
Synchronized Attacks on Multithreaded Systems
- Application to Java Card 3.0 -

Guillaume Barbu1,2 and Hugues Thiebeauld3?

1 Oberthur Technologies, Innovation Group,
Parc Scientifique Unitec 1 - Porte 2,

4 allée du Doyen George Brus, 33600 Pessac, France

2 Institut Télécom / Télécom ParisTech, CNRS LTCI,
Département COMELEC,

46 rue Barrault, 75634 Paris Cedex 13, France

3 RFI Global Services Ltd,
Pavilion A, Ashwood Park, Ashwood Way,

Basingstoke, Hampshire, RG23 8BG, United Kingdom

Abstract. Up to now devices in charge of performing secure transac-
tions mainly remained limited regarding their functionalities. However
the trend has recently gone towards an increasing integration of features
and technologies, which could potentially represent a source of additional
threats. This article introduces an innovative attack exploiting advanced
functionalities and offering unrivalled opportunities. This attack targets
specifically the multithreaded systems featuring network capabilities. By
the way of a network flooding we show how a process can be interrupted
at the precise time a sensitive operation is being executed. This inter-
ruption aims at subsequently modifying the execution context and con-
sequently breaking the sensitive operation. The practical feasibility of
this attack is illustrated on a Java Card 3.0 Connected Edition platform.
This description reveals that going through with the full attack scenario
is not obvious. However this apparent complexity must not conceal the
potential breach, which may significantly alter any application running
on the system. Finally the goal of this work is to emphasize that the
increasing products complexity may generate new security issues rather
than to highlight a specific weakness on released products.

Key words: Fault Injection, Logical Attack, Multithreading, Network
Flooding, Java Card 3, Technological Convergence.

1 Introduction

Every software developer knows the usefulness of debug sessions in an applica-
tion development process. To be in a position to debugging, the developer needs
to use some specific tools enabling him to set breakpoints in the middle of a code

? Part of this work done while at Oberthur Technologies.

2 G. Barbu and H. Thiebeauld

execution. He has then the ability to control the internal process flow by modify-
ing the execution context. Such a capability on released device would represent
an outstanding breach. Indeed, it would allow to alter any application running
on the defeated system.

This article introduces a new attack revealing a malicious mean to set a
breakpoint. This attack targets multithreaded systems with network capabilities.
By exploiting a network flooding we demonstrate how a multithreaded system
can be abused to artificially freeze an application during a sensitive operation
process. Combined with a temporary illegal access to the execution context in
memory, we describe how the context modification may alter the security of the
application when its process is resumed.

As a proof of concept we detail a practical attack on a Java Card. The recently
released Java Card 3.0 Connected Edition specifications [?,?,?,?] associate the
multithreading and network connectivity features with the Java Card technol-
ogy. To fit with the particular context of secured Java Cards, our description
reveals that some inherent system protections must be circumvented requiring a
fault injection [?,?,?,?]. In spite of its apparent complexity we have successfully
implemented the attack to alter the security of a Java Card web application. We
also present different ways to withstand such attacks.

Beyond the practicability of the attack this work seeks to highlight that any
feature is a potential source of attack, even though the links with security are
not obvious. The article is subsequently organized as follows : In Section 2,
we briefly present the involved mechanisms. Then we expose the generic attack
concept in Section 3 and detail in Section 4 a complete attack path on a JC3.0.
Finally, in Section 5 we discuss the protections preventing this attack and we use
this example to emphasize the importance of the implementation to fit a high
level of security.

2 Involved Mechanisms

As stated above, a prerequisite for our attack concept is the support of mul-
tithreading and network communications over standard protocols. This section
intends to outline these mechanisms to set the basement of our work.

2.1 Multithreading

Our concept is grounded on the multithreading capacity of the targeted system,
which allows the concurrent execution of different processes. In this work, we
only consider multithreading on single-core devices. To process several threads
simultaneously, the system assigns resources to a thread for a given time slice
before switching to another. The entity in charge of distributing resources to
the threads is the scheduler. Numerous rules can be used to decide when the

Synchronized Attacks on Multithreaded Systems 3

scheduler will order a thread switching, i.e. to set the size of the so-called time
slice. For instance thread switching can be triggered by a timer, an instruction
counter, control flow breaks, access to certain resources, etc.

