SNR varies for attacks against the �rst DES
S-Box where the LSB dominates in the leakage with a relative weight of 10 (left panel)
and were the leakage is a highly non-linear function (right panel)

represent the best-case capabilities of MIA but it is consistent with what one
expects given the theoretic distinguishing vectors). KSA(HW) performs similarly
to MIA(HW).
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Fig. 6. Mean and 90th percentile of the trace requirement for key recovery, in repeated
experiments against simulated S-Box leakage in which the LSB dominates with a rel-
ative weight of 10.

5.3 Higher-Order Scenario: Second-Order Attacks Against a
Masked Implementation

As our �rst example of a multivariate application, we consider second-order
attacks on a masked implementation of DES leaking the HW of the mask and
the HW of the S-Box output, each with independent Gaussian noise. The second-
order extensions for KSA and MIA distinguishers are as described in Sect.4.2.

Theoretic Outcomes



Pure-Signal Leakage: The noise-free distinguishing score of second-order KSA
is just 0.6, compared with 3.2 for the MIA analogue. Thus both are capable of
identifying the correct key, though with substantially reduced distinguishability
relative to their �rst-order counterparts in unprotected scenarios, particularly in
the case of KSA, as Fig. 7 illustrates.

As SNR Varies: Mark once more in Figure 7 that the KSA variant of the second-
order attack exhibits greater noise robustness, so that in low-signal settings it
shares comparable theoretic distinguishing power with MIA.
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Fig. 7. Theoretic distinguishing power as SNR varies, for second-order HW attacks
against a masked implementation of DES with HW leakage.

Practical Outcomes (Simulations) The �rst panel of Figure 8 shows the
success rates for attacks against a masked DES implementation with noise-free
leakage. The second-order KSA attack requires on average 150 traces, with a
90th-percentile of 325, whilst second-order MIA is markedly more e�cient, re-
quiring on average only 30 traces with a 90th-percentile of 45.

The remaining three panels show the same for scenarios in which small but in-
creasing amounts of Gaussian noise are added. Even with an SNR as high as 128
the impact on success is substantial for both attack methods but (proportion-
ately) more so for MIA. For an SNR of 32 (the lowest we attempted) the mean
and 90th-percentile of the trace requirement for KSA to be successful were 2,450
and 5,500 respectively; the equivalent �gures for MIA were 1,440 and 3,200.

The heavy computational demands of the second-order KSA distinguisher mean
that, as more noise is added, such attacks quickly become infeasible without
enhanced computing power. Our theoretic analysis, and our practical results in
other scenarios, indicate that it could achieve a small advantage over MIA (in
terms of data complexity) when the signal is weak enough, but we are not able
to test this and the advantage would likely be far outweighed by the relative
computational costs.
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Fig. 8. Success rates of HW attacks against a masked implementation of DES with
HW leakage, as the number of traces increases.

5.4 Bivariate Extensions for an Unprotected Implementation

We next investigate whether or not attack outcomes can be improved by the
incorporation of a second trace measurement corresponding to a di�erent target
function. In particular, we consider exploiting the joint leakage of key addition
and the �rst DES S-Box, in the case that this is comprised of the Hamming
weight of the target values plus some independent Gaussian noise.

Theoretic Outcomes

Pure-Signal Leakage: The noise-free distinguishability scores of bivariate MIA
and KSA attacks are 3.6 and 1.7 respectively, compared with 5.6 and 4.2 for the
equivalent univariate S-Box attacks. Thus, both methods are actually weakened
by the incorporation of key addition leakage; KSA more so than MIA.

However, it is well documented that the resistance of a function to DPA has an
inverse relationship with its resistance to cryptanalysis ([18]). In particular, the
linearity of key addition makes it hard for DPA to distinguish between similar
keys: small changes to the input produce small changes in the output. S-Boxes,
on the other hand, are specially designed so that the converse is true, which
makes them particularly vulnerable to DPA.

It is not, then, so surprising that key addition information detracts from attack
distinguishability. If the leakage of two suitably nonlinear functions could be
jointly targeted, our bivariate enhancement may prove more useful�we leave
this as an open question.



As SNR Varies: Figure 9 shows the distinguishing scores of the bivariate attacks
as compared with the univariate S-Box attacks, for varying levels of Gaussian
noise. As with the univariate attacks, the bivariate KSA distinguisher is more
robust to noise so that in very low-signal settings it exhibits a slight advantage
over the bivariate (and indeed the univariate) MIA distinguisher. As in the
application to the masked implementation, for all noise levels (i.e. including
the noise-free setting) the bivariate distinguishing vectors are considerably less
distinguishing than their univariate counterparts.
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Fig. 9. Theoretic distinguishing power as SNR varies, for bivariate HW attacks against
DES with HW leakage.

Practical Outcomes (Simulations) Figure 10 depicts the performance of
practical bivariate attacks (against the DES S-Box and key addition jointly)
as compared with univariate attacks against the DES S-Box alone. The lower
theoretical distinguishing power, coupled with the additional complexity of esti-
mation, mean that the bivariate attacks require more traces to be successful, in
all tested noise settings. As with the univariate attacks, bivariate KSA performs
very similarly to bivariate MIA.

These results (w.r.t. both theoretic and practical distinguishing vectors) are an
important reminder that it is not the quantity of information which contributes
to attack outcomes so much as the quality : identifying the most vulnerable tar-
gets is more likely to be fruitful than combining information from targets with
di�ering degrees of DPA resistance. Moreover, univariate attacks remain less de-
manding in terms of computational complexity and the sample size required for
estimation.

6 Conclusion

We have shown that the (two-sample) KS test statistic can be adapted to the
purposes of DPA in a manner which bears considerable resemblance to MI-based
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Fig. 10.Mean and 90th percentile of the trace requirement for key recovery, in repeated
experiments against simulated HW leakage of AddRoundKey and the �rst DES S-Box
jointly, as SNR varies.

DPA. We explored the theoretic and practical distinguishing vectors of KSA as
compared with MIA, with a particular focus on scenarios that are relevant for
practice.

Our �ndings showed that in noise-free or strong-signal univariate settings MIA
was consistently the more distinguishing and more e�cient attack, but when the
signal was su�ciently weak the noise-robustness of KSA enabled it to gain an
advantage.

The KSA distinguisher was found to share those characteristics of MIA which
make it to some extent `power model free'; each can be adapted to use the
identity power model in the case that an attacker lacks precise knowledge of the
true data-dependent leakage (provided the target function is non-injective).

We also showed how a bivariate version of the (two-sample) KS test statistic
enables extension to second-order KSA in order to defeat a masking scheme.
However, here it was quite substantially outperformed by MIA in strong-signal
settings and was so computationally complex as to be unfeasible in weak-signal
settings. Moreover, whereas multivariate MI quite naturally incorporates addi-
tional data points, extensions of the KS test beyond 2 dimensions quickly become
problematic so that there is little scope for third- or higher-order KSA.

A interesting question for future work is whether or not the known distribution
of the KS test statistic could be used to formally derive the number of traces
required for an attack to be successful, as has been accomplished in the case of
correlation DPA (see �6.4 of [11]). Whilst the distribution of the KS test statistic
is known it is unclear how it could be used to derive that of the KSA distinguisher
(recall that this is de�ned as an average over several KS test statistics).
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