
Combined Software and Hardware Attacks on the
Java Card Control Flow

Guillaume Bouffard, Julien Iguchi-Cartigny, and Jean-Louis Lanet

Smart Secure Devices (SSD) Team – XLIM Labs, Université de Limoges
83 Rue d’Isle, 87000 Limoges, France

{guillaume.bouffard,julien.cartigny,jean-louis.lanet}@xlim.fr

Abstract. The Java Card uses two components to ensure the security
of its model. On the one hand, the byte code verifier (BCV) checks,
during an applet installation, if the Java Card security model is ensured.
This mechanism may not be present in the card. On the other hand,
the firewall dynamically checks if there is no illegal access. This paper
describes two attacks to modify the Java Card control flow and to execute
our own malicious byte code. In the first attack, we use a card without
embedded security verifier and we show how it is simple to change the
return address of a current function. In the second attack, we consider
the hypothesis that the card embeds a partial implementation of a BCV.
With the help of a laser beam, we are able to change the execution flow.

Keywords: Java Card, control flow, laser, Java Card Stack, attack

1 Introduction

Java Card is a kind of smart card that implements one of the two editions,
“Classic Edition” or “Connected Edition”, of the Java Card 3.0 standard [8].
Such smart cards embed a virtual machine (VM) which interprets codes already
romized with the operating system or downloaded after issuance 1. In fact, Java
Card is an open platform for smart cards, i.e. able of loading and executing new
applications after issuance. Thus, different applications from different providers
run in the same smart card. Thanks to type verification, byte codes delivered
by the Java compiler and the converter (in charge of giving a compact rep-
resentation of class files) are safe, i.e. the loaded application is not hostile to
other applications in the Java Card. Furthermore, the Java Card firewall checks
application permissions and access in the card, enforcing isolation between them.

Java Cards have shown improved robustness compared to native applications
regarding many attacks. They are designed to resist to numerous attacks using
both physical and logical techniques. Currently, the most powerful attacks are
1 Due to security reasons, the ability to download code into the card is controlled by
a protocol defined by Global Platform [3]. This protocol ensures that the owner of
the code has the necessary authorization to perform the action.

hardware based attacks and particularly fault attacks. A fault attack modifies
parts of memory content or a signal on internal bus, which can lead to deviant
behavior exploitable by an attacker. A comprehensive consequence of such at-
tacks can be found in [6]. Although fault attacks have been mainly used in the
literature from a cryptanalytic point of view (see [1,4,9]), they can be applied to
every code layers embedded in a device. For instance, while choosing the exact
byte of a program the attacker can bypass counter-measures or logical tests. We
called mutant such modified application.

2 State of the Art

2.1 Java Card Security

The Java Card platform is a multi-application environment where critical data
of an applet must be protected against malicious access from another applet.
To enforce protection between applets, classical Java technology uses the type
verification, class loader and security managers to create private namespaces for
applets. In a smart card, complying with the traditional enforcement process is
not possible. On the one hand, the type verification is executed outside the card
due to memory constraints. On the other hand, the class loader and security
managers are replaced by the Java Card firewall.

Allowing code to be loaded into the card after post-issuance raises the same
issues as the web applets. An applet not built by a compiler (handmade byte
code) or modified after the compilation step may break the Java sandbox model.
Thus, the client must check that the Java-language typing rules are preserved at
the byte code level. Java is a strongly typed language where each variable and
expression has a type determined at compile-time, so that if a type mismatch
from the source code, an error is thrown. The Java byte code is also typed.
Moreover, local and stack variables of the VM have fixed types even in the scope
of a method execution but no type mismatches are detected at run time, and it
is possible to make malicious applets exploiting this issue. For example, pointers
are not supported by the Java programming language although they are exten-
sively used by the Java VM (JVM) where object referenced from the source code
are relative to a pointer. Thus, the absence of pointers reduces the number of
programming errors. But it does not stop attempts to break security protections
with unfair use of pointers.

The BCV is an essential security component in the Java sandbox model: byte
code alteration contained in an ill-typed applet may induce a security flaw. The
byte code verification is a complex process involving elaborate program analyses
using a very costly algorithm in time consumption and memory usage. For these
reasons, lot of cards do not implement this kind of component and rely on the
responsibility of the organization which signs the code of the applet to ensure
that they are well-typed.