When a thread has consumed its allocated time slice, the scheduler orders a
switch. This switch should be processed as follows :

– The current thread’s execution context is saved.
– The next thread is elected and its execution context is loaded.4

The different threads are then successively given access to the system resources.

The attack concept does not directly target the multithreading but rather
lies on an abuse of this feature. Next section introduces the feature we take
advantage of to achieve this abuse.

2.2 I/O Network Interfaces

We consider in the scope of this work a device providing a logical network inter-
face supporting standard network protocols (TCP, HTTP(S), ...) over physical
I/O interfaces. The aim of this section is to set the system architecture assumed
in the remainder of this work.

Applications

Runtime Environment
Thread scheduling

OS
Hard./Soft. Interface

Logical connectivity

Hardware
Physical connectivity

Fig. 1. Alleged architecture of the system.

As depicted in Fig. 1, these interfaces are most likely not part of the so-called
runtime environment (RE), but belong to lower layers. According to this state-
ment, we can expect that some incoming requests are handled in these lower
layers only and do not reach the RE. Therefore they do not enter the system’s
multithreading mechanism.

This last statement is a key element rendering our attack concept practicable,
regardless of the targeted system. For the sake of clarity, Fig. 2 illustrates it with
4 The next thread election can possibly take into account the concept of thread priority.

This concept will not be further considered in our context since an attacker able to
start new threads should also have the ability to modify their priority.

4 G. Barbu and H. Thiebeauld

different requests. As depicted on the figure, requests B and D handling leads to
a thread creation within the RE, whereas requests A and C are handled by the
system before entering the RE.

Applications

Runtime Environment

OS
Hard./Soft. Interface

Hardware

A

6
	

B

6
	

C
6
	

D

6
	

Fig. 2. Different requests handling

Now we have set the basement of our attack concept, introducing the required
mechanisms and properties of the targeted system, the attack concept itself can
be exposed.

3 The Attack Concept

This section introduces the attack principle in a generic way. The goal is to em-
phasize that this threat may potentially affect a wide range of systems. On the
other hand we will see that the attack success is closely related to implementa-
tion choices in the platform, providing some leads to find adequate protections
later on.

The attack aims at altering a sensitive execution flow at a precise time. To
achieve this, two steps must be performed as follows :

– Freezing the application execution at time T0. It comes to setting a break-
point on a specific operation.

– Altering the execution context available in memory to change the application
behaviour when it is resumed.

In the scope of this article, we assume that the thread scheduler is based upon
a timer. A certain amount of time is then allocated to each thread. When an
execution exceeds the time slice T , the scheduler stops the process and switches
to the next thread in the queue. This hypothesis is obviously not the single way
to implement multithreading. However for the sake of clarity, we intentionally
focus our description on one kind of scheduler. The adaptation of this attack to
other schedulers may be subject to future works.

Synchronized Attacks on Multithreaded Systems 5

Our attack relies on the corruption of the multithreading system to force the
interruption of an application. The objective is to cheat the scheduler, so that
the thread switch occurs at T0 rather than T . This is obtained by sending a
sequence of requests to the device when the targeted thread is being processed.
As the process in charge of the network requests is unlikely to be handled as a
thread, the time of processing initially devoted to the current thread is lost. As
a consequence the thread execution is curtailed, as depicted in Fig. 3.

Fig. 3. Normal (up) and curtailed (down) execution of a thread

T0 is then adjustable depending on the number of network requests sent. To
appropriately determine T0, it is better to have an idea of the thread execution
flow. Nevertheless, the code knowledge may not be necessary as side channel
analysis may provide sufficient information, depending on the attacked system.

