
Firewall Mechanism in a User Centric Smart
Card Ownership Model

Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes

Information Security Group Smart card Centre, Royal Holloway, University of London
Egham, Surrey, United Kingdom

{R.N.Akram, K.Markantonakis, Keith.Mayes}@rhul.ac.uk

Abstract. Multi-application smart card technology facilitates applica-
tions to securely share their data and functionality. The security enforce-
ment and assurance in application sharing is provided by the smart card
firewall. The firewall mechanism is well defined and studied in the Is-
suer Centric Smart Card Ownership Model (ICOM), in which a smart
card is under total control of its issuer. However, it is not analysed in
the User Centric Smart Card Ownership Model (UCOM) that delegates
the smart card control to their users. In this paper, we present UCOM’s
security requirements for the firewall mechanism and propose a generic
framework that satisfies them.

1 Introduction

The multi-application smart card initiative [1] ensures a secure and flexible ex-
ecution environment for multiple applications from same or different organisa-
tions [2,3]. It facilitates the co-existence of interrelated and cooperative applica-
tions that augment each other’s functionality. This enables applications to share
their data as well as functionality with other applications, introducing a major
security concern of unauthorised inter-application communication. The solution
to this problem has been the smart card firewall.

The firewall acts as a supervisory authority on a smart card, monitoring
inter-application communications [4]. The main aim is to ensure security and
reliability of application sharing mechanisms even in adverse conditions such as
caused by a malicious application, a developer’s mistake or design oversight [5].
The firewall deployed in the Issuer Centric Smart Card Ownership (ICOM) is
well defined [5–9] and studied [10–13]. However, this is not the case for the firewall
mechanism in the User Centric Smart Card Ownership Model (UCOM) [14], and
it is the focus of this paper.

The widely adopted smart card based business model is the ICOM [2,14,15].
In this model, smart cards are under total control of the issuing organisation,
referred to as the Card Issuer. Smart cards issued by a Card Issuer can host
multiple applications and if required these can be from different organisations.
Organisations that provide applications, but do not issue cards are referred to as
Application Providers (or Service Providers) and they are reliant on establishing

a business and trust relationship with Card Issuers. Card Issuers and Application
Providers also establish the necessary trust and assurance that the application
will not harm the card platform and vice versa. Such an explicit business and
trust relationship does not exist in the UCOM.

The UCOM gives the choice of applications to the users and they can request
to have any application on their cards. The request is sent to the corresponding
Service Provider (SP) in the UCOM. If the security assurance provided by the
smart card along with its services and user credentials are valid then the SP
leases its application(s) under certain terms and condition stipulated by the
SP [14]. Leased application(s) are controlled only by their respective SPs and
so this introduces unique issues regarding inter-application communications. In
this paper, we will analyse the functional nature of the UCOM and its effects
on the firewall mechanism and propose a framework that is suitable for secure
operation.

In section two, we discuss the firewall mechanism within the multi-application
smart card environment and how they are implemented in popular smart card
platforms (e.g. Java Card [8] and Multos [9]). Section three describes unique
issues presented to the firewall mechanism in the UCOM. In section four, a
framework for a smart card firewall is presented that is suitable for the UCOM
environment. In section five a case study briefly illustrates how the framework
can be implemented, and finally section six provides the concluding remarks.

2 Multi-application Smart Card Platforms

In this section, we describe an application sharing mechanism in multi-application
smart card platforms and how it is implement in Java Card and Multos.

2.1 An Application Sharing Mechanism

The most adopted business and operational scenario for the smart card based
service model has been the ICOM [15]. For brevity, we will only discuss the
application sharing (firewall) mechanism related to the ICOM in this section.

Multi-application smart cards facilitate co-operative

Platform Runtime
Environment

Firewall

A B C

X

Fig. 1. A Generic Appli-
cation Sharing Mechanism

schemes enabling optimised memory usage, with
scope for data and service sharing between applica-
tions [15]. Therefore, a firewall mechanism should
ensure application segregation while providing a se-
cure and controlled way to allow applications to
communicate data and share functionality. In the
ICOM the issuer provides the platform security and
reliability assurance, including the application seg-
regation [7] that is necessary to avoid any on-card
leakage of secret data. A firewall is basically an ac-
cess control mechanism that does not protect against information propagation [7]
(which is beyond the scope of this paper). In addition to protecting applications;

the firewall mechanism should also protect the platform by ensuring that appli-
cations can only access platform services through a well formed interface that
cannot be used to subvert any protection of the platform.

