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Abstract. Elliptic Curve Cryptography (ECC) based processors have
gained large attention in the context of embedded-system design due to
their ability of efficient implementation. In this paper, we present a low-
resource processor that supports ECC operations for less than 9 kGEs.
We base our design on an optimized 16-bit microcontroller that provides
high flexibility and scalability for various applications. The design allows
the use of an optimized RAM-macro block and reduces the complexity by
sharing various resources of the controller and the datapath. Our results
improves the state of the art in low-resource Fy16s ECC implementations
(14 % less area needed compared to the best solution reported). The to-
tal size of the processor is 8,958 GEs for a 0.13 yum CMOS technology
and needs 285 kcycles for a point multiplication. It shows that the pro-
posed solution is well suitable for low-power designs by providing a power
consumption of only 3.2 uW at 100 kHz.

Keywords: Low-Resource Hardware Implementation, Elliptic Curve Cryp-
tography, Binary Extension Field, Embedded Systems.

1 Introduction

With the rapid development of more powerful and energy-saving devices, we
unwittingly move towards the vision of the Internet of things. The required
security services within this vision can be particularly achieved using Elliptic
Curve Cryptography (ECC). This paper focuses on a low-resource hardware
processor that provides ECC capabilities while meeting the low-area and low-
power requirements of embedded systems.

There exist many proposals for low-resource ECC processors. Most of the
processors operate on binary-field elliptic curves and use full-precision arithmetic
to increase the performance of point multiplication [4, 13, 25, 35]. One of the most
efficient solutions in terms of low-resource requirements has been reported by Lee
et al. [26].

They presented a processor supporting a small elliptic curve over Foi6s which
makes use of a tiny 8-bit microcontroller to handle higher-level protocol imple-
mentations. The ECC operation of k - P is performed by a separated Modular
Arithmetic Logic Unit (MALU). The processor needs 12,506 GEs and 276 kcycles



to perform a point multiplication. However, the area estimations do not including
program ROM and RAM to store intermediate results and the necessary secret
scalar k. Similar datapath architectures have been reported by Batina et al. [2]
and Sakiyama et al.[32]. Hein et al.[17] reported a very efficient co-processor
(without microcontroller) for the same elliptic curve supporting multi-precision
arithmetics. They applied a finite-state machine based control-engine needing
11,904 GEs including a standard-cell based RAM memory.

In this paper, we present a low-resource hardware processor that is based on
a 16-bit multi-precision architecture and an area-optimized custom microcon-
troller. This combination allows several optimizations. First, it allows the use of
an efficient RAM-macro block that reduces the area requirements for short-term
memory significantly. Second, since both the microcontroller and the datapath
use a 16-bit architecture, all resources are shared to minimize the area foot-
print of the processor. As an outcome, we present a complete solution including
memory for short-term (RAM) as well as long-term storage (program ROM),
controller, and datapath using a polynomial multiply-accumulate (MAC) unit.
In addition, we present results of higher-level protocol implementations of the
Elliptic Curve Digital Signature Algorithm (ECDSA) [30] and give results for
digital signature generation as well as verification. For a point multiplication,
our NIST B-163 based processor needs only 8,958 GEs in total and performs a
point multiplication within 285 kcycles. We demonstrate that the proposed so-
lution is also well suitable for low-resource embedded systems by providing a
power consumption of only 3.2 yW at 100 kHz.

The rest of the article is structured as follows. In Section 2, a brief introduc-
tion into elliptic curve cryptography is given. In Section 3, we face the challenge
of low-resource ECC hardware implementations and explore various design pos-
sibilities. We evaluate appropriate word sizes of a processor and analyze different
memory types. Section 4 presents details about the hardware architecture of our
processor. Details about the implementation are given in Section 5. In Section 6,
the results are presented. Conclusions are drawn in Section 7.