Once the targeted thread is frozen, the scheduler switches to the next ones
in the queue. During this time the context of the sensitive code is available in
memory. An attacker in position of executing a malicious application would have
then the opportunity to get to the context in memory and alter it. Depending
on the attacked system, the right to load and run a application can be more
or less restrictive. However in the context of a multi applicative platform these
rights necessarily exist, indeed can be forced.

The remaining issue to achieve this attack is memory access. In some open
systems the volatile memory remains fully available. But some systems isolate
the memory access to respective areas. Therefore this restriction does not allow
a thread to get to the execution contexts. To successfully perform the attack, the
isolation mechanism must be overcome. The next section illustrates how such
a protection has been circumvented on a Java Card by the mean of a physical
perturbation.

Once memory access is obtained, a full range of possibility is offered to the
attacker. The control of the execution context of the thread gives access to its
program counter, local variables and execution stack. Although access to these

6 G. Barbu and H. Thiebeauld

data obviously stands as a compromission of the system, an attacker has no
guarantee that she will be able to take benefit of it. On the other hand, provided
she has properly adjusted T0 , well-chosen alterations would break almost any
security operation. The complete attack scenario is depicted on Fig. 4.

Fig. 4. The complete attack scenario

The attack potentially concentrates several issues which strongly depends on
the kind of attacked system. But its consequences may be tragic for an applica-
tion, even if the code has been proficiently secured. Furthermore this attack also
underlines that the security of an application has a value only if the platform
underneath is secured enough.

4 Practical Implementation on a Java Card

This section details the full attack scenario we have put into practice on a recent
device to illustrate the feasibility of this concept and outline its consequences.

4.1 Context of the Attack

The attacked platform. With regards to the different features involved in the
attack, a device implementing the JC3.0 specifications appears to be a potential
target. Indeed, it is a security device offering both multithreading and network
communication support. Furthermore, such platform may allow post-issuance
application loading, as long as the application is well-formed.

The target application. We consider in the remainder of this section an
application T offering sensitive services. Access to those services requires an
authentication, achieved through a signature. T then contains the following lines
of code (or equivalent) :

1. if (sig.verify(inBuf,inOf,inLen,sigBuf,sigOf,sigLen) != true)

2. accessDenied();

3. else

4. accessGranted();

Synchronized Attacks on Multithreaded Systems 7

The bytecode sequence that is actually executed on-card is then :

0E. invokevirtual #4 <javacard/security/Signature.verify>

11. iconst_1

12. if_icmpne 0x1C (+10)

15. aload_0 <app/Target this>

16. invokespecial #5 <app/Target.accessDenied>

19. goto 0x20 (+7)

1C. aload_0 <app/Target this>

1D. invokespecial #6 <app/Target.accessGranted>

Attack goal. The attack aims at gaining access to the sensitive services without
producing a valid signature.

4.2 The Attack Concept Key Assumptions

We have stated in the previous section that the success of our attack concept
relies on a couple assumptions validity. This section details the validation of
these assumptions on the attacked platform.

Loading the attack application. Loading application on the platform is
not an obvious right for Java Card users. This capacity is generally limited by
the knowledge of authentication keys through GlobalPlatform [?]. However, we
consider that an attacker may be able to load an application. This ability can
have various origins :

– The load keys are known (this knowledge being either legitimate or not).
– One or several fault injection(s) can lead to a breach in the GP implemen-

tation on the card.

Loading and executing a malicious application A have two rationales. First it
should permit the modification of the targeted thread’s execution context. But
it is also in charge of ensuring the expected thread scheduling scenario. Details
of its implementation are given along the attack path.

How to access and corrupt the Java frame. The first challenge is to access
the memory and to identify the execution context. Considering a JC3.0, we are
interested in the following elements (refer to [?] for a detailed description of Java
Threads and Runtime Areas) :

– the Java program counter : the address of the currently executing instruction
in the current method of the current frame.

– the stack of frames : a frame is pushed onto the stack when a method is
invoked and is popped out when this method completes.

– in the frames : the local variables and the operand stack.

We intend to reach these values by forging a fake byte array. For that matter,
we consider a type confusion provoked by means of a fault injection.