To explain the firewall mechanism refer to simple example illustrated in figure
1. Consider that there are three applications: A, B, and C. The Application
Providers of A and B have a trust relationship but Application Provider of
C is not fully trusted by them. Application A specifies data and functionality
that it wants to share with B, these are termed as shareable resources. The
firewall facilitates the sharing with the help of the runtime environment. When
B requests access to the resource of A, the firewall verifies the access credentials
and if successful it allows the access. However, in the case of a request from the
application C, the request will be denied.

The firewall should also segregate the platform runtime environment from
the application space. To execute privileged services the application(s) could
only make requests to the runtime environment through well formed Application
Programming Interfaces (APIs). The firewall should ensure that this communi-
cation channel should not become a means to subvert the firewall in order to
gain unauthorised access to resources from other applications.

2.2 Firewall Mechanism in Java Card

Java Card [4] is a smart card platform that supports a scaled down version of
the popular Java language. The architecture of a Java Card is shown in figure 2.

The Java Card Runtime Environment (JCRE) sits on top of the smart card
hardware and manages the on-card resources, applet execution and applet secu-
rity [8]. The JCRE consists of APIs (e.g. javacard.framework.APDU, Util and
Shareable) that an application can use to access JCRE services. The JCRE
also has system classes that are integral to its functions and these classes are not
visible to applications. Applets reside on top of the JCRE, and they are grouped
together into packages.

Each instance of an applet has a unique Application Identifier (AID) [8].
An instantiated representation of an applet is termed an object. Each object is
associated with a context, including the JCRE objects (System Context). The
Java Card Virtual Machine (JCVM) only allows an object to execute if the
current "Active" context is the one from which it belongs. In figure 2, object
of AppletB1 will only executes if the "Active" context is context B. The firewall
restricts all cross context communication except for object sharing mechanisms:
JCRE Entry Point Objects and Shareable Interface Objects (SIO). All applets
in a package have the same context so there is no firewall between them.

The JCRE Entry Point Objects are instances of the Java Card APIs that can
be used by applications to access platform services. These objects are accessible
to all applets, and they enable non privileged (applets) applications to execute
privileged commands. The JCRE Entry Point Objects are implemented by the
Java Card manufacturer who is responsible for their security and reliability.

The SIO enables an application to share its resources with other authorised
application(s). To utilise the SIO functionality, an application should extend

Smart Card Hardware

Java Card Runtime Environment (JCRE)

Java Card Virtual Machine (JCVM) Native Methods

System Classes

Framework Classes (APIs)

Java Card Firewall .

Package A Package B

Applet A1

Applet A2

Applet B1

Applet B2

System
Context

Context A Context B

SIO

JCRE Entry Point
Objects

Fig. 2. Java Card Architecture

the shareable interface (javacard.framework.Shareable) and the functionality
implemented in the extended class will be shareable with other applets.

When an object requests either an SIO or JCRE Entry Point Object, the
JCVM saves the current "Active" context and invokes the requested object along
with the associated context. Therefore, a shareable object always executes in its
own context, enabling it to access any applet from the package it belongs. By
taking into account figure 2 when AppletA1 calls the SIO of AppletB1, the JCVM
saves context A and invokes context B along with initiating the execution of the
SIO. The SIO object can then call any method in package B. Furthermore, it can
also call any JCRE Entry Point Object. When the SIO completes its execution,
the JCVM restores the previous context (context A).

2.3 Firewall Mechanism in Multos

Compared to Java Card, Multos [9] takes a different approach to the smart card
firewall. The Multos Card Operating System (COS) resides over the smart card
hardware as illustrated in figure 3a. The Multos COS administers communica-
tion, resource management, and the virtual machine [9]. Applications do not have
direct access to the Multos COS services, instead they utilise the Application
Abstract Machine that is a set of standard APIs consisting of instructions and
built-in functions. These APIs are used by applications to communicate with the
COS and request privileged services. The top layer is the application space, and
similar to Java Card the application segregation is implemented by the firewall.

