
Designing smartcards for emerging wireless networks

Pascal Urien1, Mesmin Dandjinou2

1 ENST 37/39 rue Dareau, Paris, 75014 France
2Université Polytechnique de Bobo-Dioulasso, Burkina Faso

Pascal.Urien@enst.fr, Mesmin.Dandjinou@voila.fr

Abstract. This paper presents our work relating to introduction of EAP smart-
cards in emerging wireless LAN like Wi-Fi or WiMax. We analyse basic char-
acteristics involved in authentication protocols from feasibility and perform-
ances points of view. We shortly introduce our open Java architecture, and un-
derline some observed interoperability issues. We present and analyze results
obtained with five different smartcards, for two authentication scenarios: the
first one works with an asymmetric algorithm (EAP-TLS, a transparent trans-
port of the well known SSL standard), and the second method uses the EAP-
AKA protocol, which is an adaptation of the symmetric Milenage algorithm.
We introduce a new class of smartcard which acts as EAP server, and that has
been successfully tested in operational networks. Finally we suggest a new way
to manage and use smartcards, remotely and securely, by using Trusted EAP
Modules.

1 Introduction

In 1999, the IEEE 802 committee ratified the 802.11 standard [3] which introduced
the first wireless Ethernet network, later enhanced with 802.11i standard [9]. Wi-Fi
technology became the foundation stone of cheap IP radio LAN. Two years after, an
“Air Interface for Fixed Broadband Wireless Access Systems” was proposed in [6]
that extends wireless IP connectivity at a campus scale. The emerging IEEE 802.16e
[14] standard, “Air Interface for Fixed and Mobile Broadband Wireless Access Sys-
tems”, provides enhancements to [6] in order to support subscriber stations moving at
vehicular speeds.
But unlike the GSM network, no security module was specified in the so called Wi-
Technologies. There is however a common denominator between [5] and [6], both of
them supports the Extensible Authentication Protocol [10]. EAP is a light protocol,
used prior to IP address allocation, that may transport multiple authentication scenari
like EAP-TLS [2] or EAP-AKA [13].
An EAP dialog occurs between an EAP client, that wants to gain access to network
resources, and an EAP authenticator which is the heart of an AAA (Authentication,
Authorization and Accounting) system. An EAP session is a set of (server) requests
and (client) responses; at the end of this exchange the server delivers either a success
or a failure message. Upon success both EAP entities compute a shared secret re-

ferred as the AAA key. EAP messages are transported either by non IP protocols like
EAPoL [5] or PKM-EAP [14] on the wireless media (between the access point / base
station and the client), or by routable protocols such as RADIUS [8] or DIAMETER
[17] over the Internet network (between the access point / base station and the AAA
server).
In this paper we introduce smartcards associated to EAP clients and EAP servers.
Section 2 shortly reviews basic services that must be supported by EAP cards. Sec-
tion 3 describes the software architecture of an open implementation for Java cards.
Section 4 presents experimental results with five kinds of Java cards. Section 5 de-
fines EAP servers for Java cards and gives early results. In the last section we intro-
duce the Trusted EAP Module (TEAPM), an innovative architecture that will im-
prove usage and remote management of smartcards.

2 EAP Java cards issues

They are two main issues concerning the use of smartcards for computing the EAP
protocol: the protocol complexity and the computing speed.
Protocol complexity must be compatible with Java cards computing resources. As an
illustration, byte code size is about 20 kB for EAP-TLS implementation, and 16 kB
for EAP-AKA implementation; that is well-suited with today Java cards characteris-
tics.
The need for Java cards performance estimation is not new, for example a perform-
ance comparison of Java cards for micro payment implementation was discussed in
[4]. More recently, an initiative for open benchmark for Java card technology has
been launched by [12], in order to setup a missing and useful tool for the smartcards
industry. A study of Java cards performances has been recently presented in [18].
In our approach we classify processing operations in three categories: data transfer,
cryptographic operations, and software overhead. So, the processing time of an appli-
cation can be written like:

TApplication = TTransfer + TCrypto + TSoftwareOverhead . (1)

Our applications embed test functions that are used to identify critical parameters.

