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Abstract. We present an implementation for Differential Power Anal-
ysis (DPA) that is entirely based on Graphics Processing Units (GPUs).
In this paper we make use of advanced techniques offered by the CUDA
Framework in order to minimize the runtime. In security testing DPA
still plays a major role for the smart card industry and these evalua-
tions require, apart from educationally prepared measurement setups,
the analysis of measurements with large amounts of traces and sam-
ples, and here time does matter. Most often DPA implementations are
tailor-made and adapted to fit certain platforms and hence efficient ref-
erence implementations are sparsely seeded. In this work we show that
the powerful architecture of graphics cards is well suited to facilitate a
DPA implementation, based on the Pearson correlation coefficient, that
could serve as a high performant reference, e.g., by analyzing one million
traces of 20k samples in less than two minutes.
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1 Introduction

The resistance of a cryptographic device against side channel attacks is defined by
the amount of traces that is at least required to recover a secret information that
is embedded in the device under a specific adversarial scenario. In commercial
applications, many crypto devices which can either consist of a microcontroller or
an FPGA (Field Programmable Gate Array), respectively an ASIC (Application-
Specific Integrated Circuit) are hardened to resist side channel attacks. In order
to fulfill the security requirements for highly resistant devices side channel testing
with one million or even more traces are nowadays common for security labs,
cf. [7] for the state of the art in testing AES hardware implementations in 2005.
Currently, CPA attacks in research are carried out with up to one hundred million
traces [8]. Both processes that are implied by a side channel attack, namely trace
recording and computational analysis, can be highly time consuming for a smart
card evaluation. Contrary to the effort involved in the trace recording that is
mostly dictated by the device and done once, the computational analysis is
repeatedly carried out to meet different attack scenarios. Hence, an acceleration



concerning the analysis part is definitely desirable. Differential Power Analysis
(DPA) [4] using the Pearson correlation coefficient [2] is still the most common
statistical tool to evaluate the side channel resistance.

Motivation: Graphics cards provide a powerful parallel architecture which
became widely accepted in scientific computations. Also cryptography is well es-
tablished on GPUs with several implementations that were made during the last
few years. For instance, cryptosystems like ECC, RSA, and AES were efficiently
implemented [13, 1, 3]. Until now, only little efforts were spent to speed up DPA
with the help of graphics cards. The only other proposal we are aware of is [5].
Their approach includes Difference of Means (DOM) as the statistical test and
makes use of both, the general purpose CPU and a CUDA related GPU. All in
all they achieve a reasonable speed-up factor of about two by parallelizing the
summation of samples on the GPU side.

Our contribution: In this paper we make use of advanced techniques offered
by CUDA to achieve key benefits for the runtime. Further, we shift any compu-
tation to the GPU. We adopt algorithms for DPA to achieve optimal results on
graphics cards involving the Pearson correlation coefficient as the statistical test.
A major part for the speed-up is the covariance whose implementation is done
through a matrix multiplication which performs very well on graphics cards.

Organization of the paper: This paper is organized as follows: Section 2 briefly
introduces Differential Power Analysis, especially the formula of the Pearson
correlation coefficient that will be adapted in the remainder. Section 3 provides
a short overview on modern graphics cards architecture considering their pro-
gramming and memory model. In Section 4, we describe the chosen implemen-
tation approach concerning algorithms and requirements when being applied on
a graphics card. Section 5 reports our experimental results before we conclude
in Section 6.

2 Differential Power Analysis

Differential Power Analysis (DPA) is a passive implementation attack aiming
at key recovery of a cryptographic implementation. The physical leakage of the
device that is exploited is usually the power consumption or the electromagnetic
emanation of the device while it processes the cryptographic algorithm. DPA is a
divide-and-conquer attack, i.e., a cryptographic key is successively compromised
by its subkeys.

We assume that the device processes a sensitive variable z which is the con-
junction of known input v to the cryptographic computation, i.e., a plaintext
or ciphertext and unknown secret information embedded in the device, i.e., a
subkey k, such that z = fk(v). We further assume that the physical leakage of
the device under test leaks is modeled by

Lt = δt + L(z) +Bt.

Herein, Lt is the leakage at time t that depends on a constant portion δt, a
certain deterministic leakage function L(•) that describes how the leaked infor-
mation depends on the sensitive variable z, and a noise term Bt, a randomly



and normally distributed variable centered in zero with standard deviation σ.
Note that in practice the leakage function L(•) is usually not known by the ad-
versary, however, it is well-known that often the Hamming weight of z is a good
approximation [6]. Alternatively, the adversary may evaluate single-bit leakage
of z.