The separation of different applets is enforced by the firewall which is based
on the package structure of Java Card and the notion of context. When an ap-
plet is created, the Java Card Runtime Environment (JCRE) uses an unique
Applet IDentifier (AID) from which it is possible to retrieve the name of the
package in which the applet is defined. If two applets are an instance of classes
of the same Java Card package, they are considered in the same context. There
is also a super user context, called the JCRE context. Applets associated with
this context can access to objects from any other context on the card.

Each object is assigned to a unique owner context which is the context of the
created applet. An object method is executed in the owner object context. This
context provides information allowing, or not, to access to another object. The
firewall prevents a method executed in a context from accessing to any attribute
or method of objects to another context.

2.2 The CAP File

The CAP (for Convert APplet) file format is based on the notion of components.
It is specified by Oracle [8] as consisting of ten standard components: Header,
Directory, Import, Applet, Class, Method, Static Field, Export, Constant
Pool and Reference Location and one optional: Descriptor. Moreover, the
targeted Java Card VM (JCVM) may support user custom components. We ex-
cept the Debug component because it is only used on the debugging step and it
is not sent to the card.

Each component has a dedicated role and is linked to each others. A modifi-
cation, volunteer or not, of a component is difficult and may provide meaningless
file. An invalid file is often detected during the installation step by the target
JCVM.

2.3 Logical Attacks

The Hubbers and Poll’s Attack Erik Hubbers et al. made a presentation at
CARDIS 2008 about attacks on smart card. In their paper [5], they present a
quick overview of the classical attacks available and gave some counter-measures.
They described four methods:

1. CAP file manipulation,
2. Fault injection,
3. Shareable interfaces mechanisms abuse and
4. Transaction Mechanisms abuse

The goal of (1) is to modify the CAP file after the building step to bypass
the BCV. The problem is that, like explained before, an on-card BCV is an ef-
ficient system to block this attack. Using the fault injection in (2), the authors
succeed to bypass the BCV. Even if there is not particular physical protection,

this attack is efficient but quiet difficult to perform and expensive.

The idea of (3) abusing shareable interfaces is really interesting and can lead
to trick the VM. The main goal is to obtain a type confusion without the need to
modify the CAP files. To do that, the authors create two applets which commu-
nicate using the shareable interface mechanism. To create a type confusion, each
applet uses a different type of array to exchange data. During compilation or
on loading, there is no way for the BCV to detect a problem. But it seems that
every card tried, with an on-card BCV, refused to allow applets using shareable
interface. As it is impossible for an on-card BCV to detect this kind of anomaly,
Hubbers et al. emitted the hypothesis that any use of shareable interface on card
can be forbidden with an on-board BCV.

The last option left is the transaction mechanism (4). The purpose of trans-
action is to make a group of atomic operations. Of course, it is a widely used
concept, for instance in databases, but still complex to implement. By defini-
tion, the rollback mechanism should also deallocate any objects allocated during
an aborted transaction and reset references to such objects to null. However,
Hubbers et al. found some cases where the card keeps the reference to objects
allocated during transaction even after a rollback.

Moreover, the authors described the easiest way to make and exploit a type
confusion to gain illegal access to otherwise protected memory. A first example
is to get two arrays with different types, a byte and a short array. If a byte array
of 10 bytes is declared and it exists a reference to a short array, it is possible to
read 10 shorts, so 20 bytes. With this method they can read the 10 bytes stored
after the array. If Hubbers et al. increase the size of the array, they will be able
to read as much memory as they want. The main problem is more how to read
memory before the array?

The other used confusion is between an array of bytes and an object. If
Hubbers et al. put a byte as first object attribute, it is bound to the array length.
Then it is really easy to change the length of the array using the reference to
the object. With this attack, the problem becomes how to give a reference to an
object for another object type?

