
When Clocks Fail

– On Critical Paths And Clock Faults –

Michel Agoyan1, Jean-Max Dutertre2,
David Naccache1,3, Bruno Robisson1, and Assia Tria1

1
cea-leti

{michel.agoyan, bruno.robisson, assia.tria}@cea.fr
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Abstract. Whilst clock fault attacks are known to be a serious security
threat, an in-depth explanation of such faults still seems to be put in
order.

This work provides a theoretical analysis, backed by practical experi-
ments, explaining when and how clock faults occur. Understanding and
modeling the chain of events following a transient clock alteration allows
to accurately predict faulty circuit behavior. A prediction fully confirmed
by injecting variable-duration faults at predetermined clock cycles.

We illustrate the process by successfully attacking an fpga aes imple-
mentation using a dll-based fpga platform (one-bit fault attack).

1 Introduction

Fault attacks consist in modifying an electronic circuit’s behavior to achieve
malicious goals [2, 3]. Fault attacks exist in numerous variants ranging from a
simple alteration of a round counter during symmetric encryption [4] to math-
ematical Differential Fault Attacks (dfa) where secret information is obtained
by comparing (differentiating) correct and faulty encryption results [6, 12].

Faults can be caused by a variety of intrusive and non-intrusive means [1]
such as lasers [16], electromagnetic perturbations [10, 13], voltage variations [9]
or clock glitches [7].

In this work we present a new clock alteration technique for scenarii in which
the attacker is given access to the target’s clock. We start by explaining and mod-
eling the chain of events causing the faulty behavior. This theoretical analysis



perfectly reflects experimental observations and allowed the injection of precise
single-bit faults into a chip running the aes algorithm (an actual implementation
of the attack described in [8]).

After introducing the model, we will overview the fault injector’s design, the
target chip’s structure and the way in which the injector was used to extract
aes keys.

2 Why Clock Faults Occur?

We inject faults by violating synchrony, a basic assumption under which tra-
ditional digital ICs operate. In essence, most4 ICs execute calculations by pro-
cessing data by combinatorial logic blocks separated by D flip-flop register banks
sharing the same clock (figure 1).

D Q D Q
combinatorial

logic

clock

data
n n m m

D Flip-Flop

Register

propagation delay

D Flip-Flop

Register

Fig. 1. Synchronous Representation of Digital ICs

Data is usually latched by registers at raising clock edges. Between two such
edges, the computed data travels between registers and gets modified by the
intermediate combinatorial logic blocks. The time needed to propagate data
through combinatorial logic is called propagation delay. The propagation delay
and a second delay element, inherent to the use of D flip-flop, called set-up

time, define the circuit’s maximal operating frequency (nominal circuit period).
Indeed, to ensure proper circuit operation, the clock period must be strictly
greater than the maximal propagation delay in concerned circuit (this maximal
propagation delay is called critical path) plus the registers’ set-up time. In other
words:

Tclock > tcritical + tset-up (1)

4 ICs that do not assume synchrony exist but we do not consider these in this work.



As a matter of fact any data bit entering a register is the result of a combi-
natorial calculation involving several previous register output bits. The transfor-
mation of the previous registers’ output into the next register’s input bit takes
a determined delay. This delay depends on the the logic performed as well as on
the data transiting through the logic. In addition, propagation time varies with
circuit temperature and power supply voltage.

2.1 Overclocking

Overclocking consists in decreasing the clock period (or, put differently, increas-
ing clock frequency). If setup delays are not respected, the D flip-flop’s input is
not given sufficient time to reach the latch. Causing faulty data to be latched
instead. This led several authors to use overclocking as fault injection means [9,
15].

A decreased clock period can potentially affect logical paths whose propaga-
tion times exceed the decreased clock period minus the set-up time. From the
attacker’s perspective, the ability to control precisely the clock period is cru-
cial for inducing faults with precision. Note that temperature and power supply
changes may also be used to exert such control.

Fault attacks consist in injecting faults at precise moments. To avoid injecting
faults continuously, overclocking must be brief and transient. The fault injection
technique described in the next section allows doing so.

2.2 Injecting Clock Delay Faults

An attacker needs to control two parameters: the precise moment at which the
fault occurs and the clock anomaly’s duration. The latter must be controlled
with high resolution, typically a few of tens of picoseconds.