Measurement As the first step of DPA the power consumption of the device
under attack is measured with a digital storage oscilloscope (DSO). Such a mea-
surement is given by the matrix

X =
(
X1 X2 X3 . . . Xs

)
=


x1,1 x1,2 x1,3 . . . x1,s

x2,1 x2,2 x2,3 . . . x2,s

x3,1 x3,2 x3,3 . . . x3,s

...
...

... . . .
...

xm,1 xm,2 xm,3 . . . xm,s


involving m independent measurements (traces) containing s samples per trace,
where each xi,j is a sample from trace i at time j (row-major order).

There are usually different (randomly chosen and uniformly distributed) in-
puts for each trace i, such that

V =


v1,1 v1,2 v1,3 . . . v1,b

v2,1 v2,2 v2,3 . . . v2,b

v3,1 v3,2 v3,3 . . . v3,b

...
...

... . . .
...

vm,1 vm,2 vm,3 . . . vm,b

 ,

where vi,l is the lth input of trace i, for l ∈ {1, 2, . . . , b} and b is the length of
the plaintext.

DPA works with hypotheses on subkeys. Let vi be the partial entry of row
i of the matrix V that enters the computation of z = fk(v). That is, we get a
hypothetical leakage matrix

Y =
(
Y1 Y2 Y3 . . . Yp

)
=


y1,1 y1,2 y1,3 . . . y1,p

y2,1 y2,2 y2,3 . . . y2,p

y3,1 y3,2 y3,3 . . . y3,p

...
...

... . . .
...

ym,1 ym,2 ym,3 . . . ym,p



=


L(f1(v1)) L(f2(v1)) L(f3(v1)) . . . L(fp(v1))
L(f1(v2)) L(f2(v2)) L(f3(v2)) . . . L(fp(v2))
L(f1(v3)) L(f2(v3)) L(f3(v3)) . . . L(fp(v3))

...
...

... . . .
...

L(f1(vm)) L(f2(vm)) L(f3(vm)) . . . L(fp(vm))

 ,

covering all p subkey candidates i ∈ {0, 1, . . . , p}.



Pearson Correlation Coefficient In this paper, we use the Pearson correlation
coefficient as the statistical test for DPA. It computes the correlation coefficient
of each column of the leakage matrix with each column of the measurement
matrix. DPA finally outputs the key hypothesis reaching the absolute maximum
of correlation.

For completeness, we provide the explicit formula for the estimated Pearson
correlation coefficient:

rX,Y =
∑m

i=1 xiyi − 1
m

∑m
i=1 xi ·

∑m
i=1 yi√∑m

i=1 x
2
i − 1

m (
∑m

i=1 xi)2 ·
√∑m

i=1 y
2
i − 1

m (
∑m

i=1 yi)2
. (1)

3 Computations on Graphics Cards

General-purpose computing on graphics processing units (GPGPU) is the shift
of computations that are traditionally handled by the central processing unit
(CPU) or host processor, to the graphics processing unit (GPU), also known as
device. In this paper, we focus on nVidia GPUs and CUDA [10] that can be
programmed with C for CUDA, a C language derivative with special extensions.

The main unit of the device is the multiprocessor which is a set of a number of
stream processors (depends on the generation) which share memory, caches, and
an instruction unit. The multiprocessor creates, manages, and executes threads
in hardware. As Figure 1 shows, a thread in CUDA is the smallest unit of
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Fig. 1. CUDA thread hierarchy

parallelism that is executed concurrently with other threads (warps) on the
hardware. Threads are organized in a thread block, a group of threads in which



the threads can communicate with each other and synchronize their state. A
group of thread blocks is called a thread grid. A thread grid forms the execution
unit in the CUDA model since it is not possible to execute a thread or thread
block solely.

Threads in the CUDA programming model can access data from various
memory spaces that differ in size and access time. The CUDA memory model
(Fig. 2) describes the accessible memory spaces from the view point of the thread.
At lowest level, a thread has read and write access to its own registers and ad-
ditionally its own copy of local memory. Threads within the same block have
read and write access to a shared memory on the next higher level. Beyond the
block, all threads can have read and write access to the largest memory space,
the global memory. Beside the global memory, there are two further spaces that
are read-only, the constant memory and the texture memory. Usually, mem-
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Fig. 2. CUDA memory model

ory spaces that are shared by threads contain potential hazards of conflicts such
as read-after-write, write-after-read, or write-after-write. Thus, the programming
model implements a barrier by defining a synchronization instruction. As a conse-
quence, a large number of divergent threads (i.e., threads which follow a different
execution flow of an algorithm) require frequent synchronization, reducing the
overall computation time of the entire systems due to wait cycles. Accesses to
the global memory are crucial for the overall performance due to its latency. But
most of that latency can be hidden if there are enough independent arithmetic
instructions that are executed while waiting for access to complete.