8 G. Barbu and H. Thiebeauld

The fault attack. At CARDIS’10, Barbu et al. proposed a combined attack
provoking a type confusion and permitting to forge an object’s reference and
content [?]. In our context, this attack turns out to have a couple of advantages :

– A single physical attack of the device is required, a perturbation during the
execution of a checkcast instruction for instance.

– Since forged references are persistent :
• The fault injection can be the first step of our attack scenario.
• Once one perturbation has been successful, a failure in the following

steps will not require to start again from scratch.

We successfully applied this technique to the attacked platform. The physical
perturbation was achieved using a laser. Its success depends on a couple of
parameters (time, location and wavelength of the beam) found experimentally.

Accessing the Java frame. We assume that execution contexts are saved in
volatile memory on thread switching. The type confusion is used to forge a byte
array in memory in order to access the execution context of T . We also assume
the internal representation of a Java array contains a pointer (say a 32-bit word)
to its content in memory, as exposed in [?] and depicted within Fig. 5.

To build a fake array, we only have then to set our ”confused object” fields
to appropriate values. Then, we expect to be able to access the memory as if it
was the content of the forged array. This process is illustrated in Fig. 5.5

Fig. 5. Confusion between instance of two classes in order to forge an array’s address.

Once we have gained access to memory, we need to identify the frame within
the forged array and to figure out its internal structure.

5 See Appendix A.1 for implementation details.

Synchronized Attacks on Multithreaded Systems 9

Finding and learning the structure of the Java frame. To locate the frame, we
can take advantage of a straightforward linear memory allocation mechanism.
According to the scheduling scenario of our attack concept, initializing a new
array with obvious values when A is resumed permits to delimit the memory
used by the targeted application. Furthermore, we have run a training session
of our attack in order to learn the structure of frames on the platform. For that
matter, we have built a target application that interrupts itself with easy-to-
detect short values in local variables (0x1903 for instance) and on the operand
stack (0x1902 for instance). The dump array obtained when A is resumed is
depicted in Fig. 6.

0x0000 : 55 55 55 55 55 55 XX XX XX XX XX XX XX XX XX XX
<proprietary data>

0x0030 : XX 14 00 01 00 BA E2 01 00 E2 04 01 00 F2 45 00

0x0040 : 00 00 70 00 00 03 19 00 00 03 19 00 00 03 19 00

0x0050 : 00 03 19 00 00 03 19 00 00 03 19 00 00 03 19 00

0x0060 : 00 03 19 12 E1 53 12 00 12 E1 08 00 00 00 02 19

0x0070 : 00 00 02 19 00 00 02 19 00 00 02 19 00 00 02 19

0x0080 : 00 00 02 19 00 00 02 19 00 00 02 19 00 00 20 00

0x0090 : 00 00 49 00 XX XX XX XX XX XX XX XX XX XX XX XX

<proprietary data>

0x00D0 : XX XX XX XX XX XX XX XX XX 55 55 55 55 55 55 55

0x00E0 : 55 55 55 55 55 55 55 55 55 55 55

Fig. 6. Memory dump from the forged array.

We can then detect the frame and gain sufficient information on its structure :

– <number of local variables : nb loc> <nb loc * local variables>
– <maximum stack size : max stk> <max stk * operand values>
– <current top of stack>
– <jpc>

How ping flooding affects application execution. We have stated in Sec-
tion 2.2 that some incoming requests do not require the attention of the JCRE.
An Internet Control Message Protocol (ICMP) echo request (a ping) is a typical
example of such a request. Our claim is that when a ping request is incoming,
the processor handles it whereas in the meantime the scheduler’s timer is still
running. We can then manage to shorten a thread’s execution as we please, the
number of instructions actually executed within a time slice being reduced. To
validate this claim, we have run a thread incrementing a counter on the attacked
platform. Fig. 7 presents the value reached by the counter after a given amount
of time against the number of pings sent in the same time. This proves that the

10 G. Barbu and H. Thiebeauld

number of instruction executed within the thread is reduced when the system is
flooded with pings, since the value reached by the counter is representative of
the number of instructions executed.6

Fig. 7. Influence of communication on instructions execution.