2 Elliptic Curve Cryptography

Within Elliptic Curve Cryptography (ECC), not only a single number or poly-
nomial is used, but a pair of those. Each pair (z,y) of such numbers that satisfy
the general Weierstrass equation

E:y? 4+ aizy + asy = 2° + asz® + asx + ag (1)

is called a point on an elliptic curve. When a certain type of number is used,
in our case binary polynomials within GF(2™), the Weierstrass equation can be
reduced to

y: +xy =23 + ax® +b. (2)

Among the most critical operation in terms of speed and security is the ECC
point multiplication. The implementation of this multiplication has to be secure



against various implementation attacks such as side-channel and fault-analysis
attacks. The Montgomery ladder [28, 21] provides very beneficial properties in
this context. We therefore decided to use it for our design and applied the very
fast group-operation formulas of Lépez and Dahab [27]. The formulas are based
on projective coordinates (which avoid expensive field inversions) that can be
nicely combined with proposed countermeasures (see also the work of Junfeng
Fan et al.[11]) such as randomized projective coordinates (RPC) [6] or point-
validity checks [8].

We use the following notations throughout the paper (similar to [16]). Let
f(z) = 2™ 4+ r(z) denote an irreducible binary polynomial of degree m. The
elements of Fom are binary polynomials of degree at most m — 1. An addition
of field elements is the usual addition of binary polynomials. Multiplication is
performed modulo f(z). A field element a(z) = ap_12™ 1+ -+ +a2? + a1z +
ag is associated with the binary vector a = (am—1,...,a2,a1,aq) of length m.
Furthermore, let N = [m/W] be the number of words with width W needed to
store a(z). A = (A[N —1],..., A[2], A[1], A[0]), where the rightmost bit of A[0]
is ag, and the leftmost (W N — m) bits of A[N — 1] are unused (always set to
7€ero).

For further readings on ECC we refer to several books [1, 3, 16, 23] that discuss
the topic extensively.

3 Design-Space Exploration

In this section, we will explore different hardware-design options to obtain best
results for a low-resource ECC processor. The design goals have been to meet all
requirements of embedded systems which are low area (due to the production
costs), low power (due to a possible contactless operation), appropriate speed
(required for certain applications), security and flexibility. Due to the latter
requirement, we decided to base our design on a customized microcontroller.
This has the advantage of being modular in terms of protocol implementations
and modifications of already implemented solutions.

By following the principles of hardware/software co-design, it showed that the
dominant factors of ECC processors are the finite-field hardware multiplier and
the type and size of the applied data memory. In the following, we discuss these
factors and explore the design space to find the best solution for our objectives.

3.1 The Hardware Multiplier

One of the most area consuming parts within the ALU of an ECC-hardware de-
sign is the finite-field multiplier. The size, speed, and power consumption of such
a multiplier largely depends on the word size of the processor and the under-
lying finite field. Figure 1 shows the hardware architecture of a 4-bit multiplier
for binary-field (carry-less multiplier), prime-field (integer multiplier), and dual-
field arithmetic. The basic structure of all three types of multiplier is the same.
Only the adder structure needs to be adopted.
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Fig. 1. General 4-bit multiplier structure to the left. Carry-less, integer, and dual-field
adder (from top to bottom) on the right.

Table 1 shows the area evaluation of different hardware-multiplier types. We
evaluated multipliers for prime-field, binary-field, and dual-field arithmetic for
word sizes of 8, 16, 32, and 64 bits (on register-transfer level). For the evaluation
we used the UMC-L130 CMOS technology where an AND gate needs 1.25 GEs,
a XOR gate needs 2.75 GEs, and a full-adder cell needs 5.5 GEs.

Obviously the area requirement scales quadratically with the given word size
and carry-less multipliers provide the lowest area footprint and lowest increase
in area for all given word sizes. Runtime approximations for an ECC point
multiplication showed that the word size of the carry-less multiplier must be at
least 16 bits in order to achieve a sensible runtime.