4 Differential Power Analysis on Graphics Cards

The implementation of the Pearson correlation coefficient according to its rep-
resentation (1) requires us to compute five sums:∑

∀i

xiyi,
∑
∀i

xi,
∑
∀i

yi,
∑
∀i

x2
i , and

∑
∀i

y2
i

Taking both matrices X and Y into account the first sum embodies the matrix
multiplication

YT ∗X =


Y1 ∗X1 Y1 ∗X2 Y1 ∗X3 . . . Y1 ∗Xs

Y2 ∗X1 Y2 ∗X2 Y2 ∗X3 . . . Y2 ∗Xs

Y3 ∗X1 Y3 ∗X2 Y3 ∗X3 . . . Y3 ∗Xs

...
...

... . . .
...

Yp ∗X1 Yp ∗X2 Yp ∗X3 . . . Yp ∗Xs

 ,

where Xi and Yj are column, respectively row vectors of length m.
Matrix multiplications perform very well on graphics cards, and hence the

idea is to build an implementation of the correlation coefficient based upon the
matrix multiplication. The other sums could then be computed simultaneously.
However, in this case prerequisite is the computation of the hypothetical leak-
age matrix Y beforehand. Additionally, we have to face some other issues that
arise when we aim for an implementation that can handle arbitrary large mea-
surement matrices. First, we have to keep in mind that the global memory of a
graphics card is a constrained resource. Second, we probably run into numeri-
cal problems considering the single dot products, respectively the sums of large
vectors (arithmetic overflow). Finally, we aim to distribute the computation of
the correlation coefficient over an arbitrary number of graphics cards, respec-
tively the computation has to be iteratively issuable if only one graphics card is
available in the case of very large measurements. Therefore, our implementation
approach consists of three major steps, i.e., CUDA kernels, that are carried out
iteratively.

Initially, a kernel that computes the leakage model, next a kernel that per-
forms the computations of the sums, and finally a kernel that computes the
correlation coefficients. Apart from this approach it is, of course, possible to
have one kernel that computes everything but that depends on the fact how
large the matrices are. Here, we merely assume measurements being too large
to be processed by one kernel at once but we will also briefly include this point
into our considerations.

4.1 Leakage Model Creation

The leakage model is created by a kernel that is given an input vector V ∈ V.
Therefore, the row vectors of YT, of which each is based on a copy of V , are dis-
tributed over different thread blocks, that is each row is computed among several




L(f1(v1)) L(f1(v2)) L(f1(v3)) . . . L(f1(vm))

L(f2(v1)) L(f2(v2)) L(f2(v3)) . . . L(f2(vm))

L(f3(v1)) L(f3(v2)) L(f3(v3)) . . . L(f3(vm))
...

...
... . . .

...

L(fp(v1)) L(fp(v2)) L(fp(v3)) . . . L(fp(vm))


Fig. 3. Computation of YT among different thread blocks (outlined by solid lines)

threads within a thread block as depicted by Figure 3. As usual, the compu-
tation of the leakage prediction function L(fk(vi)) is realized using a table, e.g.
a S-box with precomputed Hamming weights, which is copied into the constant
memory of the graphics card prior to the execution of the kernel and referenced
later on. Eventually, this kernel can be omitted if the inputs are directly fed into
the matrix multiplication kernel. This saves global memory because the leakage
model matrix does not need to be stored. However, in some cases it might be
more convenient to have a separated kernel when the leakage model is more com-
plex for instance. Our straightforward approach is represented by Algorithm 1.
As stated in the algorithm the integer values tIdx.x and bIdx.x represent the

Algorithm 1 Leakage Model Creation
Input: Input vector V ∈ V
Output: Leakage model matrix YT

1: for each block parallel do
2: for each thread parallel do
3: Y[bIdx.x, tIdx.x] = L(fbIdx.x(V [tIdx.x]))
4: end for parallel
5: end for parallel

index of a single thread and thread block in the first dimension complying with
the CUDA model.