2.1 Data Transfer

In protocols dealing with X.509 certificates like EAP-TLS, several kilobytes of
data are sent/received to/from the smartcard. Due to the lack of RAM memory, these
information are written or read in the non-volatile memory (E2PROM, flash mem-
ory,…). Therefore we call data transfer, the time required for transporting EAP pack-
ets between a terminal that controls the smartcard and the application running in this
device. From a practical point of view it is easy to measure this time, but we shall not
try to estimate the different elements that make up this value, like transfer delays
between terminal and reader, transfer duration between reader and smartcard, internal

software delays (introduced for example by java operations) and time consumed by
memories accesses (writing and reading). Named TTransfer, it is expressed like:

TTransfer = TTransferReader + TTransferSmartcard + TSoftwareOverhead + TMemoriesAccesses . (2)

A

B
C

D

A

B C

D

Figure 1: Measured times for reading and writing operations.

Figure 1 presents transfer characteristics measured with four smartcards labeled A, B,
C and D; the reader is the same excepted for device A which integrates an USB inter-
face. Reading and writing operations (respectively from and to a smartcard) require
similar times. The transfer law is quite linear (TTransfer = a + b x Length) with a corre-
sponding to a factor around 50 ms and b to a factor around 0.6 ms/byte for A and D
devices, and 1.7 ms/byte for B and C devices.

2.2 Cryptographic operations

In a Java card context, cryptographic functions are invoked via specific APIs. For
the authentication methods studied in this paper, the main cryptographic procedures
are MD5, SHA1, RSA and AES.

A A

B

D

C C

D
B

Figure 2: Computing times for MD5 and SHA1 digests.

Figure 2 shows MD5 and SHA1 speed; the time required by a digest operation is
proportional to the number of computed blocs whose size is 512 bits. The time re-
quired by bloc is respectively (by alphabetical device name order) 15.3 ms, 8.5 ms,
10.2 ms, 3.0 ms for MD5, and 33.2 ms, 14.8 ms, 17.3 ms, 4.4 ms for SHA1. Because
smartcards are usually optimized for RSA functions, these operations are rather
“fast”. During the TLS protocol, three RSA calculations are performed: firstly during
server certificate checking (public key decryption), secondly for pre-master key en-
cryption (public key encryption), and thirdly for client’s authentication (private key
encryption). As demonstrated by Table 1, these procedures consumed less than 500
ms.

Table 1. Estimation of RSA computing times.

RSA
(1)+(2)+(3)

ms

Private Key
Encryption

(1)

Public Key
Decryption

(2)

Public Key
Encryption

(3)

Private Key
Decryption

(4)
A 320 230 50 40 220
B 320 160 110 50 230
C 322 191 61 70 200
D 150 110 20 20 120

In our experiments we only get one smartcard (device E) that supports the AES algo-
rithm. We observe for this device a computing time of about 11.3 ms per bloc of 128
bits.

2.3 Software Overhead

All resources that are not available through APIs are supplied by the embedded
(Java) application. This includes extra software needed for packets analysis, messages
construction, additional cryptographic services like keyed MAC (HMAC), pseudo
random functions (PRF), or some specific services like X.509 certificates parsing.

2.4 Performances issues

The timing constraints induced by smartcards usage in wireless environments are
linked to EAP and DHCP [21] protocols requirements.
On the authenticator side, the EAP server sends requests and waits for responses
before a timeout; and this waiting time called txPeriod lasts [5] 30 s by default (with
3 retries). If the smartcard computing time exceeds this value a retransmission occurs.
On Windows platforms, DHCP is a parallel event, independent of EAP authentica-
tion, that starts once network interface comes up. If the IP client doesn’t receive a
DHCP acknowledgement within a reasonable period of time, usually 60 s, the termi-
nal OS resets the network interface, and therefore restarts both DHCP and EAP proc-
esses.
In summary the two main timing requirements are:
- computing an EAP request in less than 30 s, and

- processing an authentication scenario in less than 60 s.
This last value also includes the time consumed by the user to enter, if necessary, its
PIN code.