Barbu et al.’s Attack: Combined Physical & Logical Attack At CARDIS
2010, Barbu et al. described a new kind of attack in their paper [2]. This attack
is based on the use of a laser beam which modifies a runtime type check (the
checkcast instruction) while running. This applet was checked by the on-card
BCV, considered as valid, and installed on the card. The goal is to cause a type
confusion to forge a reference of an object and its content. We consider three
classes A, B and C. They are declared in the listing 1.1.

public class A {
byte b00 , . . . , bFF

}

public class B {
short addr

}

public class C {
A a ;

}

Listing 1.1. Classes used to create a type confusion.

The cast mechanism is explained in the JCRE specification [8]. When casting
an object to another, the JCRE dynamically verifies if both types are compatible,
with a checkcast instruction. Moreover, an object reference depends on the card
architecture. The following example can be used:

T1 t1; aload @t1
T2 t2 = (T2) t1;⇐⇒ checkcast T2

astore @t2

The authors want to cast an object b to an object c. If b.addr is modified
to a specific value, and if this object is cast to a C instance, you may change the
referenced address by c.a. But the checkcast instruction prevents from this
illegal cast.

Barbu et al. use in his AttackExtApp applet (listing 1.2) an illegal cast at
line 9.

1 public class AttackExtApp extends Applet {
2 B b ; C c ; boolean classFound ;
3 . . . // Constructor , i n s t a l l method
4 public void proce s s (APDU apdu) {
5 . . .
6 switch (bu f f e r [ISO7816 .OFFSET_INS]) {
7 case INS_ILLEGAL_CAST:
8 try {
9 c = (C) ((Object) b) ;

10 return ; // Success , re turn SW 0x9000
11 } catch (ClassCastExcept ion e) {
12 /∗ Fai lure , re turn SW 0x6F00 ∗/
13 }
14 . . . // more l a t e r de f i ned i n s t r u c t i o n s
15 } } }

Listing 1.2. checkcast type confusion

This cast instruction throws a ClassCastException exception. With specific
material (oscilloscope, etc.), the thrown exception is visible in the consumption

curves. With a time-precision attack, the authors prevent the checkcast from
being thrown with the injection of laser based fault. When the cast is done, the
references of c.a and b.addr link the same value. Thus, the c.a reference may be
changed dynamically by b.addr. This trick offers a read/write access on smart
card memory within the fake A reference. Thanks to this kind of attack, Barbu
et al. can apply their combined attack to inject ill-formed code and modify any
application on Java Card 3.0, such as EMAN1 [6].

3 EMAN2: A Stack Underflow in the Java Card

3.1 Genesis

The aim of this attack is to modify the register which contains the method
return address by the address of an array which contains our malicious byte
code. To succeed, the target smart card has no BCV and we know its loading
keys. For this work, we used two tools developed in the Java-language. The first
one, the CFM [11] (for CAP File Manipulator) provides a friendly way to parse
and full-modify the CAP files. The other one is the Java library OPAL [10] used
to communicate with the card. So, to perform this attack, we must:

1. find the array address which contains the malicious byte code;
2. find where is located, in the Java Card stack, the address of the return

function;
3. change this address by the address of the byte code contained in our malicious

array.

We will explain each step in the next subsections.

3.2 How to obtain the Address of our Malicious Array?

In a previous work [6], we explained how to execute auto-modifiable code in a
Java Card. This malicious byte code was stored in a byte-array and called by
an ill-formed applet. We also have to remember the way to obtain the array
address.

1 public short getMyAddressByteArray (byte [] array) {
2 short f oo=(byte) 0x55AA ;
3 array [0] = (byte) 0xFF ;
4 return f oo ;
5 }

Listing 1.3. method to retrieve the address of an array

In order to retrieve the address of an array, we implemented the method
getMyAddressByteArray described in the listing 1.3. In its unmodified version,
it returns the value contained in foo. The instruction in line 3 uses an array
given in the function parameter. As seen in listing 1.4, the JCVM needs first to

push a reference to the array tab2. Finally the function returns the previously
pushed value of foo.

