
Designing a Side Channel Resistant Random
Number Generator

Suresh N. Chari1, Vincenzo V. Diluoffo2, Paul A. Karger1, Elaine R. Palmer1,
Tal Rabin1, Josyula R. Rao1, Pankaj Rohotgi1,?, Helmut Scherzer3,??,

Michael Steiner1, and David C. Toll1

1 IBM Corporation, Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

{schari|diluoffo|erpalmer|talr|jrrao|msteiner|toll|pkarger}@us.ibm.com
2 IBM Corporation, Systems and Technology Group

150 Kettletown Rd., Southbury, CT 06488, USA
3 IBM Deutschland GmbH, Secure Systems and Smart Cards

Schönaicher Str. 220, D-71032 Böblingen, Germany

Abstract. This paper describes the design of the random number gen-
erator (RNG) in the Caernarvon high assurance smart card operating
system. Since it is used in the generation of cryptographic keys and
other sensitive materials, the RNG has a number of stringent security
requirements that the random bits must be of good quality i.e. the bits
must not be predictable or biased. To this end, a number of standards
such as the German AIS 31 mandate that true random bits be continu-
ously tested before use in sensitive applications such as key generation.
A key issue in implementing this standard is that such testing before use
in key generation greatly increases the attack surface for side-channel
attacks. For example, template attacks which can extract information
about the random bits from even a single run provided we use the same
bits at many different points in the computation. Because of these poten-
tial risks, the Caernarvon operating system uses pseudo random number
generators which are initially seeded by externally generated high quality
random bits, and then perturbed by bits from the true random number
generator. We describe a PRNG design which yields high quality random
bits while also ensuring that it is not susceptible to side-channel attacks
and provide an informal argument about its effectiveness.

1 Introduction

This paper describes the design of a side-channel resistant random number gener-
ator for the Caernarvon [31] high-assurance smart card operating system project.
The Caernarvon OS is intended to test if it is possible to build very high levels

? Now with Cryptography Research, 575 Market Street, 11th Floor, San Francisco,
CA 94105, USA, pankaj.rohatgi@cryptography.com

?? Now with Giesecke & Devrient GmbH, Postfach 80 07 29, D-81607, München, Ger-
many, helmut.scherzer@gi-de.com

of assurance into smart card operating systems - it is to be evaluated at Com-
mon Criteria EAL7 under the German evaluation scheme. The choices we have
evaluated and the features of our design would also be applicable to a number of
other high security environments. In particular, practical considerations such as
resistance to side-channel attacks and minimizing the wear on persistent memory
which have guided our design will be relevant in many different applications.

High assurance systems such as Caernarvon require high quality random bits
to support a multitude of uses. In Caernarvon the use cases include:

– Key Generation. Random sources are typically used to generate keys for
symmetric ciphers such as DES and AES. Frequently, they are also used to
generate keying material in algorithms such as Diffie-Hellman key exchange.
Occasionally they are used to generate asymmetric cryptographic keys such
as RSA keys.

– Random nonce and other parameter generation. Smart card systems
use RNGs to generate nonces and randomness used in cryptographic proto-
cols.

– Blinding. Commonly used countermeasures to defeat timing attacks use
random numbers to blind data and keys.

– Masking. Increasingly, random numbers are used to mask operands to pro-
tect against side-channel attacks such as SPA/DPA[20], EM analysis[1], etc.

The security and effectiveness of the implementation of cryptographic algorithms
and functions crucially rely on the random numbers used in the above operations:
they should be of “good” quality and should be kept secret. Random numbers
that are predictable or biased may open the crypto algorithms (or their keys) to
attack. Equally, it is of little use to generate keys for cryptographic algorithms
if random numbers used to generate these keys leak to the outside world.

Smart cards and other systems typically contain a true random number gen-
erator (TRNG), i.e. a physical source of entropy. These are implemented by
circuits which generate random numbers and whose physical properties are cho-
sen to produce high quality random bits which could pass all the standard tests
for random sequences. However, the use of true RNGs is not without poten-
tial problems. For example, it has been observed that hardware random number
generators may “age”, i.e. the quality of the random numbers degrades over
time. Also, small devices, such as smart cards, can sometimes be vulnerable to
differential fault attacks [5, 4] against the the hardware RNG itself, such that it
generates predictable numbers or even always generates the same number.

Given the potential for such problems, a number of standards place stringent
requirements on the use and testing of random numbers from a hardware RNG.
For Common Criteria evaluations under the German scheme, these requirements
are specified in AIS 31 [15] which requires that the RNG be tested on system start
up, (i.e. on every activation of the smart card), and also that the used random
numbers are continuously tested. The tests specified in AIS 31 are those defined
in FIPS 140-2 [27]. These testing requirements, of course, have significant impact
on performance and usability. Performing FIPS 140-2 tests on card activation
takes a significant amount of time, which would be noticeable by any user of the

card. Further, performing such tests would be very difficult while still meeting the
stringent timing constraints imposed on smart card startup by the ISO 7816-
3 standard [16]. Continuous RNG tests, executed as the smart card performs
crypto operations, also exacerbate performance problems.