3 OpenEapSmartcard

The basic idea behind an open platform [16] [20] is to define a simple Java frame-
work (whose APDUs interface is described in [15]) working with most of commercial
Java cards, and supporting as many EAP methods as possible.

2- Auth.class

3- Credential.class

1- EapEngine.class

draft-eap-smartcard

Cryptographic API
RNG - MD5-– SHA1 - RSA

Security
Management

Network
Interface

Identity
Management

Personalization

ISO 7816 Interface

Javacard
Framework JC.2x

Methods
Credentials

Init
Object

E2PROM

EAP-AKA

EAP-TLS

Init(Object
Credential)

ProcessEap()

Authentication
Interface

Java Virtual Machine

4- Method.class

Figure 3: OpenEapSmartcard software architecture.

The software architecture comprises four Java components:

1- The EapEngine that manages several methods and/or multiple instances of the
same one. It implements the EAP core, and acts as a router that sends and receives
packets to/from authentication methods. At the end of authentication process, each
method computes a master cryptographic key (AAA Key) which is read by the termi-
nal operating system.
2- The Authentication interface that defines all mandatory services in EAP methods,
in order to collaborate with the EapEngine. The two main functions are Init() and
Process-Eap(). First initializes method and returns an Authentication interface; sec-
ond processes incoming EAP packets. Methods may provide additional facilities
dedicated to performances evaluations.
3- The Credential objects that, each one associated to a method, encapsulate all the
information required for processing the given authentication scenari.

4- The Methods that correspond to the specific authentication scenarios to process.
Once initialized, the selected method analyses each incoming EAP request and deliv-
ers corresponding response.

Due to the Java language universality, we could hope that the same code works with
all smartcards; the reality is a little bit different because almost all devices present
minor differences or even bugs. Here is a brief description of some observed interop-
erability issues:
- in TLS, the RSA algorithm is issued in conjunction with the PKCS#1 padding rules.
Sometimes this functionality is not available (only NO_PAD option is working), and
therefore an additional Java code is required;
- digests functions use Update() function for digest updating and DoFinal() procedure
for digest closing. Sometimes Update() is not supported, and therefore it is necessary
to concatenate all data in the non-volatile memory, in order to compute the output
value;
- in some cases we observed erroneous values produced by the Update() method
invoked with a “long” (a few thousand bytes) input value;
- with some components it is only possible to deal with one instance of MD5 or
SHA1 object. As a result an interoperable application can only use one instance
which implies multiple writings in non-volatile memory, so that the performances
decrease (TLS produces three MD5 and SHA1 calculations).

Our EAP-TLS method takes into account these constraints. It works with RSA algo-
rithm with no padding byte; it is compatible with single digest instance, and manages
bugged or missing Update() methods.

4. Experimental results

The same EAP-TLS application, including minor adaptations dealing with devices
particularities (detailed in section 3), was downloaded in our four different Java cards
A, B, C and D. EAP-AKA was tested with device E only.

4.1 With EAP-TLS

EAP-TLS [2] is a transparent transport of the TLS protocol [1] which has two
working modes (see figure 4). The first one, referred as full mode, is asymmetric and
uses a mutual authentication based on RSA, and that requires certificates exchange
for both server and client. The second mode qualified session resume works accord-
ing to a symmetric scheme and deals with a shared secret, the master secret computed
during a previous full session identified by a session-id parameter. A detailed analysis
of the EAP-TLS application was described in [11].
With 1024 bits RSA keys, a full mode typically has the following characteristics:
- 2500 bytes of information are exchanged between the TLS client and the TLS
server, for the duration of TTransfer;

- three RSA calculations are performed (public key decryption, public key encryption
and private key encryption) and need a total time TRSA;
- approximately 266 blocs of 512 bits are processed by MD5 and SHA1 functions. If
we call TDigest the average time for computing a bloc (TMD5/2+ TSHA1/2), these calcula-
tions cost 532 times TDigest.;
- other operations, like X.509 certificate parsing, EAP and TLS messages processing
are handled by Java procedures and consume a time TSoftwareOverhead.

