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Abstract. Allowing good performances on different platforms is an im-
portant criteria for the selection of the future sha-3 standard. In this
paper, we consider the compact implementations of blake, Grøstl, jh,
Keccak and Skein on recent fpga devices. Our results bring an interest-
ing complement to existing analyzes, as most previous works on fpga im-
plementations of the sha-3 candidates were optimized for high through-
put applications. Following recent guidelines for the fair comparison of
hardware architectures, we put forward clear trends for the selection
of the future standard. First, compact fpga implementations of Keccak
are less efficient than their high throughput counterparts. Second, Grøstl
shows interesting performances in this setting, in particular in terms of
throughput over area ratio. Third, the remaining candidates are com-
parably suitable for compact fpga implementations, with some slight
contrasts (in area cost and throughput).

Introduction

The sha-3 competition has been announced by nist on November 2, 2007. Its
goal is to develop a new cryptographic hash algorithm, addressing the concerns
raised by recent cryptanalysis results against sha-1 and sha-2. As for the aes
competition, a number of criteria have been retained for the selection of the final
algorithm. Security against cryptanalysis naturally comes in the first place. But
good performances on a wide range of platforms is another important condition.
In this paper, we consider the hardware performances of the sha-3 finalists on
recent fpga devices.

In this respect, an important observation is that most previous works on
hardware implementations of the sha-3 candidates were focused on expensive
and high throughput architectures, e.g. [17, 25]. On the one hand, this is natural
as such implementations provide a direct snapshot of the elementary operations’
cost for the different algorithms. On the other hand, fully unrolled and pipelined
architectures may sometimes hide a part of the algorithms’ complexity that



is better revealed in compact implementations. Namely, when trying to design
more serial architectures, the possibility to share resources, the regularity of the
algorithms, and the simplicity to address memories, are additional factors that
may influence the final performances. In other words, compact implementations
do not only depend on the cost of each elementary operation needed in an algo-
rithm, but also on the number of different operations and the way they interact.
Besides, investigating such implementations is also interesting from an applica-
tion point of view, as the resources available for cryptographic functionalities
in hardware systems can be very limited. Consequently, the evaluation of this
constrained scenario is generally an important step in better understanding the
implementation potentialities of an algorithm.

As extensively discussed in the last years, the evaluation of hardware archi-
tectures is inherently difficult, in view of the amount of parameters that may
influence their performances. The differences can be extreme when changing
technologies. For example, asic and fpga implementations have very different
ways to deal with memories and registers, that generally imply different design
choices [14, 16]. In a similar way, comparing fpga implementations based on
different manufacturers can only lead to rough intuitions about their respec-
tive efficiency. In fact, even comparing different architectures on the same fpga
is difficult, as carefully discussed in Saar Drimer’s PhD dissertation [12]. Ob-
viously, this does not mean that performance comparisons are impossible, but
simply that they have to be considered with care. In other words, it is impor-
tant to go beyond the quantified results obtained by performance tables, and to
analyze the different metrics they provide (area cost, clock cycles, register use,
throughput, . . . ) in a comprehensive manner.

Following these observations, the goal of this paper is to compare the five
sha-3 finalists on the basis of their compact fpga implementation. In order to al-
low as fair a comparison as possible, we applied the approach described by Gaj et
al. at ches 2010 [14]. Namely, the ip cores were designed according to similar
architectural choices and identical interface protocols. In particular, our results
are based on the a priori decision to rely on a 64-bit datapath (see Section 3 for
the details). As for their optimization goals, we targeted implementations in the
hundreds of slices (that are the fpgas’ basic resources), additionally aiming for
the best throughput over area ratio, in accordance with the usual characteristics
of a security IP core. In other words, we did not aim for the lowest cost imple-
mentations (e.g. with an 8-bit datapath), and rather investigated how efficiently
the different sha-3 finalists allow sharing resources and addressing memories,
under optimization goals that we believe reflective of the application scenarios
where reconfigurable computing is useful.

As a result, and to the best of our knowledge, we obtain the first complete
study of compact fpga implementations for the sha-3 finalists. For some of
the algorithms, the obtained results are the only available ones for such opti-
mization goals. For the others, they at least compare to the previously reported
ones, sometimes bringing major improvements. For illustration purposes, we ad-
ditionally provide the implementation results of an aes implementation based



on the same framework. Eventually, we take advantage of our results to dis-
cuss and compare the five investigated algorithms. While none of the remaining
candidates leads to dramatically poor performances, this discussion allows us
to contrast the previous conclusions obtained from high throughput implemen-
tations. In particular, we put forward that the clear advantage of Keccak in
a high throughput fpga implementation context vanishes in a low area one.
Performance tables also indicate a good behavior for Grøstl in our implementa-
tion scenario, in particular when looking at the throughput over area evaluation
metric.