In Multos, application delegation is implemented to facilitate application re-
source sharing. The application that initiates the process is called the delegator
and the application that is initiated is called the delegate. The process of dele-
gation works as described below and shown in figure 3b:

1. Application A (delegator) creates an APDU in the public memory and in-
vokes the delegate command. The APDU consists of application B’s AID,
requested data or function and delegator’s AID.

2. The Multos COS initiates the execution of B that looks for the APDU in
the public memory. It reads the APDU and processes it.

3. On completion, B creates a response APDU within the public memory.
4. The Multos COS switches back to A that then retrieves B’s APDU.

Multos Firewall

Smart Card Hardware

Multos Operating System

Application Abstract Machine

Multos Firewall

M
ul

to
sF

ire
w

al
lApplication

A
(Delegator)

Application
B

(Delegate)

INS
P1
P2
Lc
Le

SW1
SW2
Le

Data
Public Memory

Application
A

(Delegator)

Application
B

(Delegate)

1 2
34

(a) Multos Card Architecture (b) Multos Application Sharing Mechanism

Fig. 3. Multos Card Architecture and Firewall Mechanism

In both Java Card and Multos, additional measures are implemented in con-
junction with the firewall mechanism to protect the platform. These measures
include byte-code verification (on-card and off-card) [16,17], strict mechanism to
install applications [18] and virtual machine based security mechanisms [19,20].

3 User Centric Smart Card Ownership Model

In this section, we discuss the security and operational requirements for a firewall
mechanism in the UCOM.

3.1 Application Sharing Requirements

The UCOM is expected to support a dynamic service environment with a wide
range of application types. Therefore, the firewall mechanism should also reflect
this dynamic nature [14].

Inter-application Communication. The UCOM firewall should facilitate a
flexible mechanism that enables a server application1 to implement a hierarchical
1 Server application: An application that provides shareable data or functionality to
authorised applications.

access level firewall. In such a firewall, a server application assigns shareable
resources according to different access levels. A client application2 is initially
assigned an access level although the server application can also revoke, upgrade,
or demote the existing privileges of a client application, illustrated by figure 4.

H0 (FH0)
H1 (FH1)

H2 (FH2)
H4 (FH4) Application A Application B

(H2, -FExceptionB)

Application C
(H1, -FExceptionC)

Application A Application C
(H2, -FExceptionC)

Application B
(H1, -FExceptionB)

(b) Sharing Status at time T1 (c) Sharing Status at time T2(a) Access Levels

Fig. 4. Hierarchical Access Level Firewall

Consider an application A that offers shareable data and functionality divided
into different hierarchical levels. Requesting applications are only authorised to
access data or functionality matching assigned level. In figure 4a, there are four
hierarchical levels with H0 the lowest and H3 the most privileged level. The data
and functionality associated with each level is denoted by the "FLevel". The "-
FException" is the negative permission, that lists the data or functionality that is
not authorised to an application for the given access privileges. Application A
keeps track of access levels along with -FException" associated with each applica-
tions. Application B’s access privileges (H2, -FExceptionB) will be read as B has
access to all data and function associated with level H2 (FH2)and below (FH0

and FH1) with an exception of data or functionality of "-FExceptionB’. B and C
have access rights "H2, -FExceptionB" and "H1, -FExceptionC" respectively for A
at time T1. At some later time (T2) A modifies the access privileges of B and C,
demoting B to H1 and upgrading C to H2. In addition, the firewall mechanism
will also allow the modification of the "-FException".

Unlike the present Java Card or Multos firewalls, in the UCOM the sharing
permissions will have limited lifetime and on expiry the client application(s) have
to renegotiate the access permissions with the server application.

Application Sharing Delegation. A client application can delegate access to
a server application (after authorisation) to another application on its behalf.

Consider the following scenario with three applications A, B, and C. There is
an application sharing relationships A→B, and B →C; but none between A and
C. Let us assume by way of example that application B gives royalty points if
the cardholder uses A and these points are redeemable from C. Therefore, usage
of A can lead to redeemable points (benefits) from C. At some point in time, the
cardholder requests the deletion of application B and it requests the permission
from A to delegate its sharing privileges to C. It is at the sole discretion of A’s
2 Client application: An application that requests the shareable resources of a server
application. The notation to present this relationship is Server → Client.