If an event changed our byte code like described in the listing 1.5, our function
directly returns the reference of the array given as parameter. To make this
modification, we use the CFM to “nop” each instruction between push the array
reference and return the short pushed value. These instructions are written in
a bold font in the listing 1.5. Using a card without BCV, an applet containing
this function provides address of each array given in its parameter. The returned
address is locate in the EEPROM area.

public short
getMyAddressByteArray

(byte [] array) {
03 // f l a g s : 0 max_stack : 3
21 // nargs : 2 max_locals : 1
10 AA bspush −86
31 sstore_2
19 aload_1
03 sconst_0
02 sconst_m1
39 sastore
1E sload_2
78 s r e tu rn
}

Listing 1.4. The Java byte code
corresponding to the function 1.3

public short
getMyAddressByteArray

(byte [] array) {
03 // f l a g s : 0 max_stack : 3
21 // nargs : 2 max_locals : 1
10 AA bspush −86
31 sstore_2
19 aload_1
00 nop
00 nop
00 nop
00 nop
78 s r e tu rn
}

Listing 1.5. The function 1.3 with the
modified return

On the targeted JCVM, the address returned by the malicious function
getMyAddressByteArray does not refer to the array data. It is a pointer on
the array header which is structured by 6 bytes that include the type and the
number of contained elements. If the array is transient, the RAM array address
follows the header. Else, the array data is stored after the 6-byte header.

3.3 Java Card Stack

To perform this attack, we should understand the Java Card stack. In fact, a
Java Card contains two stacks, the native and the JCVM stack. The first one is
used by the smart card operating system. The second one, is used by the JCVM
to execute some Java applets value pushed in the Java Card stack.

To characterize the Java Card stack, We used the method ModifyStack,
listed in 1.6. This method has three parameters: apduBuffer, a reference to a
byte array; apdu, a reference to an instance of the APDU class; and a, a short
value. The figure 1(b) represents the Java Card stack where each method pa-
rameter, variable and a reference to the class instance (this) are stored in the
2 In our tested card, all references are performed in a short type

...

MAX_VALUE values

Frame header

Local variables

...

(a) Generic Java Card stack

Previous frame

Current frame

...

0x0006 L10

getMyAddressByteArray ret. L9

MALICIOUS_ARRAY address L8

Return address L7

Unknown value L6

j L5

i L4

a L3

apdu L2

apduBuffer L1

this L0

...

(b) An Example of the Java Card
Stack

Fig. 1. Java Card stack characterization

local variables area. Next, the information present in the frame header (in L6

and L7) are important data which hold the method return address. Finally, the
stack contains data pushed while the method run3.

The BCV must checks several points. In particular: it should prevent any
violations of the memory management (illegal reference access), stack underflow

3 The maximum number of values to push is defined in the field MAX_STACK included
in each Java Card method header.

1 public void ModifyStack (byte [] apduBuffer , APDU apdu , short a)
2 {
3 short i =(short) 0xCAFE;
4 short j=(short) (getMyAddressByteArray (MALICIOUS_ARRAY)+6) ;
5 i = j ;
6 }

Listing 1.6. Function to modify the Java Card stack

or overflow. This means these checks are potentially not verified during runtime
and thus can lead to vulnerabilities. The Java frame is a non persistent data
structure implemented in different ways and the specification gives no designed
direction for it.

3.4 Our Attack

Our attack aims to change the index of a local variable4. We propose to use two
instructions: sload and sstore. As described in the JCVM specification [8],
these instructions are normally used in order to load a short value from a local
variable and to store a short value in a local variable. The CFM allows us to
modify the CAP file in order to access the system data and the previous frame.
As example, the code in the listing 1.6, line 4, stores the value returned by
getMyAdressByteArray() and adds 6 into variable j. Then, it loads the value
of j, and stores it into variable i (line 5).

So, if we change the operand of sload (sload 5, at the offset 0x11 of the
listing 1.7) we store information from a non-authorized area into the local 5.
Then, this information is sent out using an APDU. We tried this attack using
a +2 offset and we retrieved the short value 0x8AFA which was the address of
the caller. Thus, we were able to read without difficulty in the stack after our
local variables. Furthermore, we can write anywhere into the stack below: there
is no counter-measures. The targeted smart card implements an interpreter that
relies entirely on the byte code verification process.

Next, we modified the CAP file to change the return address by our malicious
array address, this step was explained in the section 3.2. When this modification
is performed, the exception 0x1712 is throw. So, we proved within this applet
that we can redirect the control flow of such a JCVM.