1 SHA-3 finalists

This section provides a quick overview of the five sha-3 finalists. We refer to the
original submissions for the detailed algorithm descriptions.

BLAKE. blake [3] is built on previously studied components, chosen for
their complementarity. The iteration mode is haifa, an improved version of
the Merkle-Damgard paradigm proposed by Biham and Dunkelman [10]. It pro-
vides resistance to long-message second preimage attacks, and explicitly handles
hashing with a salt and a “number of bits hashed so far” counter. The internal
structure is the local wide-pipe, which was already used within the lake hash
function [4]. The compression algorithm is a modified version of Bernstein’s
stream cipher ChaCha [5], which is easily parallelizable. The two main instances
of blake are blake-256 and blake-512. They respectively work with 32- and
64-bit words, and produce 256- and 512-bit digests. The compression function
of blake relies heavily on the function g, which consists in additions, xor op-
erations and rotations. It works with four variables : a, b, c and d. It is called
112 to 128 times respectively for the 32- and 64-bit versions.

Grøstl. Grøstl [15] is an iterated hash function with a compression function
built from two fixed, large, distinct but very similar permutations p and q.
These are constructed using the wide-trail design strategy. The hash function
is based on a byte-oriented sp-network which borrows components from the
aes [11], described by the transforms AddRoundConstant, SubBytes, ShiftBytes
and MixBytes. Grøstl is a so-called wide-pipe construction where the size of the
internal state (represented by a two 8 × 16-byte matrices) is significantly larger
than the size of the output. The specification was last updated in March of 2011.

JH. jh [26] essentially exploits two techniques : a new compression function
structure and a generalized aes design methodology, which provides a simple
approach to obtain large block ciphers from small components. The compression
function proposed for jh is composed as follows. Half of a 1024-bit hash value
H(i−1) is xor-ed with a 512-bit block message M (i). The result of this operation
is passed through a bijective function e8 which is a 42-rounds block cipher with



constant key. The output of e8 output is then once again xor-ed with M (i).
This paper considers the round 3 version of the jh specifications submitted to
the nist, in which the number of rounds has been increased from 35.5 to 42.

Keccak. Keccak [6] is a family of sponge functions [7], characterized by two
parameters: a bitrate r, and a capacity c. The sponge construction uses r + c
bits of state and essentially works in two steps. In a first absorbing phase, r
bits are updated by xoring them with message bits and applying the Keccak
permutation (called f). Next, during the squeezing phase, r bits are output after
each application of the same permutation. The remaining c bits are not directly
affected by message bits, nor taken as output. The version of the Keccak function
proposed as sha standard operates on a 1600-bit state, organized in words. The
function f is iterated a number of times determined by the size of the state
and it is composed of five operations. Theta consists of a parity computation, a
rotation of one position, and a bitwise xor. Rho is a rotation by an offset which
depends on the word position. Pi is a permutation. Chi consists of bitwise xor,
not and and gates. Finally, iota is a round constant addition.

Skein. Skein [2] is built out of a tweakable block cipher [23] which allows hashing
configuration data along with the input text in every block, and makes every
instance of the compression function unique. The underlying primitive of Skein
is the Treefish block cipher: it contains no S-box and implements a non-linear
layer using a combination of 64-bit rotations, xors and additions (i.e. operations
that are very efficient on 64-bit processors). The Unique Block Iteration (ubi)
chaining mode uses Threefish to build a compression function that maps an
arbitrary input size to a fixed output size. Skein supports internal state sizes
of 256, 512 and 1024 bits, and arbitrary output sizes. The proposition was last
updated in October of 2010 (version 1.3) [13].