SP whether it would allow such an action or not. The SP of A may allow such
action completely or impose conditions such as demoting the privileges to the
lowest possible level for application C. Therefore from this point of time, C can
access A on behalf of the B.

Application-Platform Communication. This requirement deals with bi-
directional communication between an application and a smart card platform
and it is sub-divided into two sections as listed below.

Application to Platform Communication. Platforms make their services available
to applications either through Entry Point Objects [8] or standard APIs [9]. In
both cases, applications may have access to more platform services than required
that would not be desirable in the UCOM [14]. In the UCOM, applications
are only given access to those platform services that are authorised by their
SPs. The firewall ensures that an application cannot have access to any other
services from the platform for which it is not authorised. This allows the SPs to
control their applications’ behaviours, especially in terms of on-card and off-card
communication.

Platform to Application Communication. Java Card (like other multi-application
smart cards) provides global access rights to the platform. The global access
rights mean that an object of JCRE System Context can access any method
(object) in any of the application contexts. However, the Java Card specification
explicitly notes that the platform should only access certain methods (select,
process, deselect, or getShareableInterfaceObject) from an applet con-
text [8, see section 6.2.3]. In case of the UCOM, the firewall should ensure that
a platform cannot have access to methods that are not sanctioned by the ap-
plication SPs. Furthermore, it should enable an object or method to verify the
requesting source. For example if the source is the platform, and it is trying
to access an object or method not sanctioned by the corresponding SP, then it
should throw a security exception.

Privacy Issues. In the UCOM, cardholders can have diverse applications on
their smart cards, and each of these applications may represents their identity in
some context. The firewall mechanism should not allow an application to discover
the existence of other applications, because such a privilege could be abused
to profile a user, perhaps for marketing or fraudulent purposes. In Java Card,
public static AID lookupAID can be used to list the installed applications.
It is not an issue in the ICOM as there is a central authority (card issuer) that
has prior knowledge of installed applications and policed their functionality.
However, it is a potential privacy threat in the UCOM.

4 Proposed Framework for the UCOM Firewall

In this section, the architecture of the proposed UCOM firewall is described
along with explanation of its operations.

4.1 Overall Architecture

The UCOM is a smart card operating system and platform independent frame-
work [14]. However, for brevity, clarity and intuitiveness we consider the Java
Card firewall mechanism as the basis of our proposal. To illustrate the UCOM
firewall, figure 5 shows a generic architectural view of the UCOM smart card
that is principally similar to the Java Card (shown in figure 3).

UCOM Firewall

Smart Card Hardware

Runtime Environment
Application Programming Interfaces (APIs)
Runtime Environment Entry Point Objects

RE Resource Manager

Virtual Machine Native Code

U
C

O
M

Fi
re

w
al

l

Package A Package B

Applet A1

Applet A2

Applet B1

Applet B2

SIOs

A
pp

lic
at

io
n

R
es

ou
rc

e
M

an
ag

er
(A

R
M

)

System
Context

Context BContext A

System Classes

ACLACL

Application Resource Manager
(ARM)

Fig. 5. Generic Architecture of User Centric Smart Card Firewall Mechanism

The Runtime Environment (RE) Resource Manager controls the access to the
RE Entry Point Objects that are used to access platform services. The resource
manager will enforce the security policy for applications as defined by the SPs,
limiting the access to the platform resources as stipulated by the policy.

For each application (package), an Application Resource Manager (ARM)
is introduced. This component will act as the authentication and resource al-
location point. A client application will request a server application’s ARM for
shareable resources. The ARM will decide whether to grant the request based
upon the client’s credentials (associated privileges). At the time of application
installation, the ARM also establishes a shareable interface connection with the
platform, enabling it to access methods that are essential for the application exe-
cution. The platform can access any method in the application context only after
authorisation from the application’s SP. The ARM also receives information re-
garding the requesting application. If the request is from the system context for

a method that is not allowed to be accessed by the platform, then the ARM will
throw a security exception.