4 The specification says that the maximum number of variables that may be used in
a method is 255. It includes local variables, method parameters, and in case of an
instance method invocation, a reference to the object on which the instance method
is being invoked.

public void ModifyStack
(byte [] apduBuffer , APDU apdu , short a) {

0x00 : 02 // f l a g s : 0 max_stack : 2
0x01 : 42 // nargs : 4 max_locals : 2
0x02 : 11 CA FE sspush 0xCAFE
0x05 : 29 04 s s t o r e 4
0x07 : 18 aload_0
0x08 : 7B 00 ge t s ta t i c_a 0
0x0A : 8B 01 i nvok ev i r t u a l 1
0x0C : 10 06 bspush 6
0x0E : 41 sadd
0x0F : 29 05 s s t o r e 5
0x11 : 16 05 s l oad 5
0x13 : 29 04 s s t o r e 4
0x15 : 7A return

}

Listing 1.7. Malicious byte code applet of the function 1.6

3.5 Counter-measure

As we said, no important knowledge are needed in Java Card security and the
simple modifications of a CAP file, with the tool [11], may perform these attacks.

The purpose of the stack underflow is to get access to memory area normally
used by the system to the previous frame. A simple counter-measure would con-
sist in checking the number of locals and arguments provided in the header of the
method. With this simple check one cannot gain access to the system area where
the JPC (previous Java Program Counter) and SPC (previous Stack Pointer) are
stored. In order to avoid parsing the previous frame, the implementation can use
the linked frame approach like in the simple RTJ VM references. This approach
implies to create a new frame and to copy the argument of the current frame into
the new one, instead of the implemented method which uses the current stack
as the beginning of the new frame. Desynchronizing frames will avoid simply a
stack underflow attack.

4 EMAN4: Modifying the Execution Flow with a Laser
Beam

4.1 Description of our attack

In the section 3, we supposed that there is no BCV. This hypothesis allowed us
to modify the CAP file before loading it on the card. For the following, the tar-
geted card has an improved security system based on a partial implementation
of a BCV. This component statically checks the byte code during the loading

step and dynamic byte code checks are done during the runtime.

To perform this attack, we provide an external modification, such as the
Barbu et al.’s attack, with a laser beam to change the control flow to execute
our own malicious byte code. Furthermore, we have the smart card loading keys.

In order to modify the execution flow, we will use the for loop properties.
Next, after the understanding of how this kind of loop works, we modify it to
change the control flow.

4.2 How Re-loop a For Loop

The for loop is probably the most widely used loop in the imperative program-
ming languages. A classic for loop, such as in the listing 1.8, may be split in
three parts. The first one is the declaration of the loop with the preamble (the
initialization of the loop), followed by the stop condition and a function exe-
cuted at each iteration. Next, the loop body contains the executed instructions
for each iteration. Finally, a jump-like instruction re-loop to the next iteration
if the stop condition is not satisfied.

for (short i=0 ; i<n ; ++i) {
foo = (byte) 0xBA;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
// Few i n s t r u c t i o n s have
// been hidden f o r a
// b e t t e r meaning .
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;
bar = foo ; foo = bar ;

}

Listing 1.8. A for loop

0x00 : sconst_0
0x01 : sstore_1
0x02 : sload_1
0x03 : sconst_1
0x04 : if_scmpge_w 00 7C
0x07 : aload_0
0x08 : bspush BA
0x0A : put f i e ld_b 0
0x0C : aload_0
0x0D : ge t f i e ld_b_th i s 0
0x0F : put f i e ld_b 1
// Few i n s t r u c t i o n s have
// been hidden f o r a
// b e t t e r meaning .
0xE3 : aload_0
0xE4 : ge t f i e ld_b_th i s 1
0xE6 : put f i e ld_b 0
0xE8 : s i n c 1 1
0xEB: goto_w FF17

Listing 1.9. Associated byte codes of
the loop 1.8

According to the amount of instructions contained in the loop body, the re-
loop instruction has relative offset on 1 or 2-byte (±127 or ±255 bytes). In the
Java Card byte code, the re-loop instruction may be a goto or goto_w. For our
attack, we are focused on the goto_w statement at the offset 0xEB (listing 1.9).