2 Related works

Table 1 provides a partial overview of existing low area fpga implementations
for the sha-3 candidates, as reported in the sha-3 Zoo [1]. Namely, since our
following results were obtained for Virtex-6 and Spartan-6 devices (as will be
motivated in the next section), we list only the most relevant implementations
on similar fpgas.

blake has been implemented in two different ways. The first one, designed by
Aumasson et al. [3], consists in the core functionality (cf) with one g function.
This implementation offers a light version of the algorithm but does not really
exploit fpga specificities. On the other hand, the second blake implementation,
by Beuchat et al. [9], consists in a fully autonomous implementation (fa) and
is designed to perfectly fit the Xilinx fpga architecture : the slice’s carry-chain
logic is exploited to build a adder/xor operator within the same slices. The
authors also harness the 18-kbit embedded ram blocks (ramb) to implement



Algorithm Scope fpga
Area

Reg. ramb Clk
Freq. Thr.

[slices] cyc. [MHz] [Mbps]

Aumasson et al. [3] blake-32 CF V5 390 - - - 91 575

Beuchat et al. [9] blake-32 FA S3 124 - 2 844 190 115

Beuchat et al. [9] blake-32 FA V5 56 - 2 844 372 225

Aumasson et al. [3] blake-64 CF V5 939 - - - 59 533

Beuchat et al. [9] blake-64 FA S3 229 - 3 1164 158 138

Beuchat et al. [9] blake-64 FA V5 108 - 3 1164 358 314

Jungk et al. [21] Grøstl-256 FA* S3 2486 - 0 - 63 404

Jungk et al. [20] Grøstl-256 FA* S3 1276 - 0 - 60 192

Jungk et al. [20] Grøstl-512 FA* S3 2110 - 0 - 63 144

Homsirikamol et al. [17] JH-256 FA V5 1018 - - 36 381 5416

Homsirikamol et al. [17] JH-512 FA V5 1104 - - 36 395 5610

Bertoni et al. [8] Keccak-256 EM V5 444 227 - 5160 265 70

Namin et al. [24] Skein-256 CF AS3 1385** 1858 - 72 574 161

Table 1. Existing compact fpga implementations of third round sha-3 candidates (*
padding included, ** Altera aluts).

the register file and store the micro-code of the control unit. Table 1 shows
Spartan-3 (s3) and Virtex-5 (v5) implementation results.

Jungk et al. [20][21] chose to implement the Grøstl algorithm on a Spartan-3
device. They provide a fully autonomous implementation including padding. The
similarity between Grøstl and the aes is exploited and aes-specific optimizations
presented in previous works are applied. The table only reports the best and
most recent results from [20]. Also, only serial implementations of p and q are
considered, because they better match our low area optimization goal.

No low area implementation of jh has been proposed up to now. In order
to have a comparison, the implementation proposed by Homsirikamol et al. [17]
may be mentioned. It is the high speed fpga implementation that has the lowest
area cost reported in the literature.

A low area implementation of the Keccak algorithm is given by Bertoni et
al. [8]. In this implementation, the hash function is implemented as a small area
coprocessor using system (external) memory (em). In the best case, with a 64-bit
memory, the function takes approximately 5000 clock cycles to compute. With
a 32-bit memory, this number increases up to 9000 clock cycles.

Finally, Namin et al. [24] presented a low area implementation of Skein. It
provides the core functionality and is evaluated on an Altera Stratix-III (as3)
fpga.

3 Methodology

As suggested by the previous section, there are only a few existing low area
fpga implementations of the sha-3 candidates up to now. Furthermore, those



implementations often lack of similar specifications which make them difficult
to compare. We therefore propose to design compact hardware cores of the five
third-round candidates using a common methodology, which allows a fair com-
parison of the performances. The methodology we used mainly follows the one
described by Gaj et al. [14], which suggests to use uniform interface and archi-
tecture, and defines some performance metrics.

First of all, we tried to keep the number of slices in the same range for all
the implementations (typically between 150 and 300), with the throughput over
area ratio as optimization target. This is a relevant choice for hardware cores,
as they often need to be as efficient as possible with a limited resources usage.
We then decided to primarily focus on the sha-3 candidate variants with the
512-bit digest output size, as they correspond to the most challenging scenario
for compact implementations - and may be the most informative for comparison
purposes. For completeness, we also report the implementation results of the
256-bit versions in appendix, that are based on essentially similar architectures.
Next, since we are implementing low area designs, we limited the internal data-
path to 64-bit bus widths. This is a natural choice, as most presented algorithms
are designed to operate well on 64-bit processors. Therefore, trying to decrease
the bus size tends to be cumbersome and provides a limited area improvement at
the expense of a significantly decreased throughput. In addition, we specified a
common interface for all our designs, in which we chose to have an input message
width of 64 bits, as this is the most convenient size to use with our 64-bit internal
datapath. It also corresponds to our typical scenario, in which the hash IP cores
have to be inserted in larger fpga designs. Smaller or bigger message sizes would,
most of the time, require additional logic in order to reorganise the message in
64-bit words. This is resources consuming and can be added externaly if needed
by the user. All our cores have been designed to be fully autonomous, which will
help us in the comparison of the total resources needed by each candidate.