An Access Control List (ACL) is a private list and it is used to facilitate
the implementation of the hierarchical access mechanism. It can be update re-
motely by the corresponding SP via the ARM, enabling the SP to change the
behaviour of its application’s sharing mechanism. The ACL holds the lists of
granted permissions, received permissions (permissions to access other applica-
tion’s resources) and a cryptographic certificate revocation list of client applica-
tions. The structure of an ACL is under the sole discretion of its SP.

The operations of the UCOM firewall can be sub-divided into two distinctive
phases. In phase one, a binding is established between the client and server
applications. This process includes authentication of the client’s credentials and
access privileges by the server’s ARM. In the second phase, the client application
requests resources in line with the privileges sanctioned by the ARM.

To have a consistent view of the sharing mechanism over diverse application
scenarios, the description of the application binding and resource request process
are deliberately defined in high-level representations. The fine details of these
processes are left to the individual preferences of the SPs. The UCOM firewall
mechanism supports these operations but does not define the minute details.

4.2 Application Binding

This process deals with the first request by a client application for shareable
resource(s) of a server application (phase one). Upon receiving the request, the
server application first ascertains that the requesting application is the autho-
rised application as it claims. After authentication, both applications establish
a cryptographic binding that is used in all future requests.

Application A
(Client) Firewall Application B

(Server)
BindingReq(ServerAID, ClientAID, Client Credentials)

Firewall verifies whether Application B
exists on card or not.

Verifies the Client Credentials

BindingReq(ClientAID, Client Credentials)

Initiate Authentication Protocol

Error in case B does not exist
or denies Binding Request

Fig. 6. Illustration of Application Binding Request Process

The process is illustrated in figure 6 and explained as below. Application A
(client) sends a binding request message. This message consists of application
B’s (server) Application Identifier (AID), along with A’s AID and credentials.
The nature of the credentials can be at the sole discretion of the server appli-
cation. However, to explain the process we use cryptographic certificates [21].

The SP of the server application, issues a cryptographic certificate to the client
application’s SP who in return issues individual (unique) certificates for its ap-
plications, certifying the unique public key pair of each client application. As the
root authority (Certification Authority [21]) is the SP of a server application,
any instance of the server application will be able to verify and accept it. On
receiving the binding request the firewall mechanism looks up for the ServerAID
to verify whether the application exists on the card or not. If it exists, the request
would be forwarded to the corresponding ARM. Conversely, if the application
does not exist, or server turns down the binding request, the firewall mechanism
would throw an exception that would be same in both cases, to avoid a mali-
cious application from potentially discovering the existence of an application on
a card.

If the firewall forwards the request to the server application (Application B),
it verifies the requesting application’s credentials by initiating an authentication
protocol. The outcome of the authentication protocol is generation and verifica-
tion of a cryptographic (symmetric) binding key [22]. The client application will
use this key in all future resource requests and in any related operation discussed
in the subsequent sections. SPs should ensures that their authentication protocol
is secure against application impersonation [22], and replay attacks [21].

4.3 Requesting Resource

A client application can request the server application’s shareable resource as it
required (subject to valid access permissions) as illustrated by figure 7.

Firewall

Application B (Server)

A
R

M

Shareable Resources

ACLApplication A (Client)

ACL

Requesting
Component

Req(ClientAID, EBindingKey(),Access Permission,
Resource Required, Random Number)

Permision

Permision
Permision ResAllocation(ResourceObjectRef, Lifetime)

RequestService

Fig. 7. Application Shareable Resource Access Request Process

The request message sent to the corresponding ARM consists of a ClientAID,
an authenticator (message encrypted with binding key), access permission, re-
quired resource and a random number to provide freshness [21]. By verifying
the authenticator, the ARM ascertains the origin of the message, i.e. the client
application. Subsequently it checks the access permission for the client applica-
tion (from the server application’s ACL). If the client application is authorised

to access the requested resource, the ARM would return the resource’s object
reference along with the sharing lifetime.

As described in section 3.1, the client application may have negative per-
mission. To implement negative permission control each of the data or methods
of the shareable resource is tagged with a unique ID. When the client appli-
cation accesses a method from a shareable resource object, the unique ID of
the method is compared with the negative permissions. If there is a match the
method returns with an exception.