This technique could be assimilated to a well-known attack in the network
security field : ping flooding [?,?]. Ping flooding usually aims at consuming the
bandwidth of the targeted system in order to provoke a Denial of Service (DoS).
Our approach is different as the aim is here to consume the time allocated to
the targeted thread in order to curtail it.

4.3 The Practical Attack

The attack is divided into three steps detailed within this section.

– In the first step, we achieve the preliminary work to ensure both the access
to T ’s frame and the scheduling scenario;

– In the second step, we force the ”breakpoint hitting” with I/O flooding;
– In the third step, we use the fake array to corrupt T ’s frame.

Preliminaries. With regards to the global illustration of the attack concept,
this step corresponds to the first segment of the ”evil” thread’s execution (T1(1)
in Fig. 4). The aim of this step is to procure a way to access the memory where
the execution context of T will be stored. This is achieved as presented in Sec-
tion 4.2.

To ensure the predicted thread scheduling scenario, the application only has
to start a new thread, and force its interruption for a certain amount of time (via

6 Implementation details are given in Appendix A.2.

Synchronized Attacks on Multithreaded Systems 11

the Thread.sleep() method). Within that time, T is launched in a new thread.
On the next thread switching, A’s thread will then become active again. This
last statement implicitly assumes that no other thread is concurrently running
on the platform, or at least that the attacker’s thread will be the next one to be
executed. We can then focus on T ’s execution and when to force its interruption.

Setting the breakpoint. The aim of this step is to force a thread switching at
a precise point during T ’s execution. It corresponds to the first segment of the
targeted thread’s execution of the attack concept illustration (T2(1) in Fig. 4).
The challenge at this step is to ”synchronize” the pings and the thread’s execu-
tion. Working on a smartcard, the power consumption analysis can again reveal
a strong ally at this step. Actually, we can monitor bytecode instruction execu-
tion through the power consumption of the card (as stated in [?]). Therefore,
the exact knowledge of the code does not appear necessary to achieve the attack.

The attacked platform comes within a USB smart card connector and com-
municates as an Ethernet Emulation Model (EEM) device according to the spec-
ification [?]. The first task is then to adapt our power consumption acquisition
module to monitor power consumption behind the USB smart card connector
where the Java Card is plugged (cf. Fig. 8).

Fig. 8. USB smartcard acquisition module.

We can then achieve and monitor the ping flooding of T .

Fig. 9 shows the power traces of T ’s execution. On the first power trace, the
signature verification is easily identified. The following traces depicts the same
execution with an increasing number of ping requests (the numerous peaks on
the traces). As we can see, the cryptographic operation is executed more or less
shifted depending on the number of pings received during the thread’s execution.

Based on experimentations, an average sequence of 37 ping requests during
the execution of T causes its interruption after the verify method returns but

12 G. Barbu and H. Thiebeauld

Fig. 9. Execution of the two threads with various number of ping requests (respectively
0, 10, 30 and 40). T1 and T2 refer respectively to the attacker’s and the target thread.

before the execution of the conditional branching. This corresponds to the third
power trace in the figure. Actually other ”breakpoints” may also allow an attack.

The previous section has given us a mean to read/write the volatile memory.
In this section we have exposed how we manage to set the so-called breakpoint
within the attacked application T . To complete the attack, we will now try to
modify T ’s frame in order to bypass its security.

Corruption of the Java frame From application A, we can now corrupt T ’s
frame. We are then literally spoilt for choice in order to bypass the application’s
security :

– Set the jpc to a given value in order to modify the execution flow,
– Assign given values to references or integral values in the operand stack to

have a method executed on the wrong object or with wrong parameters, or
return a wrong value,

– Assign given values to references or integral values in the set of local vari-
ables, with the same consequences.