Drimer presented in [12] that implementation results are subject to great
variations, depending on the implementation options. Furthermore, comparing
different implementations with each others can be irrelevant if not made with
careful considerations. We therefore specified fixed implementation options and
architecture choices for all our implementations. We choose to work on a Virtex-
6 and Spartan-6 fpgas, specifically a xc6vlx75t with speed grade -1 and a
xc6slx9 with speed grade -2, which are the most constraining fpgas in their
respective families, in terms of number of available logic elements. Note that
the selection of a high-performance device is not in contradiction with com-
pact implementations, as we typically envision applications in which the hash
functionality can only consume a small fraction of the fpga resources. Also,
we believe it is interesting to detail implementation results exploiting the latest
fpga structures, as these advanced structures will typically be available in future
low cost fpgas too. In other words, we expect this choice to better reflect the
evolution of reconfigurable hardware devices. Besides, and as will be illustrated
by the implementation tables in Section 5, the results for Virtex-6 and Spartan-6



devices do not significantly modify our conclusions regarding the suitability of
the sha-3 finalists for compact fpga implementations.

We did not use any dedicated fpga resources such as block rams or dsps.
It is indeed easier to compare implementations when they are all represented in
terms of slices rather than in a combination of several factors. Additionally, the
use of block rams is often not optimal as they are too big for our actual needs.
All the implementations took advantage of the particular lut capabilities of
the Virtex-6 and Spartan-6, and use shift registers and/or distributed rams (or
roms). The different modules are however always inferred so that portability to
other devices is possible, even if not optimal. The design was implemented using
ise 12.1 and for two different sets of parameters. Those two sets are predefined
sets available in ise Design Goals and Strategies project options and are specified
as “Area Reduction with Physical Synthesis” and “Timing Performance without
iob Packing”. This choice was mainly motivated by the willing to illustrate the
impact of synthesis options on the final performance figures.

We have made the assumption that padding is performed outside of our cores
for the same reasons as in [14]. The padding functions are very similar from
one hash function to another and will mainly result in the same absolute area
overhead. Additionally, complexity of the padding function will depend on the
granularity of the message (bit, byte, words,...) considered in each application.

Finally, the performance metrics we used in this text is always the throughput
for long message (as defined in [14]). We did not specify the throughput for short
message, but the information needed to compute it is present in the result tables
of Section 5.

4 Architectures

This section presents the different compact architectures we developed. Because
of space constraints, we mainly focus on the description of their block diagrams.

BLAKE. blake algorithm is implemented as a narrow-pipelined-datapath de-
sign. The architecture of blake is illustrated in Figure 1. The overall organiza-
tion is similar to the implementation proposed by Beuchat et al..

blake has a large 16-word state matrix v but each operation works with only
two elements of it. Hence, the datapath does not need to be larger than 64 bits.
The operations are quite simple, they consist in additions, xor and rotations.
This allows us to design a small alu embedding all the required operators in
parallel, followed by a multiplexer. The way the alu is build allows computing
xor-rotation and xor-addition operations in one clock cycle.

Our blake implementation uses distributed ram memory to store interme-
diate values, message blocks and c constants. Using this kind of memory offers
some advantages. Beyond effective slices occupation, the controller must be able
to access randomly to different values. Indeed, message blocks and c constants
are chosen according to elements of a permutation matrix. Furthermore, ele-



ments of the inner state matrix are selected in different orders during column
and diagonal steps.

The 4-input multiplexer in front of the ram memory is used to load message
blocks (m), salt (s) and counter (t) through the Message input, to load the
initialization vector (iv), to write the alu results thanks to the feedback loop,
and to set automatically the salt to zero if the user does not specify any value.
Loading salt or initializing it to zero takes 4 clock cycles. Loading initialization
vector takes 8 clock cycles. These two first steps are made once per message.
The two following steps, which are loading the counter and message block, take
18 clock cycles and are carried out at each new message block.