4.2 Computation of the Sums

The computation of the correlation coefficient sums is, as already mentioned
above, based upon the matrix multiplication YT ∗ X. In order to achieve the
best performance in the sense of DPA some effort has to be spent. Regarding
arbitrary large matrices we have to keep in mind that at some point the matrices
exceed the global memory of the graphics card. From this point of view we can
follow two approaches, first a kernel that is given the matrices and computes
the correlation coefficient directly, because the matrices fit the global memory.
Contrary, if the matrices do not fit the memory, a kernel is needed that outputs
the sums for a later processing. In the remainder we deal with the latter oppor-
tunity but the similarity is high. However, these deliberations also lead us to the



next implementation decision. Each sum has to be stored in a single variable
and a 32-bit variable may not be sufficient in general because of a potential
overflow. This is aggravated by the fact that the CUDA performance involving
64-bit variables is quite low [11]. Nevertheless, the framework is highly optimized
to employ 32-bit floating arithmetic. So to address these issues the correlation
coefficients, respectively their implied sums, are computed as follows.

rX,Y =
∑m

i=1
1
mxiyi −

∑m
i=1

1
mxi ·

∑m
i=1

1
myi√∑m

i=1
1
mx

2
i − (

∑m
i=1

1
mxi)2 ·

√∑m
i=1

1
my

2
i − (

∑m
i=1

1
myi)2

(2)

Shifting the fractal into the sums does not necessarily cause a performance
penalty due to potential latency hiding since it also works vice versa by which
means additional instructions are covered by the waiting time.

Referring to [12] the resultant matrix of the multiplication is computed by
two-dimensional thread blocks, here called tiles, that are distributed as shown
in Figure 4. Each tile consists of n2 threads where a single thread is responsible


x1,1 x1,2 x1,3 . . . x1,s

x2,1 x2,2 x2,3 . . . x2,s

x3,1 x3,2 x3,3 . . . x3,s

...
...

... . . .
...

xm,1 xm,2 xm,3 . . . xm,s




y1,1 y2,1 y3,1 . . . ym,1

y1,2 y2,2 y3,2 . . . ym,2

y1,3 y2,3 y3,3 . . . ym,3

...
...

... . . .
...

y1,p y2,p y3,p . . . ym,p




Y1 ∗X1 Y1 ∗X2 Y1 ∗X3 . . . Y1 ∗Xs

Y2 ∗X1 Y2 ∗X2 Y2 ∗X3 . . . Y2 ∗Xs

Y3 ∗X1 Y3 ∗X2 Y3 ∗X3 . . . Y3 ∗Xs

...
...

... . . .
...

Yp ∗X1 Yp ∗X2 Yp ∗X3 . . . Yp ∗Xs



Fig. 4. Computation of YT ∗X among different two-dimensional thread blocks, here
called tiles. Exemplarily, only one tile is emphasized to show which portions of the
matrices X and Y are involved to compute the resultant sub-matrix covered by that
tile. Actually, the whole resultant matrix is covered by several tiles.

to compute a single dot product of the entire resultant matrix. At the beginning
a tile loads portions such that n2 elements of X and n2 of YT are deposited
into the shared memory of the thread block. This strategy avoids loading every
vector each time it is needed. With these portions a thread can now compute the
first n products of a dot product, since the first n elements of each row vector
of YT and each column vector of X are loaded. Afterwards, a tile fetches the
next portions to compute the next n products, a procedure which is repeated
until all elements are passed through. Obviously, we can exploit synergies and
compute all other correlation coefficient sums concurrently since all necessary



elements are already loaded. Figuratively, the tile move rightwards regarding
YT and downwards regarding X (Fig. 4). The kernel, constituted by its opti-
mized version, is depicted in Algorithm 2. Additionally, the algorithm reveals

Algorithm 2 Computation of correlation coefficient sums
Input: Leakage model matrix YT and measurement matrix X
Output: Sums of corr. coef.:

∑
∀i

1
m

xiyi,
∑

∀i
1
m

xi,
∑

∀i
1
m

yi,
∑

∀i
1
m

x2
i , and

∑
∀i

1
m

y2
i

1: for each block parallel do
2: for each thread parallel do
3: prefetch first tile of YT and first horizontal tiles of X into registers: yi, xi.
4: end for parallel
5: end for parallel
6:
7: for k = 1 to m

n
do

8: for each block parallel do
9: for each thread parallel do

10: i← thread position within column vectors of X
11: j ← thread position within row vectors of YT