Synchronized Attacks on Multithreaded Systems 13

With regards to the current state of the art of fault injection, these possi-
bilities are quite outstanding. In a manner of speaking, completing the three
previous steps enhances tremendously the initial fault model. We present here-
after one of the numerous way to render the security check of T useless by
modifying the value of the Java Program Counter.

Modification of the jpc. As expected, the signature verification has failed and the
conditional branching at line 0x12 leads the execution flow in the ”accessDenied
branch”. Because of the flooding, the so-called breakpoint is ”hit” at line 0x1D

(invokespecial #6 <accessDenied>).
A is then resumed and we can read T ’s frame and identify the jpc value

(Fig. 10).

0x0040 : XX XX XX XX XX XX XX XX XX XX 08 00 01 00 38 FC

0x0050 : 01 00 78 F2 01 00 D2 FE 00 00 05 00 00 00 00 02

0x0060 : 01 00 46 F2 00 00 00 00 00 00 01 00 E7 D2 66 00

0x0070 : 0B D4 07 00 01 00 38 FC 00 00 01 00 00 00 05 00

0x0080 : 00 00 00 02 01 00 46 F2 00 00 00 00 00 00 01 00

0x0090 : 00 00 18 00 00 00 1D 00 XX XX XX XX XX XX XX XX

Fig. 10. Memory dump from the forged array.

An easy way to overcome the signature invalidity is then to modify the jpc in
order to jump ”manually” in the desired branch. That is to say to say to modify
the jpc value from 0x1D to 0x16. This is done by a mere affectation in the forged
array : ac.array [jpc offset] = 0x16;

When the scheduler switches back to T , its execution continues according
to the frame. That is to say at the offset we have just set. The next executed
instruction will then be the invoke of the accessGranted method. As a conse-
quence, we gain access to the privileged method, although we do not have the
private key to produce a valid signature.

Depending on the moment when the ping flooding force the interruption,
similar results have been obtained by modifying operands on the stack and local
variables. What emerges from these different options is that a certain inaccuracy
in the ping flooding phase is tolerable. Indeed, depending on the ”breakpoint”
location, an attacker with a good knowledge of the targeted application will of-
ten (not to say always) find a path to meet her objective.

This proof of concept demonstrates that such a threat should be taken in con-
sideration when addressing the security of an embedded platform. Hereafter, we
discuss this particular topic and tackle the issue of countermeasures designing.

14 G. Barbu and H. Thiebeauld

5 Discussion on Protections

Making a product secure against any known attacks is not straightforward, as it
requires a significant expertise in the field. This is particularly true in embedded
technology when the security must coexist with restrictions of cost, performances
and resources. Therefore the best way to suit all these requirements remains an
optimisation of the security at the right protection level. This be can achieved
thanks to a thorough vulnerability analysis. Regarding the attack introduced in
this article, the developer should wonder if this attack is worth of being consid-
ered as a reasonable threat.

This attack is undoubtedly not easy to set up. However its apparent com-
plexity should not conceal the potential consequences for an application. This
statement is particularly true for the following reasons:

– The fault model turns out to be extremely powerful. Therefore most of the
sensitive functions of an application may be defeated, even if they have been
secured with care.

– A weak system may lead to an alteration of any hosted applications.
– The adequate protection is unlikely to be found in the application. As a

result, an application with a thorough concern of security may be broken.
It is then of the utmost importance that a system shows the evidence it is
reliable and trustworthy.

Many ways can be explored to find efficient protections against this threat.
Firstly it is worth of strengthening the scheduler to make sure it cannot be
abused. The protection must be adapted to the rule enforced by the multi-
threaded system. Based on a time slice the scheduler of our Java Card makes
use of a timer. By managing this timer appropriately in the handler in charge of
the network requests, we have experimented that the Java Card withstands the
attack.

The identification of the targeted instruction on the power consumption trace
has also been an elementary step of our attack. Therefore, the difficulty to set
up the attack increases with the difficulty to locate the instruction to attack.
Techniques to harden the power consumption analysis such as described in [?,?]
would then stand as an additional barrier to circumvent for the attacker.