The scheduling is made so that, for each call of the round function g (as
described in Section 1), the variable a is computed in two clock cycles, because
it needs two additions between three different inputs. The three other variables
(b, c, and d) are computed in one clock cycle thanks to the feedback loop on the
alu. As a result, one call of the g function needs 10 clock cycles to be executed.
To avoid pipeline bubbles between column and diagonal steps, the ordering of g
functions during diagonal step is changed to g4, g7, g6 and g5. The blake-64
version needs 16 (rounds) × 8 (g calls) × 10 = 1280 clock cycles to process one
block through the round function, and 4 more ones to empty the pipeline. The
initialization and the finalization steps need each 20 clock cycles. So, complete
hashing one message block takes 18 + 1284 + 40 = 1342 clock cycles. Finally, the
hash value is directly read on the output of the ram and takes 8 clock cycles to
be entirely read.

As expected, these results are very close to those announced by Beuchat et
al. [9] after adjustement (they considered 14 rounds for the blake-64 version
rather than 16), since the overall architectures are very similar.

Fig. 1. blake Architecture

Grøstl. The 64-bit architecture of Grøstl algorithm is depicted in Figure 2.
This pipelined datapath implements the p and q permutation rounds in an in-



terleaved fashion (to avoid data dependency problems). The last round function
(Ω) is implemented with the same datapath and only resorts to p. The difference
between p and q lies in slightly different AddRound constants and ShiftBytes
shift pattern. Besides the main aes-like functions, there are several circuits. A
layer of multiplexers and bitwise xors is required at the beginning and at the end
of the datapath. They implement algorithm initialization, additions necessary at
beginning and end of each round, and internal and external data loading. Two
distinct rams are used to store the p and q state matrices and input message
mi (ram qpm) and the hash result (ram h). ram qpm is a 64 × 64-bit dual port
ram. One ram slot is used to store message mi and three other slots are used
to store current and next p and q states (slots are used as a circular buffer).
ram h is a 32 × 64-bit dual port ram that stores current and next H (as well
as final result).

The four main operations of each p or q rounds are implemented in the fol-
lowing way. The ShiftBytes operation comes first. It is implemented by accessing
bytes of different columns instead of a single column (as if ram qpm was a col-
lection of eight 8-bit rams), to save a memory in the middle of the datapath.
Different memory access patterns (meaning different initialization of address
counters) are required to implement p and q ShiftBytes as well as no shift (for
post-addition with h and hash unloading). Constants of AddRoundConstant are
computed thanks to a few small-size integer counters (corresponding to the row
and round numbers) and all-zero or all-one constants. Addition of those constants
with data is a simple bitwise xor operation. The eight S-boxes of SubBytes are
simply implemented as eight 8 × 8-bit roms (efficiently implemented in 6-input
look-up tables-based fpgas). Finally, the MixBytes operation is similar to the
aes MixColumn, except that 8 × 6 different 8-bit F2 multiplications by small
constants are required, and that eight 64-bit partial products have to be added
together. We implemented it as a large xor tree, with multipliers hardcoded as
8-bit xors and partial products xored together.

Hashing a 1024-bit chunk of a message takes around 450 cycles: 16 (loading of
mi) + 14 (rounds) × 2 (interleaved p and textscq) × 16 (columns of state matrix)
+ 8 (ending). The last operation Ω requires around 350 cycles: 14 (rounds) ×
(16 (columns) + 6 (pipeline flush)) + 8 (ending) + 8 (hash output)

Roughly speaking, the most consuming parts of the architecture are MixBytes
(accounting for 30 % of the final cost), the S-boxes (25 %) and the control of the
dual port rams (25 %). Note that most pipeline registers are taken from already
consumed slices, hence do not increase the slice count of the implementation.

JH. The jh architecture is illustrated in Figure 3 and is composed as follows.
Two 16×32-bit single port distributed rams (hash ram) are used to store the
intermediate hash values. Those rams are first initialized in 16 clock cycles
with iv values coming from a 16×64-bit distributed rom1 and are afterwards
updated with the output of r8 or the xor operation output. r8 performs the

1 iv rom contains H(0) initial value and not H(−1) as defined in jh specifications.
That way, we save 688 cycles of initialization and only loose a couple of slices



Fig. 2. Grøstl Architecture

round functions and is composed of sixteen 5×4 S-boxes, eight linear functions
and a permutation. As the permutation layer always puts in correspondence
two consecutive nibbles with a nibble from the first half and another from the
second half of the permuted state, the output of r8 can be split into two 32-bits
words, one coming from the first half and the other from the second half of the
intermediate hash value. An address controller (addr contr), composed of two
16×4-bit dual-port distributed rams is then used to reach the wanted location
in each hash ram, at each cycle. Rotations before and after r8 are needed to
organize correctly the hash intermediate values in the two hash rams.