Next to a carry-less multiplier, an integer multiplier is necessary to provide
operations for higher-level protocols (e.g. ECDSA). Note that this multiplier is
needed only very few times for most protocols (only four prime field multiplica-
tions are required for ECDSA signature generation, for instance). Thus, lower
word sizes are acceptable since no significant reduction in speed is expected.
We therefore decided to implement a 16-bit carry-less multiplier (to provide an
appropriate speed for a point multiplication) and an 8-bit integer multiplier in-
stead of a dual-field 16-bit multiplier (which needs 1,946 GEs). This would sum
up to 1,226 GEs which is 720 GEs less than for a dual-field multiplier.

Table 1. Area evaluation of different hardware-multiplier types.

Finite Required adder 8 bit 16 bit 32 bit 64 bit
Field cells per bit [GE] [GE] [GE] [GE]
GF(2™) XOR 211 850 3,389 13,508
GF(p) FA 376 1,616 6,688 26,336

Dual field AND + FA 458 1,946 8,018 31,514




Table 2. Area evaluation of different 16 x 128-bit RAM architectures.

Type Port Storage Logic Total

[GEs] [GEs] [GEs]
Std. cells (registers) Single 10,281 2,941 13,926
Std. cells (latches) Single 8,388 3,119 12,221
Macro S-RAM Dual - - 6,737
Macro S-RAM? Single - - 6,000
Macro register-file Single - - 2,955

¢ Approximated based on UMC 180 nm technology.

3.2 The Memory Type and Architecture

One of the most area expensive chip components of ECC processors is the Ran-
dom Access Memory (RAM). RAM is necessary to store intermediate values
(e.g. point coordinates during point multiplication k - P) and the secret scalar
k. The size of the memory varies depending on the requirements of the ECC
formulas (the formulas of Lépez Dahab [27] need at least 5 registers of memory
for full-precision architectures and 6 registers for multi-precision architectures
due to the need of intermediate storage of in-place operations).

In Table2, we compare different 16 x 128-bit RAM types concerning their
area requirements. We compare standard-cell based implementations with ded-
icated RAM macro blocks synthesized in CMOS UMC-L130 technology. The
standard-cell based RAM implementations (register and latch based) have been
designed on RTL-level and synthesized using Cadence RTL compiler [5]. The
RAM-macro blocks have been generated using the Standard Memory Compiler
FSAOA Memaker 200901.1.1 by the Faraday Technology Corporation [12]. All
except of one type of RAM provide a single read-port and a single write-port.
There is one S-RAM macro that features a dual-port read/write interface.

It shows that the latch-based RAM is about 12 % smaller than the register-
based RAM. This is because the size of a flip-flop is 5 GE and the size of a
latch is 4 GE. This 25 % difference in area is debilitated because some additional
registers and control logic is required so that the latch-based RAM works the
same way as the register-based RAM. Adding a second read port to those RAMs
would be relatively cheap in terms of chip area (it would require about 3,000 GEs
in addition by introducing a second multiplexer at the output). Note that a dual-
port memory would increase the performance of a multi-precision multiplication
by a factor of about two.

From the two available single-port RAM macros, the register-file macro is
about 50 % smaller than the S-RAM macro. The dual-port SSRAM macro, in
contrast, is only 12 % larger than the single-port S-RAM macro, however, it is
about 2.3 times larger than the register-file based RAM macro.

The register-file RAM macro provides best performance in our evaluation
scenario. We performed several power simulations using Cadence Encounter and
obtained similar results for the register-file RAM macro and the standard-cell
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Fig. 2. High-level block diagram of the processor. Components for higher-level proto-
cols are drawn with slashed lines (i.e. integer multiplier, program and data memory).

based RAM architectures. The main disadvantages of the register-file macro
are the lack of a second read port (speed) and the limit of clock-synchronous
read operations. The lack of a second read port can be compensated by using
temporary working registers. The lack of an asynchronous read functionality can
be balanced with a more difficult control logic.