Such testing of random bits can also adversely affect the security of the im-
plementation: Side-channel attacks such as SPA/DPA [20], EMF [1], template
attacks [7], and other ”TEMPEST” attacks [30] are capable of extracting use-
ful information from even a single operation of a device. While it is difficult to
extract significant information from just reading the TRNG output, the leakage
is amplified if the same sensitive value is used at many different places in the
computation. Template attacks work by building a “database” of signatures of
the side channel for each possible value of some sensitive byte or bits; the likeli-
hood of building a good distinguishing signature increases direcly in proportion
to the number of places the same value is used or manipulated. If we run a series
of tests on the output of the TRNG before other uses, then we manipulate the
output bits of the TRNG without modification at many different places. This
increases the attack surface of side-channel attacks!

We even proposed testing the TRNG output with one set of bits, confirming
that the TRNG is operating correctly, and then immediately generating a new set
of random bits from the TRNG to use without testing. However, our evaluation
laboratory concluded that this proposal would not comply with the AIS 31
requirements. Thus, we concluded that it was unrealistic to use a TRNG directly
for a high-assurance system that must comply with AIS 31 and also resist side-
channel attacks.

Instead, we adopted a compelling alternative: pseudo random number gen-
erators (PRNGs) which generate a sequence of random bits starting from an
initial (random) seed. There are many secure methods to construct PRNGs: for
example the algorithms specified in FIPS 186-2 [11]. Our design generates good
quality random bits compliant to relevant standards while simultaneously en-
suring that the PRNG cannot be attacked using side-channels. Our PRNG is
based on a random seed generated off-line using a fully tested source of true
random bits. This seed is stored in persistent memory and feeds a component
PRNG whose output is the seed for a second component PRNG whose output
is used for card operations. The first PRNG is run for each activation of the
smart card and its state is fed back to memory. Thus, we minimize the number
of updates to persistent memory which is crucial due to the limited number of
write cycles for EEPROM/Flash. We use the TRNG to perturb the values of
the seeds to protect against any possible compromise of the stored seeds. Since
this perturbation of the seeds does not constitute direct use of TRNG output
for cryptographic purposes, AIS 31 does not apply, but AIS 20 [14] does. We
argue that this construction results in a good quality stream of random bits and
justify the security of our construction and its resistance to side channel attacks.
The construction of our PRNG is similar to that of Petit, et. al. [22] who also
design a similar PRNG with the goal of resistance to side channel attacks. We
note here that our construction [8] precedes theirs.

This paper is organized as follows: Section 2 describes Caernarvon and pro-
vides relevant background on hardware RNGs and standards which govern their
testing. Sections 3 and 3.1 describe the construction of our PRNG, and Sec-
tion 4 argues that the quality of random numbers produced by the PRNG is
good. We discuss the security of our construction and specifically the resistance
to side-channel attacks in Section 5, and Section 6 describes related work.

2 Background

2.1 Caernarvon Operating System

The Caernarvon operating system was designed to be evaluated under the Com-
mon Criteria [10] at EAL7, the highest defined level of assurance, under the
German evaluation scheme. It demonstrates that high assurance for smart cards
is technically feasible and commercially viable. Historically, smart card proces-
sors have not supported hardware protection features necessary to separate the
OS from the applications, and one application from another [18]. The assurance
in the Caernarvon OS is based on exploiting the first smart card processors to
offer such hardware protection features.

The Caernarvon OS implements a formally specified, mandatory security
policy [23] providing multi–level security, suitable for both government agencies
and commercial users. The mandatory security policy requires effective authen-
tication of its users independent of applications, for which the Caernarvon OS
contains a privacy-preserving, two–way authentication protocol [24] integrated
with the policy. The Caernarvon OS also includes a strong cryptographic library
that has been separately certified under the Common Criteria at EAL5+ for
use with other systems. While the initial platform for the operating system was
smart cards, the design could also be used in other embedded devices, such as
USB tokens, PDAs, cell phones, etc.

2.2 Hardware Random Number Generators

Smart cards and other similar systems typically feature true random number
generators (TRNG) built from physical sources of noise. There has been con-
siderable amount of work on harnessing such physical sources to produce good
quality unbiased random output (see, for example, [2, 21, 13]).

Since they are built from physical sources, the output of TRNGs may include
biases. Thus, before use in sensitive applications, the output needs to be tested
to ensure quality. A good description of an potential evaluation methodology
for TRNGs is described by Schindler, et. al.[25]. This and other standards offer
testing guidelines but do not endorse or exclude any TRNG design principles.

It should be noted that, as of July 2009, as stated on page 1 of FIPS 140-2,
Annex C [6], “There are no FIPS Approved non-deterministic random number
generators.” FIPS-140-2 refers to hardware or TRNGs as non-deterministic.

2.3 Testing requirement standards

The following are some of the standards for testing of RNGs before using the
output in cryptographic and other sensitive applications.