A similar path is designed for constants generation. Two 16×8-bit single-port
distributed ram (cst rams) are used to store the constants intermediate values.
The function r6 performs a round function on 16 bits of the constant state. The
same address controller as for hash rams is used for cst rams.

Finally, a group/de-group block is used to re-organize the input message.
As jh has been designed to achieve efficient bit-slice software implementations,
a grouping of bits into 4-bit elements has been defined as the first step of the
jh bijective function e8. Similarly, a de-grouping is performed in the last step of
e8. When those grouping and de-grouping phases have no impact on high speed
hardware implementations (as they result only in routing), this in not the case
anymore for low area architectures. Indeed, those steps requires 16 additional
clock cycles per message block, as well as more complex controls to access the
single port rams. To avoid this, we chose to always work on a grouped hash and
therefore to perform the data organization on the message with the group/de-
group block. The same component is also used to re-organize the hash final
value before sending it to the user.

Our implementation of jh needs 16×42 clock cycles to compute the 42 rounds
and 16 additional ones to perform the final xor operation. In total, 688 clock
cycles are required to process a 512-bit message block, 16 for ram initialization
and 20 additional clock cycles are used for the finalization step (4 to empty the
pipeline and 16 to output hash from the group/de-group component).

Keccak. Our architecture, depicted in Figure 4, implements the Keccak version
proposed as sha-3 standard. It works on state of 1600 bits organized into 25



Fig. 3. jh Architecture

words of 64 bits each. The whole algorithm does not use complex operations,
but only xors, rotations, negations and additions. The basic operations are
performed on the 64-bit words, thus our implementation has a 64-bit internal
datapath.

We maintained the same organization of Bertoni et al., where the compu-
tation was split into three main steps: the first which does part of the theta
transformation by calculating of the parity of the columns, the second which
completes the theta transformation and performs the rho and pi transforma-
tions, and the third which computes the chi and iota steps. This structure re-
quires a memory of 50 words of 64 bits, which are needed to store the state and
the intermediate values at the end of the pi transformation.

To allow parallel read/write operations and to simplify the access to the state,
we organized the whole memory into two distinct asynchronous read single port
ram of 32×64-bit (ram a and ram b), and we reserved ram b to store the
output of the pi transformation.

Internally, our architecture has 5 registers of 64 bits, connected in order to
create a word oriented rotator. During the theta transformation, the registers
store the results of the computed parities. The rotator allows to quickly position
the correct word for computing the second part of theta, as well as for computing
the chi transformation.

The most crucial part of Keccak is the rho transformation, which consist
of rotation of words with an offset which depends from the specific index. We
implemented this step efficiently in fpga by using a 64-bit barrel rotator and by
storing the rotation offsets into a dedicated look up table. The explicit implemen-
tation of a barrel rotator allows to significantly reduce the area requirements in
comparison to the use of a basic multiplexer. Furthermore, even if the 25 words
of the state need to be processed successively by the same component, the use



Fig. 4. Keccak Architecture

of a single barrel rotator reaches the trade off between the reached performances
and the overall area cost which is more suitable for the scope of this paper.

Our implementation of Keccak requires 88 clock cycles to compute a single
round. Since Keccak-1600 has 24 rounds, the total number of cycles required
to hash a message is 2112, to which is should be added the initial xor with
the current state (25 cycles repeated for each block), the load of the message (9
cycles), and the offloading of the final result (8 cycles).

Fig. 5. Skein Architecture

Skein. Our implementation only contains a minimal set of operations necessary
to the realization of round computations. In order to provide acceptable perfor-
mances and memory requirements, the operations are not broken up all the way