4 Hardware Architecture

In this section, we introduce the hardware architecture of our processor. It is
based on the microprocessor design called Neptun [34], which uses a Harvard
architecture. This allows to fetch, decode, execute, and store data within the
same clock cycle and allows low-area optimizations due to the choice of different
memory types and sizes. Figure 2 shows the block diagram of the architecture.
It is mainly composed of a Central Processing Unit (CPU) including register file
and Arithmetic Logic Unit (ALU), and memories for program code, constants,
and data.

4.1 Central Processing Unit (CPU)

The heart of the processor is the 16-bit CPU. It is composed of several internal
registers and an ECC optimized ALU. The register file consists of a program
counter (PC), a stack pointer (SP), three base registers, four working regis-
ters, and an accumulator register: The program counter is used as index for the
program memory. The stack pointer (SP) is needed to store registers on the
data memory. The stack is also used to store program-return addresses that are
needed for function calls. In order to address certain base addresses within the
data memory, three base registers are used. We integrated two source registers
and one destination register. They are used together with a 4-bit offset to ad-
dress data in the memory. The offset address is stored within a program word. We
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Fig. 3. High-level diagram of the arithmetic logic unit.

implemented four 16-bit working registers that can be used as general-purpose
registers. The registers are needed for almost any ECC operation and are used to
reduce the number of memory-read cycles within the finite-field multiplication.
The accumulator register (ACC) is needed for the multiply-accumulate operation
of the 163-bit multi-precision multiplication.

We integrated several optimizations to increase the performance of ECC
operations. First, the ALU accesses data directly without loading it first into
CPU registers (as it is in the case of conventional microcontrollers). In the first
clock cycle, the data is addressed in the memory. In the second cycle, the data
is processed by the ALU and the result is stored back in memory within the
same clock cycle. This increases the performance of memory-access operations
significantly. Second, loading and processing of data is done simultaneously by
the processor. This avoids unnecessary idle cycles and improves the efficiency
of multi-precision arithmetic operations. Those optimizations are described in
more detail in [34].

Arithmetic Logic Unit (ALU). The arithmetic logic unit (ALU) mainly
consists of a reduction-logic unit, a carry-less multiplier, an arithmetic unit (ad-
dition/subtraction), and a logic unit (supporting OR, AND, XOR, and shift
operations). For higher-level protocols, an integer multiplier is needed in addi-
tion (drawn with dashed lines). Figure 3 shows a high-level diagram of the ALU.
We also integrated an operand isolation technique for each submodule which
reduces the power-consumption significantly.

4.2 Memory for Program, Data, and Constants

Our processor provides a long-term storage memory that mainly stores the pro-
gram for ECC point multiplication. The memory provides 72 control signals
and contains up to 1,800 entries depending on the implemented algorithms and
higher-level protocols. Most of the control signals are used to control the dataflow



within the CPU. Best area results have been achieved by directly synthesizing
the memory table as Read Only Memory (ROM) using standard cells. Experi-
ments in which a 16-bit instruction set or a ROM macro have been introduced
resulted in a larger area requirement.

For short-term data storage, we used a 16-bit RAM macro (register-file based)
as discussed in Section 3. Note that in contrast to most processors reported in
literature [4, 25, 26, 31], we include the number for the required storage of the
secret scalar k. For an ECC point multiplication, 1,296 bits (81 entries) are
necessary (we used a 16 x 84 macro in that case). For higher-level protocols,
additional memory is needed (e.g. 1,536 bits for ECDSA signature generation
(16 x 96 macro) and 2,384 bits for ECDSA signature verification (16 x 152
macro)).

ECC constants have been stored in a ROM. The ROM has been implemented
as a look-up table and stores between 880 and 2,564 bits such as the = and y
coordinate of the base point P, the ECC parameters a and b (see Equation (2)),
and the irreducible polynomial f(z).

The input/output of data has been realized via memory mapped I/0. Data
can be written and read using a 16-bit parallel interface.

5 Implementation Details

In the following, we give details about the implemented carryless multiply-
accumulate unit and the modular arithmetics in order to perform ECC oper-
ations.