4.3 Our Attack:

To begin, we install into a Java Card an applet which contains the loop for
described in the listing 1.8. The function which contains this loop is compliant
with each security rule of Java Card and the embedded smart card BCV allows
its loading.

An external modification based on a laser beam against the goto_w instruc-
tion, at the offset 0xEB in the listing 1.9, may change the control flow of the
applet. We would like to redirect this flow in the array MALICIOUS_ARRAY to ex-
ecute our malicious byte code. Thus, changing the goto_w parameter 0xFF17 to
0x0017 involves a relative jump to the 17th byte after this instruction. To success
attack, our array must locate after the modified function in the EEPROM area.

Smart Card memory management The main difficulty regarding this attack
is the memory management. Indeed, the static array MALICIOUS_ARRAY must
physically be put after our malicious function. For that, we analyzed how our
targeted smart card stores its data. In order to understand the algorithm used
by the card to organize its memory, we did the following method:

1. first, few chosen applets are installed on the card within a careful dump of
the EEPROM memory between each install,

2. next, the card is stressed by installing and deleting different applets size. A
dump is done at each step.

For each analyzed smart card, we obtained the same algorithm used to man-
age the memory. These Java Cards have a first fit algorithm where the applet
data are stored after its byte code. If the smart card managed few applets with-
out causing fragmentation, it is likely that the applet data is stored before the
corresponding applet byte code.

In our case, there were no installed applet before we installed our. The dump
obtained is listed in 1.10.

As may be seen in the dump 1.10, the function to fault precedes the array
MALICIOUS_ARRAY in light-gray. This dump is a linked byte code contrary to the
byte code listed in 1.9.

The Goto redirection Before injecting our fault, the function returns 0x9000
(status without error).

After precisely targeted the high-byte parameter of the goto_w instruction lo-
cated at 0xA817 in the listing 1.10, a laser beam attack swaps 0xFF17 to 0x0017.
This fault allows to redirect the execution flow. Indeed, the goto_w jumps for-
ward to go into the array MALICIOUS_ARRAY. A landing area of nop catches up
the instruction pointer which will execute our malicious code, here an exception
throws the value 0x1712. This result proves that we succeeded to change the

0x0A7F0: 18AE 0188 0018 AE00 8801 18AE 0188 0018
0x0A800: AE00 8801 18AE 0188 0018 ae00 8801 18ae
0x0A810: 0188 0059 0101 A8FF 177A 008A 43C0 6C88
0x0A820: abcd ef00 0000 0000 0000 0000 0000 0000
0x0A830: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A840: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A850: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A860: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A870: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A880: 0000 0000 0000 0000 0000 0000 0000 0000
0x0A890: 0000 0000 0000 0000 1117 1200 0000 8D6F
0x0A8A0: C000 0000 0000 00FE DCBA

Listing 1.10. Memory organization of our installed applet

control flow of our applet.

Moreover, even if the memory is encrypted, this kind of attack has fifty
percent to change the goto_w instruction statement to redirect towards the front.

4.4 Counter-measures

Creating a mutant application uses the same way than changing an applet after
its loading. To protect the JCVM against this attack, voluntary or not, we de-
veloped some counter-measures described in [7]. We are going to present a brief
resume of these counter-measures.

The XOR Detection Mechanism This protection is based on basic blocks.
It allows code integrity and application control flow checking. A basic block is a
sequence of instructions with a single entry point and a single exit point5. For
each basic bloc, a checksum is computed by using the XOR operation on all
the bytes composing a basic block. Then this table is stored in the CAP file as
a Java Card custom component. The interpreter has to be modified to exploit
and verify the checksum information. During runtime, the interpreter computes
again the checksum and compares it with the stored values.

The Field of Bit Detection Mechanism This counter-measure checks the
nature of the element stored in the byte array of the CAP file. A tag (bit) is
associated to each byte of the bytecode. The tag has the value 0 if the bytecode
is an opcode, and it has the value 1 if the byte code is a value (a parameter of
an opcode). During an attack, the following situations can appear:

5 The execution of a basic block starts only at an entry point, and leaves a basic block
only at an exit point.

1. An increase of operands number for the instruction, it is the case when add
(no operand) is replaced by icmpeq (one operand).