Figure 2 illustrates a correct clock signal, clk, and a modified clock meant
to cause faults, faulty clk.
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Fig. 2. Normal (clk) vs. Faulty (faulty clk) Clock Signals

The two waveforms differ only between the delimiters positioned at 20ns and
30ns. During that interval, the faulty clk’s period is reduced by ∆ ns. The ∆



time decrement causes a set-up time violation fault. Note that the extension by
∆ of the preceding clock cycle’s low state has no adverse effect.

Generating faulty clk with sufficient accuracy and precision is a challeng-
ing task. To do so, we use the embedded Delay Locked Loop (dll) of a recent
fpga family (Xilinx Virtex 5). Two clocks (clk delayed i) with programmable
skews are generated from clk. The skews of the clk delayed i signals, de-
noted δi, are programmable. faulty clk is obtained by switching between the
clk delayed i using a trigger signal. Figure 3 depicts this process in further
details.
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Fig. 3. Faulty (faulty clk) Clock Signal Generation

If clk delayed 2 is delayed by δ2 time units, clk delayed 1 must be
delayed by δ1 = δ2

2 to preserve a 50% duty cycle at faulty clk’s transient fault
interval.

The device assembles faulty clk by combining clk delayed 2’s raising
edge and clk delayed 1’s falling edge. This is controlled by the signal trigger

that positions the perturbation in time. The accurancy at which faulty clk’s
shape can be controlled (in our setting 35ps) depends on δt, the smallest elemen-
tary delay that the dll is able to provide. We will refer to faulty clk’s altered
signal chunk as the faulting period (in Figure 3, the interval between 24ns and
30ns).

An oscilloscope screen-shot of faulty clk is shown on Figure 4 (uppermost
signal). Here, clk’s period (10ns) was reduced to [t1, t2] = 49δt ≃ 8.2ns in
faulty clk. The lowermost signal’s high level indicates the aes’ start. The
implementation completes an encryption round in one cycle. Hence, the diagram
shows a fault injection at the ninth round (cf. section 3.2).

As we write these lines, a Xilinx Virtex 5 development board costs less than
$1000.
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Fig. 4. faulty clk (uppermost signal) and aes start (lowermost signal)

3 Clock Fault dfa on aes

We tested the attack setup on a concrete aes implementation. The following sec-
tions describe the target chip, the attack’s theoretical principle ([8]) and report
practical experiment results.

3.1 The Test Chip

The test chip (Xilinx Spartan 3AN fpga) implements a hardware 128-bit aes

[11, 5] written in vhdl. The design consists of three main blocks: a commu-
nication and control module (ccm), a key expansion module (kem), and an
encryption module (enm).

The ccm manages the serial link through which plaintext and key material
are input. The start signal triggering the encryption and the resulting ciphertext
also transit through the ccm. In addition, the ccm controls the kem and the
enm’s operations during encryption.

The implementation uses a 128-bit data path and runs the kem and the enm

in parallel. Consequently, an encryption round is completed in one clock cycle
and the entire aes computation takes 11 clock cycles.

The kem generates the round keys “on the fly”. At each clock cycle, a new
round key is transferred from the kem to the enm. We will not overview the
kem in detail as it is of little relevance to our attack. We nonetheless underline
that the kem’s critical delay path is much smaller than the enm’s one – this is
essential for the attack to work.

The enm architecture is depicted on Figure 5. The enm breaks-down into
five submodules: AddRoundKey, SubBytes, ShiftRows, MixColumns, and Mux.
As their names suggest, the first four correspond to the standard aes transfor-
mations. They are assembled with the multiplexer module, Mux, to form a closed
loop, implementing a complete aes round.
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The Mux module opens the loop for plaintext acquisition during the ini-
tial round and closes it afterwards. The AddRoundKey module has a dedicated
bus (ciphertext) through which ciphertext is output after the final round. The
MixColumns module is bypassed during the final round. SubBytes is the only
clocked module (all the others being purely combinatorial blocks). This allows,
as mentioned before, to complete an encryption round in one clock cycle. This
loop architecture features a long data propagation path. Consequently, the de-
sign’s critical delay path is located in the enm. The nominal clock frequency of
this aes implementation is 100 MHz.

3.2 Giraud’s One-Bit Attack

This section recalls Giraud’s dfa [8] (hereafter “Giraud’s one-bit attack”). The
attack is based on the restrictive assumption that the opponent can inject one-bit
faults. We use the following notations:

M i the algorithm’s state at the end of round i
Ki i-th round key number
C a correct ciphertext
D a faulty ciphertext

The attacker injects a single bit fault into one byte of state M9 just before
the final round’s SubBytes operation. This allows to retrieve the last round key
K10.