The AIS 31 RNG Testing Requirements Killman and Schindler [19] pro-
posed tests for RNGs to ensure that evaluated systems do not suffer from failure
models of hardware RNGs. This was later implemented in an Application Note
and Interpretation of the Scheme(AIS 31) [15] and recommends that the output
of hardware RNGs be testing carefully prior to use with start-up and continuous
tests. While such testing will certainly result in better quality, we feel that the
recommendations do not take into account the potential for side channel attacks
on the implementation of such testing. Section 2.4 discusses some of these at-
tacks and how they can be applied to RNG testing phases. It is our belief that
the AIS 31 mandated testing can significantly increase the attack surface for side
channel attacks. This issue was first discussed by Karger [17].

Because AIS 31 does not consider this increased potential for side-channel
attacks due to testing, Common Criteria Guidance Documents for several eval-
uated smart card chips4 require that cryptographic use of the random numbers
generated by a true RNG be subject to the tests of FIPS 140-2 [27, Section
4.9.1], thereby requiring the increased attack surface.

We note that the latest protection profile for smart card chips [26] does
discuss the risks of the inherent leakage. However, an update to AIS 31 is still
needed, because the potential risks are not limited only to smart cards.

FIPS Tests FIPS-140, the definitive US standard for cryptographic devices,
did include a number of test on the output of RNGs which have been dropped
since 2002. The draft of the upcoming FIPS 140-3 [28] includes a number of
tests for pseudo random number generators (PRNGs). FIPS 140-3 mandates the
following tests for PRNGs (Random bit generator(RBG) in their terminology):

– Deterministic components of a Random Bit Generator (RBG) shall be sub-
ject to the Cryptographic Algorithm Test in Section 4.9.1 (of FIPS 140-3).

– Data output from the RBG shall pass the Continuous RBG Test as specified
in Section 4.9.2 (of FIPS 140-3).

The cryptographic algorithm test requires that the algorithms used in the PRNG
be tested before they are used. The continuous test is that each generated random
number be saved so that the next one generated compared with the previous one.
The standard further specifies that if an entropy source (a hardware RNG) is
used, then the minimum entropy test must be performed on each output of the
source. We note that the same performance and security issues are applicable
to these tests. For instance, it will be difficult to perform the cryptographic

4 Guidance documents are defined in the Common Criteria [9] assurance component
AGD USR.1. Citations can not be provided due to non-disclosure requirements.

algorithm test at start-up while still meeting the maximum latency requirements
of ISO 7816-3 [16]. As argued earlier, any testing performed on random bits can
increase the attack surface for side channel attacks.

2.4 Side Channel Attacks

High assurance systems must be built to resist attacks which exploit informa-
tion such as power consumption [20], EM emanations [1], template attacks [7],
TEMPEST attacks [30] and other such by-products of the implementation of
sensitive operations that are capable of extracting useful information during the
computation. Here we only highlight how these attacks affect our design choices
for the RNG.

Simple Power Attacks (SPA) and its EM equivalent (SEMA) target leakages
that occur in a single execution of the device, e.g. through conditional execution
of code depending on a sensitive value. While these are very powerful they are
easy to protect against, and most implementations guard against such obvious
leakage. These attacks also target other leakages that can occur in a single step,
e.g. in some hardware reading a byte from EEPROM leaks the Hamming weight
of the byte that is read.

Differential Power and EM attacks (DPA/DEMA) exploit statistical biases
that occur in side channels due to manipulation of sensitive values. The attacks
work by first amplifying these biases by running the device with multiple different
inputs. For these attacks to be successful, the same sensitive values must be
manipulated in all different runs of the device.

Template attacks extract useful information from a single sample of the side
channel from the device. These work by building signatures of the side channel for
each possible value of some sensitive byte (or a few bits) using a test device. Given
a single run of the device under test they attempt to identify using statistical
techniques the most likely value of the sensitive byte. Key to the success of these
attacks is building the right set of signatures. The likelihood of building better
signatures increases with the number of places in the computation that the
same byte is manipulated. For instance, if random bits sampled from an RNG
are subject to a number of tests where the same bits are being manipulated,
then the likelihood of building good signatures increases.

2.5 Constraints of Persistent Memory

Smart cards use EEPROM and/or Flash as persistent memory since they have
no access to off-chip memory. The PRNG in the Caernarvon system is designed
to use persistent memory across runs of the card.

Write operations to EEPROM or Flash memory are slow, usually in the 1 to
6 millisecond range each, depending on the technology generation. Further, the
write block size for EEPROM is limited, for example, to 128 bytes. Thus writing
any significant amount of data to a file is likely to take multiple write operations,
plus additional writes to update the control block information. Furthermore,
EEPROM and Flash memories have a limited number of write cycles before

they start to fail, for example between 100,000 and 500,000 for EEPROM, and
only 10,000 for Flash.

Our PRNG described below will store PRNG state in persistent storage but
do this once per run of the card. The Caernarvon operating system includes
extensive techniques to mitigate these problems for more general applications.

3 RNG Design Overview

The design criteria for the PRNG are the following:

– Quality The random bits produced in each run of the smart card should be
unpredictable. Further, the random bits in any run should be unpredictable,
even knowing the bits in any other run.

– Security The random number generator should be resistant to side-channel
attacks such as SPA/DPA [20], EM Analysis [1] and Template Attacks [7].