down to the basic addition, exclusive or and rotate operations, but rather realize
the mix and subkey addition steps. The architecture is illustrated in figure 5. the
initial ubi value is obtained through an 8×64-bit rom (iv) which avoids hashing
the first configuration block. Key extension is performed on-the-fly using some
simple arithmetic and a 64-bit register (extend). One 17×64-bit ram memory
(key/msg ram) is used to store both the message block in view of the next
ubi chaining, and the keys used for the current block. The hash variables can
be memorized in two different 4×64-bit rams (hash ram), since the permute
layer never swaps even and odd words. The permute operation itself is implicitly
computed using arithmetic on memory addresses. The mix operations take two
64-bit values (mix), and require 4 cycles per round. The subkey addition acts on
64-bit values (add), requiring 8 cycles every 4 rounds. Subkeys are computed
just before addition, with the help of the tweak registers (subkey and tweak).
Finally, a 64-bit xor is used for ubi chaining. After the completion of round
operations, the hash digest is read from the key register. Given the variable
management in this architecture, only single-port rams are needed, rather than
the more expensive dual-port rams. All these are used asynchronously. When
hashing a message, the operator first has to load the initialization vector, taking
9 cycles, followed by 457 cycles per 512-bit message block. Finally, one last block
has to be processed before the hash value is output, leading to an overhead of
466 additional cycles.

5 Implementation results & discussion

The complete implementation results for our different architectures are given in
Tables 2 and 3 for Virtex-6 and Spartan-6 devices, respectively. As expected,
one can notice the strong impact of the two sets of options we considered (i.e.
area and timing). Still, a number of important intuitions can be extracted.

In the first place, and compared to previous works, we see that our imple-
mentation results for blake are quite close to the previous ones of Beuchat et
al. The main differences are our exploitation of distributed memories (reported
in the slices count) rather than embedded memory blocks and the fact that they
implemented only 14 rounds, as specified in previous blake-64 version, instead
of 16. By contrast, for all the other algorithms, our results bring some inter-
esting novelty. In particular, for Keccak, the previous architecture of Bertoni et
al. was using only three internal registers, because of its compact asic-oriented
flavor. This was at the cost of a weak performances, in the range of 5000 clock
cycles per hash block. We paid a significant attention in taking advantage of the
fpga structure, in particular its distributed rams. As a result, we reduced the
number of clock cycles by a factor of more than two. As for the three remaining
algorithms, no similar results were known to date, which make them interesting,
as first milestones.

Next, this table also leads to a number of comments regarding the different
algorithms and their compact fpga implementations. First, one can notice that



blake Grøstl JH Keccak Skein AES

Properties
Input block message size 1024 1024 512 576 512 128
Clock cycles per block 1342 448 688 2137 458 44
Clock cycles overhead (pre/post) 12/8 24/354 16/20 9/8 9/466 8/0

Area

Number of LUTs 701 912 789 519 770 658
Number of Registers 371 556 411 429 158 364
Number of Slices 192 260 240 144 240 205
Frequency (MHz) 240 280 288 250 160 222
Throughput (Mbit/s) 183 640 214 68 179 646
Efficiency (Mbit/s/slice) 0.95 2.46 0.89 0.47 0.75 3.15

Timing

Number of LUTs 810 966 1034 610 1039 845
Number of Registers 541 571 463 533 506 524
Number of Slices 215 293 304 188 291 236
Frequency (MHz) 304 330 299 285 200 250
Throughput (Mbit/s) 232 754 222 77 223 727
Efficiency (Mbit/s/slice) 1.08 2.57 0.73 0.41 0.77 3.08

Table 2. Implementation results for the 5 sha-3 candidates on Virtex-6 (512-bit di-
gests).

blake Grøstl JH Keccak Skein AES

Properties
Input block message size 1024 1024 512 576 512 128
Clock cycles per block 1342 448 688 2137 458 44
Clock cycles overhead (pre/post) 12/8 24/354 16/20 9/8 9/466 8/0

Area

Number of LUTs 719 912 737 525 888 685
Number of Registers 370 574 338 433 249 365
Number of Slices 230 343 260 193 292 232
Frequency (MHz) 135 240 113 166 91 125
Throughput (Mbit/s) 103 548 84 45 102 364
Efficiency (Mbit/s/slice) 0.47 1.60 0.32 0.23 0.35 1.57

Timing

Number of LUTs 856 766 1106 640 1059 852
Number of Registers 594 759 646 476 395 529
Number of Slices 303 281 362 216 351 274
Frequency (MHz) 150 265 175 166 111 154
Throughput (Mbit/s) 114 605 130 45 124 448
Efficiency (Mbit/s/slice) 0.38 2.15 0.36 0.21 0.35 1.64

Table 3. Implementation results for the 5 sha-3 candidates on Spartan-6 (512-bit
digests).