4.4 Privilege Modification

The SP of a server application can modify the privileges of a client application by
updating the ACLs. The ARM of the server application verifies the initiator’s
(SP’s) identity and credentials, before it allowing the update of the ACL(s).
The implementation of the privilege modification is at the sole discretion of the
SP. However, such an update could be similar to application update mechanism
already deployed, notably Over-The-Air updates in (U)SIM application [23].

4.5 Application Sharing Delegation

This functionality of the UCOM firewall is subject to the sharing terms and
conditions between the relevant SPs, which will grant or deny requests as ap-
propriate.

Delegated Application Client Application Server Application

ECS (ClientAID, DelegatedApplication AID,
Liftime, RandomNumber)

ECS(ServerAID, DelegatedAppliation AID, KAuthorisation,
Permission, Lifetime, RandomNumber)

Decides Permission Level and
Generate Authorisation Key

Request Binding Key

EDC(ServerAID, DelegatedAppliation AID, KAuthorisation,
Permission, Lifetime, RandomNumber)

ECS: Binding Key between Client and Server Applications
EDS: Binding Key between Delegated and Client Applications
KAuthorisation: Key that authenticates the Delegated application when it makes the binding key request.

Fig. 8. Application Sharing Devolvement Dialogue

The privilege level of an application (delegated application) to which the
client application delegates the resource-sharing does not have to be the same as
itself. The privilege level of the delegated application is at the sole discretion of
the server application’s SP. The steps involved in the process of resource sharing
delegation are listed below.

1. A client application requests a server application to delegate its resource-
sharing privilege to another application.

2. According to the server application’s policy, it can either keep the same
level of privileges as the client application or demote the privileges for the
delegated application. The server application generates a message encrypted
by the binding key (Server→Client binding key) and sends it to the client
application. The message contains Server AID, DelegatedApplication AID,
Access permissions, Delegation lifetime and Delegation Request Key.

3. The client application decrypts the message and re-encrypts it with the
Client→Delegated binding key and sends it to delegated application.

4. The delegated application uses it to authenticate itself to the server appli-
cation and establishes a binding (section 4.2).

Once the delegation is completed, the client application cannot have access
to the shareable resources, unless it requests the resource delegation to be termi-
nated. The termination process is similar to the delegation process. Therefore,
only one application (either client or delegated application) can access the share-
able resources. The firewall mechanism ensures that once the resource delegation
is terminated, the delegated application cannot have access to the resources.

4.6 Application-Platform Communication

At the time of installation, an application establishes bidirectional resource shar-
ing with the platform. The application can access those platform APIs that are
stipulated in the SP’s application lease policy [14] and the platform obtains the
shared resources of the application that are necessary to initiate the application
execution. The platform security context does not have global access in UCOM
based smart cards. This is to avoid any possible exploitation of the platform
that could lead to the information leakage (data or code) from an application.
The resource-sharing delegation is disabled in the platform-application commu-
nication and the firewall would deny such requests to avoid any illegal access to
the APIs by an application through resource sharing delegation.

5 Case Study

In this section, a UCOM case study is discussed of an electronic purse application
with special functionality. The described implementation is simply to illustrate
the firewall mechanism.

5.1 Overall Scenario

In this scenario there are three applications, Electronic Purse, ABC Airline and
XYZ Rentacar. The electronic purse application has a trust relationship with
the other two applications but with different privilege levels. Whenever the card-
holder uses the Electronic Purse application, royalty points can be earned for the
airline application that can either be redeemed from the airline or from rent a car
service. For brevity, the details are brief focusing only on the firewall mechanism.

Client Application

ABC Airline

XYZ Rentacar

…...

Electronic Purse (Server)

Shareable Resources Hierarchical Level

H1

H0

...

Negative Permission

Non

Non

….

Delegated

false

false

….