– Effectiveness The RNG should make effective use of persistent storage
minimizing updates to such storage.

Given these requirements the design follows quite naturally: First, quality ne-
cessitates a seed sampled from a high entropy source, but obtaining this from an
on-chip source would require testing the bits. As noted, this can increase the sur-
face for side channel attacks, thus lowering the effective entropy of the on-chip
source. Thus our PRNG is seeded by random bits which are stored in EEP-
ROM which can, of course, be generated offline securely and comprehensively
tested. The FIPS 140-2 standard [27] does not impose requirements or tests on
this external source of entropy. However, the draft for FIPS 140-3 requires that
the claimed minimum entropy of the source be provided to the cryptographic
module which is then required to verify that the claimed value is sufficient for
intended applications. This is currently not part of our design, but we note that
the device can’t directly test the source entropy. The best one could do is check
for plausible error conditions, such as strings of all constants, etc.

The PRNG in the Caernarvon operating system is shown in Fig. 1. It consists
of two component PRNGs cascaded: the first is called the Lifetime PRNG or the
LPRNG and the second is called the Activation PRNG or APRNG. LPRNG is
seeded by random bits which are stored in persistent memory. Each invocation
of either component can be optionally seeded with additional random bits from
an on-chip source of randomness. We stress that the strength of the random
bits generated by the composite PRNG primarily depends on the quality of the
external seed LSEED. For instance, if this seed is revealed due to a compromise
of the off-chip process then this can compromise the PRNG. Adding on-chip
randomness can ensure that the output of the PRNG is not a deterministic
function of LSEED. While the PRNG doesn’t depend on this on-chip source
for its strength, a pedantic reading of the standards may require us to test
this input. Template and other side channel attacks can significantly reduce the
effective entropy of the on-chip source. Adding this to the seed obtained from
the external source can not decrease the strength of the PRNG. Further, while

complying with standards, one could argue that since the claimed strength is
only dependent on LSEED, we may not need to test this additional optional
input. AIS 31 [19] recognizes this type of use as functionality class P1 which
does not require such extensive testing.

Each invocation changes the internal state of the PRNG which is used in the
next invocation. For the LPRNG, this is stored back in EEPROM as the seed
for the next run as shown. The output of the first invocation of the LRPNG
is the seed for the APRNG whose output is used whenever random bits are
required in this run of the smart card. In the Caernarvon OS, we choose as
PRNG implementations schemes recommended by FIPS 186-2 [11]. The analysis
of our random number generator does not depend on the choice of the PRNG
block chosen from amongst those recommended in Annex C of the FIPS 140-2
standard [6]. We have chosen the algorithm for generating random values from
the Appendix 3.2 of the Digital Signature Algorithm standard [11] with the
method described in Appendix 3.4 using the DES algorithm to implement the
G() function. We note here that the recommendations given by NIST [3] are
more recent and should be the choice for an updated design.

Fig. 1. Functional Outline of Caernarvon PRNG

3.1 Detailed description of the PRNG

This section briefly describes the construction of the two PRNGs and documents
the choices made from relevant standards.

LPRNG is seeded by a 160 bit value LSEED from EEPROM. The value
t chosen as 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0 is used in the
“compress” function at each invocation. The pseudo-code for the update function
of LPRNG is

Inputs:

- LSTATE: content of LSEED, stored in persistent storage; initially

generated from an external source of entropy and installed in the

chip at initialization.

- LOPT: optional input from Hardware RNG (corresponding to input

labelled ‘‘optional user-input’’ in FIPS 186-2).

Update:

a. LSTATE = (LSTATE + LOPT)

b. LOUT = G(t, LSTATE)

c. LNEXTSTATE = (LSTATE + 1 + LOUT)

Output:

- LOUT: used as new seed ASEED by APRNG.

- LSTATENEXT: new state used to replace previous LSEED

This sequence is executed exactly once during an activation of the card. The
initial value of LSTATE is obtained from persistent storage LSEED. To potentially
add more entropy, we chose to add randomness from an on-chip source via LOPT.
Testing the bits LOPT will, of course, reduce the effective entropy of the source
due to side channel attacks. As we have noted before, the strength of our PRNG
rests solely on the strength of LSEED and hence we argue that this may be enough
to address the requirements of the standards even without testing LOPT.

The output of LPRNG, i.e. LOUT = G(t, LSTATE), is used to seed the APRNG.
The updated state LNEXTSTATE is written back to persistent storage. Our im-
plementation ensures that until this state is successfully updated in persistent
storage, APRNG will not be activated. This ensures that if random bits are
used anywhere in this activation of the card, then the value of LSEED will indeed
be different in future activations. This prevents the attack where the card is
disabled before the write back to EEPROM is completed resulting in the same
sequence of random bits across different activations.

The “compress” function G() will be based on the DES algorithm, specified
in Section 3.4 of FIPS 186-2, chosen because of on-chip DES hardware. The
properties of our RNG would be the same for compress functions built from
other algorithms. For new designs, a better choice would be the HMAC-SHA1
based construction of deterministic RBGs given by [3].