Another way consists of a strong isolation between the memory areas of dif-
ferent contexts. This includes the runtime environment area where the thread
contexts are stored. Such an isolation may prevent the attacker to have access
to the sensitive context. It is more or less difficult to achieve according to the
systems. On a smartcard it may be interesting to take advantage of specific hard-
ware features, such as a memory protection unit (MPU). This kind a protections
enforces a strong isolation by the mean of hardware controls, which remain very
difficult to overcome.

Synchronized Attacks on Multithreaded Systems 15

Lastly it may be worth of implementing some integrity controls on the con-
texts during the thread switch. As the control value must be prevented from
being modified by an adversary, this may be achieved through a MAC verifica-
tion using an internal symmetric key for instance. Before restoring a context,
the scheduler would be in charge of checking that nothing has been tampered
with and could send an alarm if an inconsistency is found. This implementation
has shown a great efficiency on the Java Card platform we used.

To meet with today’s best practices it is assumed that the security should
not rely on one single countermeasure. Therefore it is strongly recommended to
combine at least two of these protections. As a conclusion, everyone has to bear
in mind that finding the right compromise between security and performance
is not obvious. This can be achieve by combining a high expertise in existing
attacks with a strong experience in secure implementations.

6 Conclusion

This article introduces a novel attack exploiting a potential weakness of a multi-
threaded platform. An established breach would severely damage the security of
any application running on this system. The principle lies on attempting to fool
the scheduler. By this mean the attacker gets the ability to interrupt a sensitive
code execution. By analogy he sets a breakpoint with the aim to subsequently
modify the execution context and change the application behaviour.

The feasibility of this attack has been demonstrated on a smartcard imple-
menting the JC3.0 specifications. Indeed this technology turned out to be a
perfect target. With regards to the inherent constraints of embedded systems,
it implements a relatively straightforward multithreading feature and offers net-
work capabilities in a context of high security. As a result, we have shown how
a strong authentication based on a signature may be bypassed.

Several ways of protecting an implementation have been introduced. All these
techniques have shown a good level of efficiency on the Java Card. Now it is the
developer’s responsibility to figure out if this threat is worth of being considered.

With the growing complexity of some devices, several technologies are in-
creasingly integrated together. This attack interestingly reveals that none of
them must be neglected during the vulnerability analysis. Therefore any feature
or functionality should be deemed as a potential door for an attack, even though
they are not obviously related to the product security. The illustration on the
Java Card with an exploitation of the multithreading and the network capability
is meaningful.

16 G. Barbu and H. Thiebeauld

Acknowledgement

The authors would like to thank Nicolas Morin, for his practical contribution
to this work, and Christophe Giraud, for his most valuable comments on the
different versions of this article.

References

A Implementation

A.1 Array Forgery

The classes loaded wit the attacker’s application :

public class ArrayContainer {
byte[] array;

}

public class ForgeryContainer {
Forgery f;

}

public class Forgery {
int field_1, field_2;

}

The code within the attacker’s application to forge the array in the volatile mem-
ory :

ArrayContainer ac = new ArrayContainer();
ac.array = new byte[1];
ForgeryContainer fc = (ForgeryContainer) (Object) ac;
fc.f.field_1 = 0x100; // set the length of ac.array to 256
fc.f.field_2++; // increment the memory pointer of ac.array
// Access to memory through ac.array[i]

A.2 Request Flooding Validation Thread

The run method of the thread used to validate the influence of communication :

public void run() {
i = 0;
startTime = System.currentTimeMillis();
while ((System.currentTimeMillis() - startTime) < TIME_BOUND) {

i++;
}

}

Synchronized Attacks on Multithreaded Systems 17

The Python ping flooder :

def flood(host, url, delay, socket, ID, count, ping_delay)
Send request to target application
conn = httplib.HTTPConnection(host)
conn.request("GET", url)

Wait
time.sleep(delay)

Send ping flood
for i in xrange(count):

send_ping(ID, socket, host)
time.sleep(ping_delay)