12: deposit prefetched tiles into shared memory: Xshared[tIdx.x, tIdx.y] = xi√
m

,

Y shared[tIdx.x, tIdx.y] =
yj√
m

13: prefetch next tiles into registers: xi+k, yj+k

14: for l = 1 to n do
15:

∑
thread xiyi =

∑
thread xiyi + Xshared[tIdx.x, l] · Y shared[l, tIdx.y]

16:
∑

thread xi =
∑

thread xi + Xshared[tIdx.x, l] · 1√
m

17:
∑

thread yi =
∑

thread yi + Y shared[l, tIdx.y] · 1√
m

18:
∑

thread x2
i =

∑
thread x2

i + Xshared[tIdx.x, l]2

19:
∑

thread y2
i =

∑
thread y2

i + Y shared[l, tIdx.y]2

20: end for
21: end for parallel
22: end for parallel
23: end for

two mandatory optimizations that were not mentioned so far. The portions are
prefetched by the tile threads into their registers first and then deposited into
shared memory with the effect that the sum calculations only consume already
fetched tile elements while the next elements are being loaded. This enables la-
tency hiding. The second optimization considers the workload balance within
kernel. Therefore, a number of tiles of matrix X, instead of one, are loaded hor-
izontally to compute multiple dot products involving the loaded single tile of
YT.

4.3 Computation of the Correlation Coefficient Matrix

This kernel implementation is similar to that of the leakage model creation. The
matrix of the correlation coefficients is segmented in the same way (Fig. 3). Every



thread block is responsible for samples that are related to one key hypothesis,
hence a block is given the corresponding correlation coefficient sums which result
from the measurement matrix and any sum from the leakage model matrix. The
implementation is shown in Algorithm 3.

Algorithm 3 Computation of correlation coefficient matrix
Input: Sums of corr. coef.:

∑
∀i

1
m

xiyi,
∑

∀i
1
m

xi,
∑

∀i
1
m

yi,
∑

∀i
1
m

x2
i , and

∑
∀i

1
m

y2
i

Output: Correlation coefficient matrix R

1: for each block parallel do
2: for each thread parallel do
3: R[bIdx, tIdx] = rXtIdx,YbIdx , complying with (2) and (3)
4: end for parallel
5: end for parallel

4.4 Special Case: Hamming Weight Model

In the case of the Hamming Weight model, a further approach to achieve an even
better performance outcome is to estimate the mean and standard deviation of
the leakage model. This would save computational effort, above all divisions and
square root calculations which should be avoided. These operations only offer
one fourth, respectively one eighth of the performance of a multiplication [11].
In addition to that, estimation also saves global memory due the avoided sums
that do not need to be stored anymore.

Presuming that the inputs, contained in V, are randomly chosen and uni-
formly distributed the mean

∑
∀i

1
myi can be estimated with

∑
∀i

1
m
yi = E[HW (Z)] = E[

b∑
i=1

Z(i)] = b · E[Z(i)] =
b

2
,

where Z(i) is the ith bit of random variable Z, i.e., Z is a b-bit variable. Whereas
the mean of the squares

∑
∀i

1
my

2
i can be estimated with

∑
∀i

1
m
y2

i = E[HW (Z)2] = E[
b∑

i,j=1

Z(i) · Z(j)] =
b∑

i 6=j

E[Z(i) · Z(j)] +
b∑
i

E[Z(i)]

= b · (b− 1) · E[Z(i)Z(j)] + b · E[Z(i)] =
b · (b− 1)

4
+
b

2
=
b2 + b

4
.

Eventually, we obtain the correlation coefficient with leakage estimation being
expressed as

rX,Y =
∑m

i=1
1
mxiyi − b

2 ·
∑m

i=1
1
mxi√

b
4 ·
√∑m

i=1
1
mx

2
i − (

∑m
i=1

1
mxi)2

. (3)



5 Experimental Results

For our experiments, we used nVidia Tesla C2070 graphics cards with 6 GiB
video RAM and an Intel Xeon X5660 at 2.8 GHz running Windows 7 64-bit.
The results were obtained using the CUDA toolkit and SDK of version 3.2, the
CUDA driver 270.61, and the Microsoft Visual C++ compiler.

We presume attacking a sequential 8-bit implementation of AES [9] to recover
one subkey byte in the Hamming Weight model. In order to gain meaningful
results the inputs are composed of byte values that are randomly chosen and
uniformly distributed. Since in most cases employing a DSO with a vertical
resolution of eight bit suffices, we set X ∈R [−127, 127]m×s.