Grøstl compares favorably with all the other candidates. While it has quite
expensive components, interleaving the p and q functions allows reducing the
logic resources. More importantly, this algorithm proceeds blocks of 1024 bits and
has a quite limited cycle count, which leads to significantly higher throughput
than our other implementations.

blake and jh also achieve reasonable throughput, but do not reach the level
of performance of Grøstl in this case study. For blake, the input blocks are
still 1024-bit wide, but our implementation requires three times more cycles per
block. For jh, it is rather the reduction of input block size that is in cause.

Skein provides interesting performances too. Its most noticeable limitation
is a lower clock frequency, that could be improved by better pipelining the ad-
ditions involved in our design. As a first step, we exploited the carry propagate
adders that are efficiently implemented in Xilinx fpgas. But this is not a the-
oretical limitation of the algorithm. One could reasonably assume that further
optimization efforts would increase the frequency at the level of the other can-
didates.

Finally, Keccak presents the poorest performances for the 512-bit digests.
This is an interesting result in view of the excellent behavior of this algorithm
in a high throughput implementation context [14]. Further optimizations could
be investigated in order to reduce the number of clock cycles. But as long as a
similar architecture as in this paper is used, this would probably be at the cost of
a larger datapath (hence, higher slice count). Also, even considering an optimistic
50 cycles per round, the throughput of Keccak would remain 6 times smaller than
the one of Grøstl. The main reason of this observation relates different rotations
used in this algorithm (that come for free in unrolled implementations but may
turn out to be expensive in compact ones) and to the large state that needs to
be addressed multiple times when hashing a block. We note that our results are
in line with the recent evaluations from CHES 2011 [18], where it is stated that
Keccak is not straightforwardly suitable for folding2. An interesting alternative
and scope for further research would be to change the overall architecture in
order to better exploit the bit interleaving techniques described in [19].

Unsurprisingly, the main difference between the Virtex-6 and Spartan-6 im-
plementations consists in a slightly larger number of slices, most likely due to
the more constraining fpga, and a reduction in frequency due to the lower
performance of the Spartan-6 fpgas.

In addition to these results, Table 4 in appendix provides the implementation
results for the 256-bit digest versions of the hash algorithms, on Virtex-6. In
general, these smaller variants do not exhibit significantly different conclusions.
One important reason for this observation is that, when using distributed ram’s
in an implementation, reducing the size of a state does not directly imply a gain
in slices for a compact implementation (as only the depth of the memories are
affected in this case). In fact, the move to 256-bit digests only implied a change
of architecture for blake (in the 256-bit version, we used a datapath size of 32
bits). Overall, this move towards smaller digests is positive for Keccak, because

2 See also the following work to appear at INDOCRYPT 2011 [22].



of a larger bitrate r, which allows this candidate to be more in line with the other
finalists. By contrast, for blake, the processing of 512-bit blocks does not come
with a sufficient reduction of the number of rounds, hence leading to smaller
throughputs. As for Grøstl, the number of rounds is also reduced by less than a
factor 2, but the smaller number of columns in the state matrix allows keeping
a higher throughput.

To conclude this work, we finally reported the performance results for an
aes-128 implementation, with “on-the-fly” key scheduling, based on a 32-bit
architecture. This implementation is best compared with the 256-bit versions of
the sha-3 candidates (because of a 128-bit key). One can notice that the slice
count and throughput also range in the same levels as the ones of Grøstl.
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blake Grøstl JH Keccak Skein AES

Properties
Input block message size 512 512 512 1088 256 128
Clock cycles per block 1182 176 688 2137 230 44
Clock cycles overhead (pre/post) 12/8 24/122 16/20 17/16 5/234 8/0

Area

Number of LUTs 417 912 789 519 770 658
Number of Registers 211 556 411 429 158 364
Number of Slices 117 260 240 144 240 205
Frequency (MHz) 274 280 288 250 160 222
Throughput (Mbit/s) 105 815 214 128 179 646
Efficiency (Mbit/s/slice) 0.90 3.13 0.89 0.89 0.75 3.15

Timing

Number of LUTs 500 966 1034 610 1039 845
Number of Registers 284 571 463 533 506 524
Number of Slices 175 293 304 188 291 236
Frequency (MHz) 347 330 299 285 200 250
Throughput (Mbit/s) 132 960 222 145 223 727
Efficiency (Mbit/s/slice) 0.75 3.27 0.73 0.77 0.77 3.08

Table 4. Implementation results for the 5 sha-3 candidates on Virtex-6 (256-bit di-
gests).