Client hello

Server Hello
Certificate

CertificateRequest
ServerHelloDone

Certificate

CertificateVerify

ChangeCipherSpec

(Encrypted) Finished

ChangeCipherSpec

(Encrypted) Finished

Client Server

Client hello (Session-id)

Server Hello(Session-id)

ChangeCipherSpec

(Encrypted) Finished

Client Server

ChangeCipherSpec

(Encrypted) Finished

Figure 4: TLS message exchange, full mode (left part) and session resume mode (right part).

Because all cryptographic resources are seen from a practical point of view as APIs,
we called TCrypto the time consumed by these facilities and expressed it as:

TCrypto = TRSA + 532 x TDigest . (3)

As a consequence, the time spent in EAP-TLS computing named TEAP-TLS can be split
in three categories according to the following formula:

TEAP-TLS = TTransfer + TCrypto + TSoftwareOverhead . (4)

Total computing time (TEAP-TLS) and data transfer duration (TTransfer) are obtained by
direct measurements. TCrypto is deduced from basic parameters presented in section
2.2. So, TSoftwareOverhead value can be deduced as:

TSoftwareOverhead = TEAP-TLS - TTransfer - TCrypto . (5)

Table 2 presents experimental results, and a detailed comparison of Java cards per-
formances is presented in Appendix 1; the reading of [11] may be useful for under-
standing these exhaustive comparisons.

The session resume mode typically presents the following characteristics:
- no RSA calculation is performed;
- 230 bytes of information are exchanged between TLS client and TLS server, which
require a time called TTransfer;
- approximately 158 blocs of 512 bits are processed by MD5 and SHA1 functions. If
we call TDigest the average time for computing a bloc (TMD5/2+ TSHA1/2), these calcula-
tions cost 316 times TDigest;
- other operations, like EAP and TLS messages processing, are handled by Java pro-
cedures and consume a time TSoftwareOverhead.

Table 2. EAP-TLS full mode performances.

 A B C D
TTransfer (ms) 2492 5326 5219 1433
TCrypto (ms) 13221 6507 7648 2117

TSoftwareOverhead (ms) 62618 21914 14784 6827
TEAP-TLS (ms) 78331 33747 27651 10377

Because all cryptographic resources are seen from an applicative point of view as
APIs, we called TCrypto all the time consumed by these facilities and we expressed it
as:

TCrypto = TRSA + 532 x TDigest . (6)

As a result, the time spent in EAP-TLS computing named TEAP-TLS is shared in three
categories:

TEAP-TLS = TTransfer + TCrypto + TSoftwareOverhead . (7)

Table 3 shows experimental results, where TSoftwareOverhead is deduced as previously.

Table 3. EAP-TLS session resume mode performances.

 A B C D
TTransfer (ms) 140 450 460 110
TCrypto (ms) 7663 3675 4352 1169

TSoftwareOverhead (ms) 41697 19675 8688 4221
TEAP-TLS (ms) 49500 23800 13500 5500

4.2 With EAP-AKA

EAP-AKA [13] is a quite transparent transport of the Milenage algorithm [7]. A
full authentication session is made of one request and one response. The request mes-
sage which is 68 bytes long includes three attributes: a random number RAND (16
bytes), an authentication value AUTH (16 bytes) and a HMAC-SHA1 trailer (20
bytes). Upon success, the response message whose length is 40 bytes returns two
attributes: a signature RES (8 bytes) and a HMAC-SHA1 trailer (20 bytes). This
exchange is summarized in figure 5.

The functions (, , , ,) are invoked by the EAP-AKA application, and
imply 5 AES calculations. HMAC-SHA1 requires processing of 9 blocs of 512 bits,
while the XKEY estimation costs 4 blocs. The pseudo random function (PRF) works
with a modified version of SHA1 using a null padding bytes algorithm; the produc-
tion of 100 bytes requires the calculation of 5 blocs of 512 bits each. Because current
versions of Java cards do not support this modified version of SHA1, the procedure is
fully written in Java and generates an important software overhead.

if 1f 2f 3f 4f 5f

Figure 5: EAP-AKA, Full authentication summary.