The APRNG uses LOUT, the output from the LRPNG, as its seed. It is con-
structed similar to LPRNG with optional additional input from on-chip random
sources. Its pseudo-code is:

Inputs:

- ASTATE: content of ASEED, on activation the output of the LPRNG.

- AOPT: optional input chosen from source of randomness This is done

at most once. Further invocations will NOT have any additional input.

Update:

a. ASTATE = (ASTATE + AOPT)

b. AOUT = G(t, ASTATE)

c. ANEXTSTATE = (ASTATE + 1 + AOUT)

Output:

- AOUT: randomness returned to caller of APRNG.

- ASTATENEXT: new state used to replace previous ASEED.

This generates 160 bits of randomness for each invocation and updates the in-
ternal state of APRNG.

The Caernarvon random number generation process described above realizes
the requirements we had earlier listed. First, cryptographic keys and other sen-
sitive values are generated from the output of a PRNG. Thus, we do not need
to test the quality before use which may result in exposure through side channel
attacks. However, the quality of the random bits is still high since the seed used
by the PRNG is sampled from an high entropy source off-line. The strength of
our PRNG rests (almost) exclusively on the strength of the off-line process for
generating LSEED. We note that even if testing of optional input from on-chip
random sources results in reduced levels of entropy due to side channel attacks,
it is still sufficient when combined with LSEED. The analysis will show that the
quality is maintained across different activations of the card. Further we note
that the update to the seed in LPRNG is done only once per activation of the
card, and thus we make effective use of persistent storage.

4 Cryptographic Analysis

This section justifies the cryptographic strength of the PRNG construction.
First, we argue generically that the chaining construction of the PRNG is secure
assuming we start with a secure individual PRNG construction. This and the
assumption that the PRNG schemes recommended by the FIPS 186-2 standard
are secure yield a proof of security of our chaining construction. We also argue
that our PRNG is a class K4 DRNG according to the AIS 20 [14] standard.

In following lemma we state that our construction as shown in Figure 1 is a
special instance (with n = 2) of a general class of secure PRNGs composed by
chaining a primitive PRNG n times:

Lemma 1. Let rchain(n) be a PRNG formed by chaining n primitive PRNGs
rprim. If there is a distinguisher which can distinguish the output of rchain(n)

from a uniformly distributed random string of equal length then there is also a
distinguisher distinguishing the output of rprim from a random string.

Proof Without loss of generality, assume that rprim has a seed length of l, each
inner PRNG ri

prim reseeds its child m times before getting reseeded itself and we
output externally lmn bytes, i.e., each ri

prim expands a seed to length lm. When
reseeding a particular PRNG ri

prim we talk of a new instance of that PRNG.
For this case, you can visualize rchain(n) as a m-ary tree of depth n where the

ith level corresponds to the instances of the ith PRNG ri
prim and the jth child

of a node corresponds to the jth chunk of l bytes returned by the correspond-
ing instance of the PRNG. The concatenation of the leaf nodes is the output
produced by rchain(n).

The lemma follows from an inductive hybrid argument. The hybrids at depth
n are rchain(n), rchain(n) with each of the m sub-trees of depth n− 1 recomputed

from a fresh random seed (instead of the seed derived from the parent), and for
progressive hybrids we replace the sub-trees in increasing order of index with a
sub-tree where all nodes are freshly sampled random elements.

The distribution induced by the extreme hybrids correspond to the distri-
bution of rchain(n) and of a random distribution, respectively. It is also easy to
see that neighboring hybrids either differ by (a) a single value which is either
a random lm string or a single expansion of rprim from a random and indepen-
dent seed or (b) a sub-tree which correspond to an (independent) n− 1 PRNG
rchain(n−1) or a random tree. Hence, we can reduce a distinguisher of any pair of
hybrids in a distinguisher of either rprim or rchain(n−1) from random data. The
latter in turn can be reduced recursively into hybrids until we arrive in hybrids
differing all only in a rprim distinguishing problem. As there are only a polyno-
mial number of hybrids, any non-negligible advantage in distinguishing rchain(n)

from a random string can be converted into a non-negligible distinguisher of
rprim from a random string. ut

Thus if we are given a secure PRNG primitive and the seed to the PRNG
chain is chosen uniformly at random then our construction is cryptographically
secure. Thus under the assumption that the FIPS 186-2 PRNG is secure and
assuming proper secret and random seed generation at smart card personaliza-
tion time, our overall realization is cryptographically secure as well. (Note that
to our knowledge there is no published security proof (in a strong cryptographic
sense) for the FIPS-186-2 PRNG. However, sound design principles, a number
of easy to made security arguments and empirical evidence give us a reasonable
assurance of its security.)

Informally, note that in the construction of the PRNG, on each invocation
we add the output of the PRNG back to its internal state. Thus the PRNG is
forward secure i.e. given the internal state after k invocations we can not infer the
random outputs from prior invocations of the PRNG. Thus, the PRNG design
fulfills the requirements of a K4 DRNG according to the AIS-20 standard. More
precisely, the fulfillment of the individual criteria is as follows:

– K1 DRNG: This is a simple requirement which requires that we identify
an integer value c such that every sequence of c outputs of the PRNG is
distinct. By our assumption, the output of the core PRNG primitive i.e. the
FIPS 186-2 generator is indistinguishable from random so it trivially satisfies
this requirement ignoring the eventual cycling of the 160 bit output.