5.1 Carry-Less Multiply-Accumulate Unit

The multi-precision multiplication over Fyi6s has been realized following a
multiply-accumulate (MAC) approach. There exist several publications that
make use of MAC units to increase the performance of modular multiplication
(see e.g. the work of[9,14,15,17,33]). We implemented the multiplication by
a product-scanning form (often referred as Comba multiplication), where each
partial product of Afi]- B[j] gets accumulated to a common sum (ACCy, ACCy),
i.e. (ACCY, ACCyh) + (ACCy, ACCy) + Ali] - B[j].

Note that for the polynomial MAC unit the handling of carry propagation is
not needed. Thus, the accumulator register needs a size of only (2W — 1) bits.

We implemented several improvements to increase the performance. First,
the entire multiplication algorithm has been unrolled so that no extra cycles are
wasted for loop operations. Second, we reused the working registers as a memory
cache to reduce the number of necessary load operations. With each working reg-
ister used, the total number of read operations has been reduced by about 2.
Third, we added a third word to the accumulator register (ACCs, ACC1, ACCy)
in order to allow efficient reduction of the accumulated sum. Thus, the MAC op-
eration is performed on the words (ACCs, ACC}) instead of (ACCY, ACCy) and



Algorithm 1 Polynomial multiplication with interleaved reduction.

Require: Binary polynomials a(z) and b(z) of degree at most m — 1.
Ensure: ¢(z) = a(z) - b(z) mod f(z).

1. ACC <+ 0

2: for i from 0 to N — 1 do

3:  for each element of {(i,5)]i +j=%k,0<i,5 <N -1} do
4: (ACC2, ACCh) + (ACC2, ACCh) + Ali] - B[j].

5: end for

6: Ck] + ACCh.

7. ACC «+ ACC > W.

8: end for

9: ACC < higher(ACC).
10: for k from ¢ to 2N — 2 do
11:  for each element of {(¢,j)|i+j=k,0<4,j <t—1} do
12: (ACC2, ACCY) + (ACC2, ACCh) + Ald] - Blj].
13:  end for
14: C[k—= N —1] + C[k = N — 1] + reduce(ACC).
15:  ACC + ACC > W.
16: end for
17: C[N — 1] + lower(C[N — 1]) + reduce(ACC).
18: ACC +— ACC > W.
19: C[0] «+ C[0] 4 reduce(ACC + higher(C|N —1])) > W.
20: C[N — 1] « lower(C[N —1]) > W.
21: Return(c).

ACCy is used to store the previous intermediate result. A detailed description
of the reduction method is given in the following subsection.

Algorithm 1 shows the algorithm of the implemented polynomial multipli-
cation. The polynomials a(z) and b(z) get multiplied and the reduced result is
stored in ¢(z). In the lines 1 to 8, the lower N words of the result ¢(z) are calcu-
lated. Note that in this phase the ACCy register is not used. In line 9, the lower
(m—W (N —1)) bits of the accumulator need to be cleared. Those are the bits of
the results that do not need to be reduced. The lines 10-16 calculate the higher
N words of ¢(z) and reduce them immediately. According to the recommended
NIST irreducible polynomial B-163 f(z) = 2163 4+ 27 + 26 4 23 4 1, the reduction
function (line 14) can be written as

reduce(ACC) = (ACC > (W +3)+ ACC > W + (3)
ACC > (W = 3) + ACC > (W — 4)) AERY 1)

Finally, in lines 17-20 the rest of the accumulator and the higher bits of
C[N — 1] get reduced.