Consider the i-th state byte just before the final round M9
i . The correspond-

ing byte index in the ciphertext is ShiftRows(i). As per the aes’ specifications,
for all i ∈ {0, . . . , 15}:

CShiftRows(i) = SubBytes(M9
i ) ⊕ K10

ShiftRows(i) (2)



If a one-bit fault e,5 is injected into the j-th byte of M9, we obtain at index
j:

DShiftRows(j) = SubBytes(M9
j ⊕ e) ⊕ K10

ShiftRows(j) (3)

and for index i ∈ {0, . . . , 15}\{j}:

DShiftRows(i) = SubBytes(M9
i ) ⊕ K10

ShiftRows(i) (4)

Hence, a comparison (differentiation) between the correct and the faulty
ciphertexts leaks information both on the fault’s position and on the aes key.
For i ∈ {0, . . . , 15}\{j}, equations 2 and 4 yield:

CShiftRows(i) = DShiftRows(i) (5)

This allows to identify the faulty byte’s index j because the only index for
which C ⊕D is nonzero is ShiftRows(j). Moreover, at index j, equations 2 and
3 yield:

CShiftRows(j) ⊕ DShiftRows(j) = SubBytes(M9
j ) ⊕ SubBytes(M9

j ⊕ e) (6)

Equation 6 is then solved for the eight possible values of e (the only hypothesis
made on e is that e = 2i for some i). This provides a set of candidates for M9

j .

At this point, new one-bit fault injections targeting the same byte are re-
quired to reduce the solution set to one item, namely M9

j . The probability to

find M9
j in three attempts (i.e. three different faults) is ≃ 99%.

K10
ShiftRows(j) is then calculated from M9

j , using equation 2:

K10
ShiftRows(j) = CShiftRows(i) ⊕ SubBytes(M9

j ) (7)

Equation 7 shows that the attack works independently on each round key
byte. Indeed, no MixColumns transformation follows the fault injection and
MixColumns is the only transformation capable of propagating faults among
bytes. Consequently, the whole round key K10 can be progressively retrieved by
the attacker. Finally, knowing K10, the secret key K is found by reversing the
key expansion algorithm.

3.3 The Attack Process

The experimental set-up (Figure 6) consists in a test chip board (tcb), a clock
fault generator (cfg) and a computer.

5 That is: e = 2i for i = 0, . . . , 7.
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Fig. 6. Experimental Set-up

The tcb embeds the aes implementation described in the previous section.
Its clock is provided by the cfg. The secret key, the plaintext and the encryption
start signal are transmitted to the tcb from the computer via a serial link. As
encryption ends, the ciphertext is offloaded via the serial link. The tcb provides
a trigger signal to the cfg indicating the exact beginning of the encryption
process. This is done to ease synchrony between fault injection and aes rounds.
Note that the trigger could be replaced by the inspection of power consumption
(spa) to precisely locate the aes rounds in time.

The cfg generates a 100 MHz clock signal continuously fed into the tcb.
When the trigger signal indicates that encryption was started, a countdown is
started. As the countdown ends a faulting period is produced during round nine,
as required by Giraud’s one-bit attack. The serial link between the computer and
the cfg is used to define the exact value of the faulting period decrement ∆.

The computer runs a test campaign as described in Algorithm 1.
The generation of a faulting period is automatic and hence not explicitly

mentioned in the pseudo-code. Indeed, the trigger signal sent from the tcb to
the cfg indicates the encryption’s launch and causes a faulting period generation
during the ninth round as shown in Figure 4. As the faulting period gradually de-
creases, more set-up time violation faults appear in the calculation process. The
resulting faulty ciphertexts are ordered by decreasing faulting periods. Then,



Algorithm 1 Test Campaign Pseudo-Code

send the key K and the plaintext M to the test chip.
∆← 0.
while (clock period > ∆) do

encrypt and retrieve the ciphertext
∆← ∆ + δt

end while

faulty ciphertexts are successively compared with the correct ciphertext. This
allows identifying the faulty bytes (Eq. 6 and Eq. 7). In addition, for each cipher-
text byte, a list of induced faults is built in order of appearance. Assuming that
the first injected fault stems from a one-bit fault induced just before the last
SubBytes, we build the corresponding set of guessed bytes for K10 from equa-
tions 6 and 7. For the test campaign described in Algorithm 1, we obtain a set
of guesses for every byte of K10. To reduce progressively these sets to singletons
we inject different one-bit faults repeating the test campaigns with the same key
but with different plaintexts. Indeed, each data bit arriving to the SubBytes’s
registers possesses its own logic path and propagation time (section 2). This
propagation time highly depends on the data handled during encryption. Con-
sequently, plaintext changes modify all propagation times. As propagation times
vary, the injected one-bit faults differ with a 7/8 probability at the byte level.