Hierarchical Levels:
H1: Access allowed to Airline and RentaCar Shareable Resources
H2: Access allowed to only RentaCar Shareable Resources

(a) Electronic Purse Shareable Resouces (b) ACL Implementation

by t e ga i nRoy a l i t y ()
bool ea n r ent ACa r S er v i c e

(book i ng, pa y ment)

RentaCar Shareable Resources

by t e ga i nRoy a l i t y ()
bool ea n a i r l i neS er v i c e

(book i ng, pa y ment)

Airline Shareable Resources

Fig. 9. Electronic Purse Application Implementation

The electronic purse application implements the shareable resources as illus-
trated by figure 9a. These resources have unique identifiers that are used to im-
plement negative permission. The identifier is in the form of a byte value. For ex-
ample, the byte gainRoyality() of the airline shareable resources, has the iden-
tifier "0x0001" represented by the private static byte gainRoyalityID. To
enforce the negative permission, method identifiers are listed in the ACL that a
method should check when it receives a request from the client applications.

5.2 Implementation Examples

In this section, we will describe the details of the SP’s dependent components of
the UCOM based firewall mechanism, which are listed below:

Authentication Protocol. The protocol [24] is based on two steps. In the first
step the protocol initiates the mutual authentication, and at the second step a
symmetric key is mutually generated and shared.

Authenticator. It is an encrypted message that verifies the identity of a client
application. The authenticator for the airline application is EBindingKeyABC(ABC-
Identity | ResourceRequested | Random Number | Lifetime). The electronic purse
application also calculates the authenticator, and if the results are the same then
the ABC Airline request would be authenticated.

Application Sharing Delegation. The ABC airline application requests the
resource sharing delegation. The electronic purse application only allows the
delegated application to access the gainRoyality(). The resource sharing del-
egation process will upgrade the XYZ Rentacar application’s privileges to H1

with negative permission for private static byte airlineServicesID.
This case study shows a simplistic view of an implementation of those firewall

components that are left to a SP’s discretion. The proposed framework provides
a supporting platform that enables individual SPs to either implement their

proprietary or well studied public algorithm to protect their shareable resources.
This enables them to implement the crucial element of the firewall, and remove
any possible ambiguity in different implementations (by card manufacturers).

6 Conclusion

In this paper, we discussed popular smart card based firewall mechanisms and
how they work. Then we described the unique security requirements of the
UCOM and presented an appropriate firewall mechanism extended from the
Java Card firewall. During the research, the Multos based firewall mechanism
was considered unsuitable for the open and dynamic environment that UCOM
aims to support, because the security of the Multos firewall is reliant on the
stringent application installation mechanism. In addition to implementing the
traditional firewall controls, we also presented functionality that is lacking in the
present popular firewall mechanism, but we consider them to be useful for the
UCOM proposal. Future research directions will focus on implementation to test
performance and practical feasibility of such proposals.

References

1. D. Deville, A. Galland, G. Grimaud, and S. Jean, “Smart card operating systems:
Past, present and future,” in In Proceedings of the 5 th NORDU/USENIX Confer-
ence, 2003.

2. D. Sauveron, “Multiapplication Smart Card: Towards an Open Smart Card?” Inf.
Secur. Tech. Rep., vol. 14, no. 2, pp. 70–78, 2009.

3. S. Chaumette and D. Sauveron, “New Security Problems Raised by Open Multi-
application Smart Cards. .” LaBRI, Université Bordeaux 1., pp. 1332–04, 2004.

4. Z. Chen, Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

5. M. Montgomery and K. Krishna, “Secure Object Sharing in Java Card,” in
WOST’99: Proceedings of the USENIX Workshop on Smartcard Technology.
Berkeley, CA, USA: USENIX Association, 1999, pp. 14–14.

6. M. Éluard, T. P. Jensen, and E. Denney, “An Operational Semantics of the Java
Card Firewall,” in E-SMART ’01: Proceedings of the International Conference on
Research in Smart Cards. London, UK: Springer, 2001, pp. 95–110.

7. C. Bernardeschi and L. Martini, “Enforcement of Applet Boundaries in Java Card
Systems,” in IASTED Conf. on Software Engineering and Applications, 2004, pp.
96–101.

8. Java Card Platform Specification; Application Programming Interface, Runtime
Environment Specification, Virtual Machine Specification, Sun Microsystem Inc
Std. Version 2.2.2, March 2006. [Online]. Available: http://java.sun.com/javacard/
specs.html

9. Multos: The Multos Specification, http://www.multos.com/, Online, Std.
10. M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov, “Checking Absence of

Illicit Applet Interactions: A Case Study,” in Fundamental Approaches to Software
Engineering, FASE 2004. Springer, 2004.