2. A decrease of operands number for the instruction, it is the case when aload
(one operand) is replaced by athrow (no operand).

3. No change on operand number: it is the case when an iload (one operand)
is replaced by a return (one operand).

This method can detect when the changing 1 and 2 happen. During the
compilation, a field of bit is generated representing the type of each element
contained in the method byte array. It is stored also as a Java Card custom
component in the CAP file. The interpreter checks before executing an opcode
that its byte was scheduled to be executed or not.

The Path Check Mechanism This method computes the control flow graph
of the method by extracting the basic blocks from the code. The list of paths
from the beginning vertex is computed for each vertex of the control flow graph.
This computed paths are encoded using the following convention:

1. Each path begins with the tags 0 and 1 to avoid a physical attack that
changes it to 0x00 or to 0xFF.

2. If the instruction that ends the current block is an unconditional or con-
ditional branch instruction when jumping to the target of this instruction,
then the tag 0 is used.

3. If the execution continues to the instruction that immediately follows the
final instruction of the current block then the tag 1 is used.

If the final instruction of the current basic block is a switch instruction, the
path is made by any number of bits that are necessary to encode all the targets.
When interpreting the byte code, the VM computes the path followed by the
program using the same convention; for example, when jumping to the target of
a branch instruction it saves the tag 0. Then prior to the execution of a basic
block, the VM checks that the followed path is an authorized path, i.e. a path
that belongs to the list of path computed for this basic block. In the case of a
loop (backward jump) the interpreter checks the path for the loop, the number
of references and the number of values on the operand stack before and after the
loop, to be sure that for each round the path remains the same.

5 Conclusion

In this paper we described two ways to change the execution flow of an applica-
tion after loading it into a Java Card. The first method, EMAN2, provides a way
to change the return address of the current method contained in its frame stack.
This attack is possible because there is no check during the stack operations.
The second method, EMAN4, uses a laser beam to modify a well-formed applet
loaded and installed on the card to become mutant, even with the on-board BCV.

These two attacks allow to execute malicious code in the JCVM without
being detected by the firewall component. In the case of EMAN2, we proposed
two counter-measures. A contratrio, EMAN4 needs a good knowledge of the
targeted JCVM and to find the faulted area with the laser beam.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.: Fault attacks on
RSA with CRT: Concrete results and practical countermeasures. Cryptographic
Hardware and Embedded Systems-CHES 2002 pp. 81–95 (2003)

2. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on java card 3.0 combining fault
and logical attacks. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny, J. (eds.)
CARDIS. Lecture Notes in Computer Science, vol. 6035, pp. 148–163. Springer
(2010)

3. Global Platform: Card Specification v2.2 (2006)
4. Hemme, L.: A differential fault attack against early rounds of (triple-) DES. Cryp-

tographic Hardware and Embedded Systems-CHES 2004 pp. 170–217 (2004)
5. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: spec-

ification ambiguity and strange implementation behaviours. Dept. of Computer
Science NIII-R0438, Radboud University Nijmegen (2004)

6. Iguchi-Cartigny, J., Lanet, J.: Developing a Trojan applet in a Smart Card. Journal
in Computer Virology (2010)

7. Lanet, J.L., Bouffard, G., Machemie, J.B., Poichotte, J.Y., Wary, J.P.: Evaluation
of the ability to transform sim application into hostile applications. Cardis (2011)

8. Oracle: Java Card Platform Specification
9. Piret, G., Quisquater, J.: A differential fault attack technique against SPN struc-

tures, with application to the AES and KHAZAD. Cryptographic Hardware and
Embedded Systems-CHES 2003 pp. 77–88 (2003)

10. Smart Secure Devices (SSD) Team – XLIM, Université de Limoges: OPAL: An
Open Platform Access Library. http://secinfo.msi.unilim.fr/

11. Smart Secure Devices (SSD) Team – XLIM, Université de Limoges: The CAP file
manipulator. http://secinfo.msi.unilim.fr/

http://secinfo.msi.unilim.fr/
http://secinfo.msi.unilim.fr/

	Combined Software and Hardware Attacks on the Java Card Control Flow