Polynomial NIST B-163 Reduction Logic. We make use of the recom-
mended NIST irreducible polynomial B-163 to perform a very efficient modular
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and stored in C’[i] (hold in data memory) with index 3.

reduction for modular multiplication and squaring. The reduction logic is shown
in Figure4. We hard-wired the output of the appropriate accumulator register
according to Equation (3). The reduction logic takes the output of the 48-bit
accumulator register, performs 4 x 16 XOR operations and the result is added
with the intermediate result C[i] = Clk — N — 1] (see line 14 in Algorithm 1).
After the addition (XOR), the variable C[i] is updated with C’[i] in the data
memory. Only one clock cycle is needed to reduce the intermediate result of
the accumulator and sum of partial products, respectively. Figure4 shows the
dedicated reduction logic.

It should be noted that although the reduction logic has been specially op-
timized for NIST B-163, the CPU is capable of handling arbitrary irreducible
polynomials. Thus requirements such as flexibility and extendability are ensured.

5.2 Modular Arithmetic

Modular Addition. The simplest operation is the modular addition. It is a
simple XOR operation. Neither a carry flag nor a finite-field reduction need
to be considered. Modular addition over Foi6s needs 35 clock cycles on our
processor.

Modular Multiplication. Modular multiplication has been realized using the
carryless multiply-accumulate unit described in Section 5.1. Our processor
needs 222 clock cycles for a 163-bit multiplication.

Modular Squaring. Modular squaring can be performed very efficiently. The
binary representation of the polynomial can be easily squared by inserting a 0
between each consecutive bit of the polynomial, e.g. a(z) = @y, _12™ 1+ -+
az2% + a1z +ag would results in a(2)? = a;,—122" 2+ +azzt +a12% +ap.
This can be realized with only a few additional hardware components. The
polynomial-reduction logic can be reused for squaring. One modular squaring
needs 41 clock cycles on our processor and thus is 5.4 times faster than a
modular multiplication.

Modular Inversion. Modular inversion is required to transform the projective
coordinates back into affine. For this operation, we made use of Fermat’s



Table 3. Size and power estimations of our processor for different CMOS technologies
using Latch-based RAMs.

Technology Area NAND Gate Total Area Power Leakage

[m?] [m?] [GE] [uWQ1MHz] (W]
AMS c35b4 693,948 54.600 12,710 696.3 0.63
UMC f180GII 139,469 9.374 14,878 107.1 0.53
UMC f130SP 71,745 5.120 14,013 314 1.37
UMC f090SP 39,550 3.136 12,612 70.1 54.32

little theorem [20] that states that a = a®" mod f(z)Va € Fam. As a result,
a' = a?" 72 mod f(z). This exponentiation can be performed using 162
squaring and only 9 multiplications for the NIST B-163 binary field. As a
result 11,031 cycles are needed for an inversion.

6 Results

We synthesized our processor using different CMOS technologies from vari-
ous manufacturers. For synthesis, we used the Cadence RTL compiler [5] Ver-
sion v08.10. Table 3 shows the total area and power-consumption estimation of
the processor using latch-based RAMs! (described in Section 3.2). The power-
consumption estimations were made using Cadence Encounter Version v08.10.
All obtained area results are within a 20 % margin. In view of power consump-
tion, best performance had been obtained for the UMC-L130 technology. For all
following approximations we used register-based RAM macros.

In Table4, the area and power requirements for individual chip components
are listed. The memory needs most of the area which is 5,399 GEs. The CPU
needs 3,556 GEs in total where only 849 GEs are used for the carry-less multiplier.
The total size of the processor sums up to 8,958 GEs.

In Table 5, we compare our results with related work. There exist many pub-
lications of ECC processors over Fa163. Most of those processors use full-precision
arithmetic to perform the point multiplication. For a fair comparison, we listed
the results of the authors for different digit sizes (d=1...8). All implementations
need between 10,392 GEs and 16,247 GEs of chip area and between 47 and 430
kecycles for the computation of k- P. Our implementation needs 8,958 GEs of area
which is 1,434 GEs less area than the best reported solution. This is an area im-
provement by about 14 %. The number of needed clock cycles can be compared
with the full-precision solutions with d=1. The power and energy consumption
is very low and fulfills most requirements of embedded-system designs.