In summary the EAP-AKA cost is given by the following expressions:
TEAP-AKA = TTransfer + TCrypto + TSoftwareOverhead . (8)

with TCrypto = 5 x TAES + 18 x TDigest . (9)

But according to our full software implementation of the PRF function (which com-
putes five modified SHA1 values), we get the formula:

T’Crypto = 5 x TAES + 13 x TDigest + TPRF . (10)

Table 4. Experimental EAP-AKA performances for device E, TDigest = 4.8 ms, TAES = 11.3 ms.

TEAP-AKA

(ms)

TTransfer
108 bytes

(ms)

5 x TAES
f1…f5
(ms)

13 x TDigest
HMACs and XKEY

(ms)

TPRF

(ms)

TSoftwareOverhead

(ms)
5950 <190 56 64 5650 >0

As shown in table 4, most of computing time is consumed by the PRF function. EAP-
AKA should be very efficient, if this function was available via a cryptographic API.
Under this hypothesis, the authentication time should be less than 350 ms.

5 EAP server

Figure 6: EAP-Server deployment in real networks.

According to the EAP protocol, clients process requests which are issued by serv-
ers. From a software point of view, the EAP server application is very close to the
client one. The cryptographic load is quite the same, but messages processing is sig-
nificantly different. As illustrated by figure 6, we designed [19] a first EAP-TLS
server. This server works with real network, but needs a specific RADIUS implemen-
tation, that dispatches EAP messages encapsulated in RADIUS packets, to one or
more EAP-Server smartcards. In this architecture EAP data are transported by various
layers (802.11 frames, RADIUS), but the authentication dialog directly occurs be-
tween two EAP smartcards, acting as SAM (Secure Authentication Modules) compo-
nents.
Table 5 presents measured performances for B and D devices which are used alterna-
tively as clients and servers. We observe that EAP-TLS servers require an additional
time of about 30%. We attribute this difference to extra information transfers from
E2PROM to E2PROM, needed for messages construction or data concatenation, in-
duced by digest operations.

Table 5. Comparison between EAP client and server performances.

 B D
TEAP-TLS Client (s) 33.8 10.4
TEAP-TLS Server (s) 45.2 13.0

6 The Trusted EAP Module - TEAPM

Following the results obtained firstly about smartcards performances and secondly
concerning OpenEapSmartcard environment for security improvement, and according
the perspective of the future advances in smartcard technologies relatively to Moore's
law, we suggest a new protocol stack which transforms the usage of smartcards by
changing them to a kind of secure electronic pocket deposit box remotely manage-
able: the Trusted EAP Module.
As it appears in figure 7, EAP protocol and EAP-TLS or other EAP methods repre-
sent the heart of this protocol stack. Their presence make possible the mutual authen-
tication establishment which can be followed by a secure exchange and storage of
credentials like keys, certificates, account numbers, passwords, profiles, … in the
OpenEapSmartcard-based smartcard. In this way, we offer to the users an pocket
electronic component which functionally looks like the immutable TPM developed by
TCG for trusted computing platforms [22].
With the ISO 7816-4 presence on the one hand of the application layer, we maintain
the opening platform aspect by keeping compatibility with existing smartcard applica-
tions that use APDUs.
Finally, the choice of HTTP 1.1 and XML protocols on the other hand of the applica-
tion layer welcomes the development of Web services, on either client side or/and
server side.

EAP

EAP-TLS or other methods

ISO 7816-4 HTTP

WEB
Services

DATA
Management

APPLET
Management XML

TCP/IP
Stack

TLS

Figure 7 : The protocol stack of TEAPM.

The implementation and test of this new platform on Java cards are going on. Our
wish is to try later the same implementation on a SIM card, and right now nothing
prevents from doing it. Surely, this will extend the capacities for secure remote man-
agement of services using smartcards, the "air" interface like in GSM network [23]
[24], and Web services.