– K2 DRNG: Specifically, we are asked to characterize the statistical proper-
ties of the RNG such as the monobit test, poker test and tests on runs. We
note that the FIPS 186-2 generators and hence our construction will satisfy
all these criteria.

– K3 DRNG: This level requires us to assert that the entropy of the PRNG
is at least 80. We note here that our PRNG operates on 160 bit seeds which
are chosen off-line from a high entropy source which is carefully tested. Thus
our PRNG achieves this level.

– K4 DRNG: For this level, we are required to argue that the PRNG is
forward-secure as describe above. As argued, our PRNG meets this criterion.

FIPS 186-2 does not impose any requirements on the user input, i.e. it does
not need to be random or secret to guarantee pseudo-randomness of the output
stream or the security of the algorithm. Thus, replacing the user input with the
output of the HW/RNG does not affect the security of the implementation, even
if the HW/RNG malfunctions. On the other hand, if the HW/RNG is functioning
properly then the output of LPRNG is truly random, and the output of APRNG
is pseudo-random. This shows that there is no requirement to test the statistical
properties of the bits of the HW/RNG, as they do not affect the security of the
cryptographic aspects of the system. Yet, when it is functioning properly we gain
entropy.

5 Attacks and Defenses

A key criterion for our design was resistance to side-channel attacks against the
functioning of the PRNG. We have considered the following attacks.

– Simple Power Analysis/Simple EM Analysis (SPA/SEMA).
– Differential Power Analysis/Differential EM Analysis (DPA/DEMA)
– Template attacks using Power or EM or both.

Our design and implementation has been guided by techniques which are effective
in the mitigation of these attacks. In particular, the following techniques which
minimize and practically eliminate the threat posed by these attacks.

Technique 1 The strength of our PRNG relies on the entropy of the external
seed supplied to the card. Using off-chip sources greatly reduces the attack
surface for template attacks as discussed below. Our PRNG is only claimed
to be as strong as this external seed. The addition of the input from an
on-chip source does not affect this claim.

Technique 2 The execution sequence of all PRNG code is independent of its
internal state.

Technique 3 As defined, both the component PRNGs can be optionally pro-
vided additional seeding material from on-chip sources. Due to the testing
requirements this can only be counted on to provide a marginal additional
source of entropy. However, even this amount can add to the strength of
the PRNG. While it is certainly not feasible to base the entire PRNG on
sampling from the on-chip source due to the low effective entropy, adding
this optional input can be beneficial.

Technique 4 The implementation utilizes the hardware RNG to implement
random masking/share based computation of the PRNG specification. While
side channel attacks will only result in lowered entropy we argue below that
this is sufficient to protect against statistical side-channel attacks.

As discussed below these techniques provide adequate countermeasures against
side-channel attacks. The Caernarvon Persistent Storage Management code pro-
vides a CRC check on bits being stored. This will be disabled due to potential
leakage of information.

5.1 Simple Power Analysis (SPA)

Simple power/EM analysis attacks target leakage that occurs in a single activa-
tion of the card such as through conditional execution depending on sensitive
state OR high leakage on any given step of the computation. Our implementa-
tion is careful to ensure that the PRNG code execution sequence is independent
of state (Technique 2). Thus SPA/SEMA attacks are limited to leakage at in-
dividual steps such as reading of bytes from EEPROM in the case of LPRNG.
Masking steps in the computation, even when sampled from the hardware RNG,
can also reduce the information that is revealed during the computation.

5.2 Differential Power Analysis (DPA)

Classical DPA is not a problem with LPRNG/APRNG since an attacker cannot
invoke the update function of any PRNG many times with the same secret
state. The state gets modified at each invocation of the update function and this
constantly evolving secret state is a good defense against DPA style attacks;
the attacker gets only one sample to attack any secret state. Note that in our
implementation we actually add random masks with the bits sampled from an
on-chip source. As we have discussed before, we can only count on this being a
low entropy source. However, even with this source of bits, masking can further
prevent DPA. We reiterate that the main defense is that DPA is not easy to
mount since the keys change at every invocation.

5.3 Template attacks

Template attacks can be used to classify the single signal received during the
operation of the LPRNG/APRNG on a given unknown state. The efficacy of this
attack relies on having a large enough ”signature” or “template” of computation
manipulating the same sensitive value. The attacker can build offline a series of
templates for this signature corresponding to different values of this sensitive
input and use them to identify the specific value on a given activation of the
card.

The main defense against template attacks is the use of an off-chip source
to generate LSEED. This can be directly used in the computation of the PRNG
and thus we can be certain that building templates this will be difficult. This
is because of the properties of the PRNG there is rapid diffusion and LSEED
will not be manipulated unmodified at too many points. We do allow for the
optional input sampled from the on-chip RNG. With full conformance to the
standards, there is a good chance that template attacks can substantially reduce
the effective entropy. Note, however, that the PRNG is still secure since LSEED
is not tested. The masking of the computation using Technique 4 above will also
make it difficult to build effective templates even though it is sampled from a
source with low effective entropy.