As a result, one needs at least three (and sometimes four) test campaigns
(same key and different plaintexts) to retrieve the entire round key. Finally, K
is obtained by reversing the key expansion process.

3.4 Experimental Results

A first experiment targeting the final aes round was conducted to test the cfg.
We implemented successfully Giraud’s one-bit attack as well as its extension to
two bits.

Injecting multiple-bit faults To test the hypothesis that a decrease in the
faulting period causes more internal faults, we targeted the aes’ tenth round
while progressively increasing ∆.

As expected, the comparison of correct and faulty ciphertexts reveals that
the device progressively transits from normal operation to multi-bit faults. This
is done by exhibiting none, one-bit, two-bit and multiple-bit faults as described
in Figure 7. Note that the above is not an attack but an experimental fault
characterization experiment where the aes plays the role of a big propagation
delay cause.

Figure 7 reports fault characterization experiments conducted with a con-
stant key and two different plaintexts.
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Fig. 7. Two fault injection experiments: same key, different plaintexts

Figure 7 shows the faults’ timing and nature as a function of the faulting
period’s duration (the horizontal axis). Each horizontal bar, associated with a
byte number, uses a color code to reflect the nature of faults (no fault, one-bit
fault, two-bits fault, more than two bits fault) and their point of appearance
in time. The first one-bit fault occurs in byte 3 for a faulting period of 7585 ps
(= 10000−69×35 ps), and the last fault appears on byte 0 for a 5800 ps faulting
period. With the exception of bytes 2 and 8, the first fault is always a one-bit
fault. This is compatible with the theoretical fault genesis model introduced at
the beginning of this paper. Figure 8 shows how the number of byte candidates
is progressively reduced. Each of the four sets in the example is associated with
a different one-bit fault ei (for i ∈ {1, 2, 3, 4}). Here, the correct round key byte,
0x25, is found at the intersection of sets associated with e1, e3 and e4. The fact
that the set associated with e2 stands apart indicates that the one-bit fault as-
sumption about e2 was wrong. Leaving aside e2, the set of guesses is reduced by
successive sets intersections until a singleton containing the round key byte is
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reached. However, taking into account set e2 requires the more complex inter-
section process described in Algorithm 2.

Algorithm 2 Determining the correct key byte
i← 2
S ← e1

while (|S| 6= 1) do

if S ∩ ei = ∅ then

S = S ∪ ei

else

S = S ∩ ei

end if

i← i + 1
end while

return the single element of S as the correct key byte.

The probability of injecting successively a one-bit and a two-bit fault when
reducing the faulty period can be estimated from Figure 7, where bytes 8, 5, 2 and
0 are counter-examples. Many examples seem to indicate that this probability is
greater than 70% (experimentally).

The probability to cause successively one-bit, two-bit, and three-bit faults
seems to be 50% (experimentally). These statistics were obtained thanks to the
very small value of the faulty-period granularity, namely 35ps. This resolution
seems to allow the progressive accumulation of faulty propagation paths as the
faulting period is decreased.

Implementation of Giraud’s one-bit attack We wrote a script that plays
the elementary test campaign described in section 3.3. The test was run several



tens of times, for at least five different plaintexts per run. We always found the
correct round key. The probability of injecting one-bit faults was found to be
greater or equal to 90%.

Extension to two-bit attack The ability to inject and identify two-bit faults
has prompted us to extend the attack. Note that two-bit attacks can defeat one-
bit parity check countermeasures. To that end, we need to solve equation 6 with
the assumption that e is a two-bit fault. The only adverse effect is an increase in
the cardinality of potential solution sets. The experiment was successful: 13 to
14 round key bytes were found on average with the automated test campaign.
This allowed to exhaustive-search the whole key.

Repeating the campaign with many different plaintexts, we were always able
to inject two-bit fault at every byte location, even if we never succeeded in
injecting two-bit faults simultaneously on all bytes.

4 Conclusion

This paper describes a new fault injection technique based on clock reshaping
during a precise cycle to cause setup time violation faults. The new technique
would be a good candidate to benchmark safe-error [17] or differential behaviorial
[14] analysis

This technique is inexpensive, efficient and non-intrusive. As such, it under-
lines the importance of further research in countermeasure design.
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