6.1 Results for Higher-Level Protocol Implementations

As a higher-level protocol, we implemented the Elliptic Curve Digital Signature
Algorithm (ECDSA) [30]. In addition to a point multiplication over the binary

! We did not have access to RAM macros for all those technologies.



Table 4. Size and power consumption of individual chip components.

Component Area Area Power Power
[GE] %]  [WWQlMHz] %]

Memory 5,399 60.27 11.57 35.77
Program memory 2,471 27.58 4.24 13.10
Data RAM 2,528 28.22 4.66 14.41
Constant ROM 256 2.56 1.62 5.01
CPU 3,556 39.70 18.93 58.54
ALU 1,837 20.51 11.05 34.16
Carry-less multiplier 849 9.48 2.30 7.12

Logic unit 348 3.88 2.15 6.65
Arithmetic unit 93 1.04 0.37 1.15
Register Set 875 9.77 1.48 4.58
Total Area 8,958 100.00 32.34 100.00

field Fai165, ECDSA needs a hash function and several prime-field arithmetic
operations to generate and verify a digital signature. As a hash function, we im-
plemented the 160-bit SHA-1 algorithm according to ISO/IEC FIPS-180-3 [29)].
Replacing the SHA-1 algorithm with one of the current SHA-3 candidates [19]
would be easily possible. For prime-field multiplications and inversion, we de-
cided to implemented Montgomery-arithmetic operations. We implemented the
Finely Integrated Product Scanning Form (FIPS) according to Kog et al.[24].
The algorithm is used only four times, so we optimized the code for low area (no

Table 5. Comparison with related work.

Related Area Cycles Power Energy CMOS
Work [GE] [kCycles] [pW@1MHz] (] Technology
Kumar06 d=1 [25] 15,094 430 - - AMI C35
Batina06* d=4 [2] 14,816 95 27.00 2.57 130 nm
Batina06* d=3 [2] 14,258 125 27.00 3.38 130 nm
Batina06* d=2 [2] 13,681 182 27.00 4.91 130 nm
Batina06* d=1 [2] 13,104 354 27.00 9.56 130 nm
Bock08 d=8 [4] 16,247 47 148.76 6.99 INF SRF55V01P
Bock08 d=4 [4] 12,876 80 93.27 7.46  INF SRF55V01P
Bock08 d=1 [4] 10,392 280 54.31 15.21  INF SRF55V01P
Lee08 d=4 [26] 15,356 79 37.39 2.95 UMC L130
Lee08 d=3 [26] 14,729 101 38.32 3.87 UMC L130
Lee08 d=2 [26] 14,064 145 36.52 5.30 UMC L130
Lee08 d=1 [26] 12,506 276 32.42 8.95 UMC L130
Hein08 16-bit [17] 11,904 296 101.87 30.15 UMC L180
This work 16-bit 8,958 286 32.34 9.25 UMC L130

¢ For a fair comparison a RAM approximated with 4,890 GE was added. The power
values lack the power consumption of this RAM.



Table 6. Area and power estimations of our processor supporting ECDSA.

Program Area Cycles Lines of Power Energy

[GE] [kCycles] Code [pW@1MHz] [nJ]
ECC Only 8,958 294 637 32.09 9.43
ECC Protected® 9,728 298 828 32.48 9.68
ECDSA Sign™" 15,387 378 1771 41.11 15.54
ECDSA Verify® 16,005 605 1784 40.76 24.66

% The numbers include y-recovery, randomized projective coordinates (RPC) side-
channel countermeasure [6], and ECC point-validity check [8].

® Includes the SHA-1 hash function [29], Random Number Generation (RNG) [30], and
prime-field arithmetics.

loop unrolling etc.). Furthermore, we implemented the Montgomery-inversion
algorithm according to Kalinski et al. [22].