Resistance to side channel attacks can be best argued with a description of
the implementation, since there are many implementation details relevant to the

argument. Further, to convincingly argue against side channel attacks we have
to formalize the precise attack models along the lines of Petit et. al.[22]. We have
not built such a model for our system.

6 Additional Related Work

Several recent designs for hardware random number generators have appeared,
including Dole’s [12] that describes networked computers generating and shar-
ing entropy in proportion to the need for random numbers, Walsh and Beister-
feldt’s [33] that generates high-quality random numbers by sampling the output
of a Voltage Controlled Oscillator (VCO) at a frequency much lower than the
frequency of the oscillator output, and Sprunk’s [29] which uses a TRNG to drive
a PRNG. Tsoi, Leung and Leong [32] show compact FPGA implementations of
both a TRNG and a PRNG, but they do not connect them together. Further-
more, none of these designs address the possibility of side channel attacks or the
issues of EEPROM memory wear.

7 Conclusions

We have seen that generation of cryptographically strong random numbers is
actually quite difficult. While many of the standards concerning the testing
of random numbers generated by hardware or true random number generators
(TRNG) quite properly worry about hardware failures, they do not adequately
cover the possibility of side channel attacks during RNG testing. We have shown
a novel combination of a TRNG with a PRNG that alleviates both the test-
ing concerns and the side-channel concerns that also limits the possibility of
EEPROM or Flash memories being worn out from re-writing seed values too
frequently. While our examples have all focused on cryptographic algorithms,
such as DES, SHA-1, DSA, and RSA, the principles equally well apply to newer
algorithms, such as elliptic curves, AES, and SHA-256, etc.

We must recommend that both the NIST FIPS 140 standard and the Ger-
man AIS 31 guideline be updated to reflect these kinds of issues, so that future
developers can more easily construct random number-based systems that are
truly secure against both hardware failures and side-channel attacks.

References

[1] Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Proc. CHES. pp. 29–45. LNCS, Vol. 2523, Springer (13-15 Aug 2002)

[2] Bagini, V., Bucci, M.: A design of reliable true random number generator for cryp-
tographic applications. In: Proc. CHES. pp. 204–218. LNCS, Vol. 1717, Springer
(12-13 Aug 1999)

[3] Barker, E., Kelsey, J.: Recommendation for random number generation using
deterministic random bit generators (revised). NIST SP800-90, National Institute
of Standards and Technology, Gaithersburg, MD (Mar 2007), http://csrc.nist.
gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf

[4] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Proc. Crypto. pp. 513–525. LNCS, Vol. 1294, Springer (17–21 Aug 1997)

[5] Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Proc. EUROCRYPT. pp. 37–51. LNCS, Vol. 1233,
Springer (11–15 May 1997)

[6] Campbell, J., Easter, R.J.: Annex c: Approved random number generators for
FIPS PUB 140-2, security requirements for cryptographic modules. FIPS PUB
140-2, Annex C, National Institute of Standards and Technology, Gaithers-
burg, MD (Draft of 31 July 2009), http://csrc.nist.gov/publications/fips/
fips140-2/fips1402annexc.pdf

[7] Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Proc. CHES. pp. 13–28.
LNCS, Vol. 2523, Springer (13–15 Aug 2002)

[8] Chari, S.N., Diluoffo, V.V., Karger, P.A., Palmer, E.R., Rabin, T., Rao, J.R.,
Rohatgi, P., Scherzer, H., Steiner, M., Toll, D.C.: Method, apparatus and system
for resistence to side channel attacks on random number generators. United States
Patent No. 7496616 (Filed 12 Nov 2004, Issued 24 Feb 2009)

[9] Common Criteria for Information Technology Security Evaluation, Part 3: Se-
curity assurance requirements. Version 2.3 CCMB2005-08-003 (August 2005),
http://www.commoncriteriaportal.org/public/files/ccpart3v2.3.pdf

[10] Common Criteria for Information Technology Security Evaluation, Parts 1, 2,
and 3. Version 2.3 CCMB2005-08-001, CCMB2005-08-002, and CCMB2005-08-
003 (August 2005), http://www.commoncriteriaportal.org/thecc.html

[11] Digital signature standard. FIPS PUB 186-2, with Change Notice 1, 5 Octo-
ber 2001, National Institute of Standards and Technology, Gaithersburg, MD
(Jan 2000), http://csrc.nist.gov/publications/fips/archive/fips186-2/

fips186-2.pdf
[12] Dole, B.: Distributed state random number generator and method for utilizing

same. United States Patent No. US6628786B1 (30 September 2003)
[13] Epstein, M., Hars, L., Krasinski, R., Rosner, M., Zheng, H.: Design and imple-

mentation of a true random number generator based on digital circuit artifacts.
In: Proc. CHES. pp. 152–165. LNCS, Vol. 2779, Springer (8–10 September 2003)

[14] Functionality classes and evaluation methodology for deterministic random num-
ber generators. AIS 20, Version 1, Bundesamt für Sicherheit in der Information-
stechnik (BSI), Bonn, Germany (2 December 1999), http://www.bsi.bund.de/
zertifiz/zert/interpr/ais20e.pdf