11. W. Mostowski and E. Poll, “Malicious Code on Java Card Smartcards: Attacks and
Countermeasures,” in CARDIS ’08: Proceedings of the 8th IFIP WG 8.8/11.2 inter-
national conference on Smart Card Research and Advanced Applications. Berlin,
Heidelberg: Springer, 2008, pp. 1–16.

12. M. Éluard and T. Jensen, “Secure Object Flow Analysis for Java Card,” in
CARDIS’02: Proceedings of the 5th conference on Smart Card Research and Ad-
vanced Application Conference. Berkeley, CA, USA: USENIX Association, 2002,
pp. 11–11.

13. P. Bieber, J. Cazin, A. E. Marouani, P. Girard, J. L. Lanet, V. Wiels, and G. Zanon,
“The PACAP Prototype: A Tool for Detecting Java Card Illegal Flow,” in JavaC-
ard ’00: Revised Papers from the First International Workshop on Java on Smart
Cards: Programming and Security. London, UK: Springer, 2001, pp. 25–37.

14. R. N. Akram, K. Markantonakis, and K. Mayes, “Application Management Frame-
work in User Centric Smart Card Ownership Model,” in The 10th International
Workshop on Information Security Applications (WISA09), H. Y. YOUM and
M. Yung, Eds., vol. 5932/2009. Springer, August 2009, pp. 20–35.

15. P. Girard, “Which Security Policy for Multiplication Smart Cards?” in WOST’99:
Proceedings of the USENIX Workshop on Smartcard Technology. Berkeley, CA,
USA: USENIX Association, 1999, pp. 3–3.

16. D. A. Basin, S. Friedrich, J. Posegga, and H. Vogt, “Java Bytecode Verification by
Model Checking,” in CAV ’99: Proceedings of the 11th International Conference
on Computer Aided Verification. London, UK: Springer, 1999, pp. 491–494.

17. D. A. Basin, S. Friedrich, and M. Gawkowski, “Verified Bytecode Model Checkers,”
in TPHOLs ’02: Proceedings of the 15th International Conference on Theorem
Proving in Higher Order Logics. London, UK: Springer, 2002, pp. 47–66.

18. C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline, “A Certifying
Compiler for Java,” in PLDI ’00: Proceedings of the ACM SIGPLAN 2000 confer-
ence on Programming language design and implementation. New York, NY, USA:
ACM, 2000, pp. 95–107.

19. G. Barthe, G. Dufay, L. Jakubiec, and S. Melo de Sousa, “A Formal Correspon-
dence between Offensive and Defensive JavaCard Virtual Machines,” in VMCAI
’02: Revised Papers from the Third International Workshop on Verification, Model
Checking, and Abstract Interpretation. London, UK: Springer, 2002, pp. 32–45.

20. E. Börger and W. Schulte, “Defining the Java Virtual Machine as Platform for
Provably Correct Java Compilation,” in MFCS ’98: Proceedings of the 23rd Inter-
national Symposium on Mathematical Foundations of Computer Science. London,
UK: Springer, 1998, pp. 17–35.

21. B. Schneier, Applied cryptography (2nd ed.): protocols, algorithms, and source code
in C. New York, NY, USA: John Wiley & Sons, Inc., 1995.

22. D. Deville and G. Grimaud, “Building an "impossible" verifier on a java card,”
in WIESS’02: Proceedings of the 2nd conference on Industrial Experiences with
Systems Software. Berkeley, CA, USA: USENIX Association, 2002, pp. 2–2.

23. K. Mayes and K. Markantonakis, Eds., Smart Cards, Tokens, Security and Appli-
cations. Springer, 2008.

24. K. Markantonakis and K. Mayes, “A Secure Channel protocol for multi-application
smart cards based on public key cryptography,” in CMS 2004 - Eight IFIP TC-
6-11 Conference on Communications and Multimedia Security, D. Chadwick and
B. Prennel, Eds. Springer, September 2004, pp. 79–96.