For signature verification, we applied Shamir’s trick [7, 10] to improve the per-
formance of multiple-point multiplication. All described operations for ECDSA
have been implemented as Assembler functions for our processor and have been
stored in program memory. Table 6 shows the results after synthesizing the pro-
cessor. For ECDSA signature generation, our processor needs 15,387 GEs which
outperforms existing solutions in terms of area, power, and speed [13, 18, 34, 35].
Signature verification can be realized using a chip area of 16,005 GEs.

7 Conclusions

In this paper, we presented a low-resource implementation of an ECC hardware
processor. The processor needs 8,958 GEs and performs a point multiplication
within 285 kcycles. The power consumption is about 3.2 uW at 100 kHz. We met
the low-resource constraints of embedded systems by applying a very modular
microcontroller architecture that allows the execution of higher-level protocols
like ECDSA. The elliptic-curve operations have been performed over the NIST
Fy163 elliptic curve using multi-precision arithmetic. The outcome improves the
state of the art in low area ECC hardware designs and provides even a smaller
area footprint than most of the proposed SHA-3 candidates [19].
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A Statistics for ECC multiplication

During the development of the ECC and ECDSA functions we used a statistics
feature of our tool-chain to investigate the code-line and cycle consumption of
each function. Table 7 shows the number of times each function is called, the
size of each function in code lines and the total runtime of each function. Even
though the multiplication algorithm is optimized down to 222 cycles it still covers
74 % of the total runtime.

Table 7. Functions used during ECC point multiplication with y-recovery and point-
validity check.

Function Calls Code Lines Cycles
B163.Multiplication 990 222 219,780
B163.Square 969 41 39,729
B163.Add 490 35 17,150
PointOperation.Multiplication 1 148 16,636
B163.FermatInverseHelp 7 31 2,041
Utilities.Copy 16 24 384
PointOperation.yRecovery 1 90 90
B163.FermatInverse 1 88 88
PointOperation.isValid Point 1 44 44
Utilities. CMP 1 35 35
Utilities.Clear 2 13 26
TOTAL 2,479 771 296,003
TOTAL including test functions 2,480 828 296,547

Table 8 shows how often each and every type of instruction is used. The
parallelized commands are a combination of other commands. They cover 71 % of
the total runtime. Note that only 4.4 % of the total runtime is used for program-
flow instructions such as RET, CALL, BRA, and JMP. This overhead would not
exist if a dedicated state machine instead of a CPU with instruction set would
be used.



Table 8. Instructions used during an ECC point multiplication with y-recovery and
point-validity check.

Mnemonic Description CPI Cycles Used
PAR: BMULACC | LD 1 109,869 111
PAR: MOVNF | LD 1 65,707 83
LD Load from memory 1 35,410 65
PAR: BREDUCE_ADD_ST ‘ BRSACC 1 13,818 14
PAR: BMULACC | ST | BRSACC 1 11,859 12
PAR: BREDUCE_ADDBYTE_ST | BRSACC 1 9,690 10
CALL Call a function 3 7,440 70
LDI Load Immediate 1 6,900 105
AND Logic AND 1 6,038 7
PAR: XOR ‘ ST 1 5,390 11
MOVNF Copy register to register without flag update 1 5,269 47
RET Return from function 2 4,960 13
BMULACC Binary multiply-accumulate 1 3,876 4
STR Store a register to memory 1 2,725 32
XOR Logic XOR 1 2,120 3
LDR Load from memory and store to register 2 1,942 10
ADDI Add with carry 1 573 11
BRA Branch if flag is set/cleared 1 488 6
PUSH Push a value to the stack 2 338 5
POP Pop a value from the stack 2 336 4
LSI Left shift by immediate 1 326 4
SUBI Subtract with carry 1 324 6
ADD Add 1 163 2
RS Right shift 1 163 2
RSI Right shift immediate 1 163 2
SUB Subtract 1 163 2
ASRI Arithmetic shift right 1 161 1
JMP Jump to address 1 160 1
CMP Compare 1 84 2
MOV Copy register to register 1 82 1
CMPC Compare with carry 1 10 10
TOTAL 296,547 656