[15] Functionality classes and evaluation methodology for physical random number
generators. AIS 31, Version 1, Bundesamt für Sicherheit in der Informationstech-
nik (BSI), Bonn, Germany (25 Sept 2001), http://www.bsi.bund.de/zertifiz/
zert/interpr/ais31e.pdf

[16] ISO 7816-3, Identification cards - Integrated circuit(s) with contacts - Part 3:
Electronic signals and transmission protocols, Second edition. ISO Standard 7816-
3, International Standards Organization (Dec 1997)

[17] Karger, P.A.: The importance of high-assurance security in pervasive computing.
In: Security in Pervasive Computing: First International Conference. p. 9. LNCS,
Vol. 2802, Springer, Boppard, Germany (12–14 Mar 2003), http://web.archive.
org/web/20040524183841/http://www.dfki.de/spc2003/karger.pdf

[18] Karger, P.A., Toll, D.C., McIntosh, S.K.: Processor requirements for a high secu-
rity smart card operating system. In: Proc. 8th e-Smart Conference. Eurosmart,
Sophia Antipolis, France (19–21 Sep 2007), available as IBM Research Divi-
sion Report RC 24219 (W0703-091), http://domino.watson.ibm.com/library/
CyberDig.nsf/Home

[19] Killman, W., Schindler, W.: A proposal for: Functionality classes and evaluation
methodology for true (physical) random number generators. Tech. rep., T-Systems
debis Systemhaus Information Security Services and Bundesamt fr Sicherheit in
der Informationstechnik (BSI), Bonn, Germany (25 Sep 2001), http://www.bsi.
bund.de/zertifiz/zert/interpr/trngk31e.pdf

[20] Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis: Leaking Secrets. In:
Proc. Crypto. pp. 143–161. LNCS, Vol. 1666, Springer (15–19 August 1999)

[21] Maher, D.P., Rance, R.J.: Random number generators founded on signal and
information theory. In: Proc. CHES. pp. 219–230. LNCS, Vol. 1717, Springer (12–
13 Aug 1999)

[22] Petit, C., Standaert, F.X., Pereira, O., Malkin, T., Yung, M.: A block cipher
based pseudo random number generator secure against side-channel key recovery.
In: ASIACCS’08. pp. 56–65. Tokyo, Japan (18–20 March 2008)

[23] Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verifica-
tion of a formal security model for multiapplicative smart cards. In: Proc. 6th
(ESORICS). pp. 17–36. LNCS, Vol. 1895, Springer (2000)

[24] Scherzer, H., Canetti, R., Karger, P.A., Krawczyk, H., Rabin, T., Toll, D.C.:
Authenticating Mandatory Access Controls and Preserving Privacy for a High-
Assurance Smart Card. In: Proc. 8th (ESORICS). pp. 181–200. LNCS, Vol. 2808,
Springer (13–15 Oct 2003)

[25] Schindler, W., Killmann, W.: Evaluation criteria for true (physical) random num-
ber generators used in cryptographic applications. In: Proc. CHES. pp. 431–449
(13–15 Aug 2002)

[26] Security IC platform protection profile. Tech. Rep. BSI-PP-0035, developed by
Atmel, Infineon Technologies AG, NXP Semiconductors, Renesas Technology Eu-
rope, and STMicroelectronics, registered and certified by Bundesamt für Sicher-
heit in der Informationstechnik (BSI), Bonn, Germany (15 June 2007), http:

//www.commoncriteriaportal.org/files/ppfiles/pp0035b.pdf

[27] Security requirements for cryptographic modules. FIPS PUB 140-2, Change
Notice 2, National Institute of Standards and Technology, Gaithersburg, MD
(3 December 2002), http://csrc.nist.gov/publications/fips/fips140-2/

fips1402.pdf

[28] Draft - security requirements for cryptographic modules. FIPS PUB 140-3, Na-
tional Institute of Standards and Technology, Gaithersburg, MD (6 Apr 2007),
http://csrc.nist.gov/publications/fips/fips140-3/fips1403Draft.pdf

[29] Sprunk, E.J.: Robust random number generator. United States Patent No.
US6253223B1 (26 Jun 2001)

[30] Tempest fundamentals (u). Declassified in 2000 under Freedom of Information
Act NACSIM 5000, National Security Agency, Ft. George G. Meade, MD (1 Feb
1982), http://cryptome.org/nacsim-5000.zip

[31] Toll, D.C., Karger, P.A., Palmer, E.R., McIntosh, S.K., Weber, S.: The caernar-
von secure embedded operating system. Operating Systems Review 42(1), 32–39
(2008)

[32] Tsoi, K.H., Leung, K.H., Leong, P.H.W.: Compact FPGA-based true and pseudo
random number generators. In: 11th Annual IEEE Symp. on Field-Programmable
Custom Computing Machines. Napa, CA (9–11 Apr 2003)

[33] Walsh, J.J., Biesterfeldt, R.P.: Method and apparatus for generating random num-
bers. United States Patent No. US6480072B1 (12 Nov 2002)