First of all the best kernel configuration has to be figured out, more pre-
cisely the thread and thread block numbers. For the leakage creation and the
correlation coefficient kernel it is quite obvious that they have to be launched
with p thread blocks (one block per key hypothesis). Regarding the correlation
coefficient sum kernel two constraints show up, the maximum number of threads
a kernel can take and the shared memory in use that is dictated by this number.
Actually, we have at most 1536 threads per kernel on our graphics card, thus
the tile size could be nmax =

⌊√
1536

⌋
= 39, but due to the restricted shared

memory and the horizontal tiles (one tile computes more than one portion of X)
we need to find out the optimal trade-off. Through empirical testing, it turned
out that the kernel performs best with n = 28, that is n2 = 784 threads per
block and four horizontal tiles while barely not exceeding the available shared
memory. The number of tiles (thread blocks) can be obtained by simply divid-
ing each dimension, the number of key hypotheses p and the number of given
samples s, by n. Another limitation is the total global memory Mglobal which
accommodates the measurement matrix, the input vector, and the five correla-
tion coefficient sums. Presuming single precision variables for the sums and 8-bit
variables for the samples and inputs, the global memory usage consists of m · s
bytes for the measurement matrix, m bytes for the inputs, p · s · 4 bytes for the
covariance, and 2 · p · 4 bytes, respectively 2 · s · 4 bytes for the variances and
means. Eventually, we obtain the inequality

ms+m+ 4ps+ 8p+ 8s < Mglobal.

The runtime was then measured in steps of 10k traces and a number of samples
fixed to 20k. Figure 5 shows the results for the following variations of the sums
kernel: the kernel is given the precomputed leakage model, the kernel is given the
input vector directly (cf. Sec. 4.1), and further both variants with the leakage
estimation (cf. Sec. 4.4). Additionally, we show the runtime for the data transfer
between the host memory and the device memory.

As it can be seen the kernel applying the leakage estimation performs slightly
better and further it can be seen that the effort increases linearly with the
number of traces. It is not worthwhile to compute the leakage model beforehand
which is most likely caused by the frequent global memory accesses. Furthermore,
we get the same results if we fix the number of traces and iteratively increase
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Fig. 5. Runtime of the correlation coefficient sums kernel. The kernel can either be
given the leakage model or the input vector directly.

the number of samples by which means the measurement matrix can be cut at
any point to make it fit the graphics cards global memory in the case of very
large measurements. Since the effort increases linearly with both, the number of
traces and the number of samples, the implementation is perfectly scaled with
additional graphics cards. The runtimes of the remaining two kernels, namely
leakage model creation and correlation coefficient computation, are absolutely
negligible while being in the range of a few milliseconds. It is not surprising that
their runtimes hardly contribute to the overall runtime since the elements of the
resultant matrices are independent of each other, in marked contrast to the sums
kernel where as well thread synchronization is vital due to the usage of shared
memory. That is also true for the overhead, i.e., transferring data from the host
memory to the device memory and vice versa, respectively the kernel launches.
However, data transfers are dependent on the data and the time increases linearly
with the amount of bytes. Figure 5 thus shows the respective transfers of the full
measurement matrix. The influence of I/O, i.e., loading traces from a hard disk,
is not considered because this also affects a CPU implementation in the same
way. However, measurements containing over one million traces can be analyzed
in less than two minutes employing just one graphics card.

Furthermore, we provide a comparison between the CPU and the GPU.
Therefore, we implemented and optimized the sums kernel with leakage estima-
tion on the CPU which does exactly the same as its GPU counterpart. Table 1



compares the results. As expected, the CPU implementation is, as well, linearly

Table 1. Runtime comparison between CPU and GPU where one thread runs the
CPU implementation. The number of samples is fixed to 20k.

10k traces 20k traces 50k traces 100k traces

GPU 0.774 s 1.545 s 3.861 s 7.733 s
CPU 302.72 s 622.11 s 1531.69 s 3152.21 s

scaled with the number of traces. Hence, we can derive a speed-up factor of
about almost 100 taking a common processor with four cores into account, a
performance gain that obviously suggests CUDA as a very promising platform
for DPA.

6 Conclusion and Future Work

In this paper we presented a highly performant implementation of Differential
Power Analysis on graphics cards. The implementation can handle arbitrary
large measurement matrices which can be split up at any point to make them fit
into the graphics cards memory. Large measurements can be analyzed within a
few minutes. Our ongoing work will deal with the implementation of DPA based
higher order attacks.
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