7 Conclusion

In this paper we have described a software architecture for EAP smartcards and
experimental performances obtained with five devices. These results clearly demon-
strate that today smartcards may be successfully introduced for enhancing security in
emerging wireless networks. However authentication delays are yet very important in
comparison with classical software solutions, probably because firstly some Java
cards APIs are missing, and secondly more powerful components are needed, spe-
cially for EAP server. The lack of RAM memory leads to a slowdown of data storage
in E2PROM, for protocols that exchange several kilobytes of information, like TLS.
But this architecture is working with standard Java cards, and it seems likely that
performances will follow the Moore’s law, and therefore that EAP smartcards will be
more and more a credible alternative to traditional software. It is the reason why we
propose the Trusted EAP Module, which will facilitate remote management and us-
age of network security services.

Appendix 1 – Details of EAP-TLS operations

EAP-TLS Message Operation Class Smartcard
 A B C D
First Message
Request/Start Transfer 510 601 321 151

Response/ClientHello Transfer 30 120 20
Second Message
Request/ServerHello, 1st fragment Transfer 210 491 491 130
 Transfer 140 451 470 110
 Transfer 131 450 471 120
 Transfer 140 450 461 110
 Transfer 130 461 480 130

Response/ACK Transfer 220 410 411 100
Third Message
Request/ServerHello, 2nd fragment Transfer 20 50 10

Response/ClientFinished
Certificate Checking RSA.pub.decrypt+ Other 2524 1312 931 390
VERIFY RSA.pub.encrypt+ Other 8192 6400 1012 541
SHA1+MD5 (VERIFY) DualHash(Verify) 1863 1121 1212 381
RSA(VERIFY) RSA.priv.encrypt+ Other 530 361 460 261
PRF(MasterSecret) PRF(MasterSecret) 9825 3294 3005 1162
PRF(KeyBlock) PRF(KeyBloc) 12628 4166 3825 1472

MD5+SHA1+PRF(ClientFinished) DualHash+PRF(Finished) 6099 2503 2524 901
MD5+SHA (ServerFinished) DualHash(ServerFinished) 2002 1222 1322 410
HMAC-MD5 HMAC-MD5.compute 1011 451 450 251
RC4-INIT RC4.init 5818 691 802 371
RC4-ENCRYPT RC4.encrypt 1813 821 450 310

 Transfer 140 480 431 161
 Transfer 141 470 421 90
 Transfer 140 471 420 90
 Transfer 130 310 321 61
Fourth Message
Request/ServerFinished
RC4-INIT +RC4-DECRYPT RC4.init + RC4.decrypt 7110 1292 1031 441
CHECK HMAC-MD5 HMAC-MD5.check 741 311 381 160
PRF(ServerFinished) PRF(Finished) 4267 1332 1342 521
PRF(PMK) PRF(PMK) 11416 3144 3685 1372

Response/ACK Transfer 290 140 160 80
 60 50 40
Fifth Message
GET PMK KEY Transfer 60 141 141 30

Total Time 78331 33747 27651 10377

Figure 8: Detailed EAP-TLS application performances for various smartcards.

References

1. RFC 2246, “The TLS Protocol Version 1.0”, January 1999.
2. RFC 2716, “PPP EAP TLS Authentication Protocol”, B. Aboba, D. Simon. October 1999.
3. Institute of Electrical and Electronics Engineers, “Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications”, IEEE Standard 802.11, 1999.
4. J. Castellà, J. Domingo-Ferrer, J. Herrera-Joancomartí, J. Planes, “A Performance Com-

parison of Java Cards for Micro payment Implementation”, Proceedings of the Fourth
Working Conference on Smart Card Research and Advanced Applications, CARDIS
2000, September 20-22, 2000, Bristol, UK.

5. Institute of Electrical and Electronics Engineers, “Local and Metropolitan Area Networks:
Port-Based Network Access Control”, IEEE Standard 802.1X, September 2001.

6. Institute of Electrical and Electronics Engineers, “IEEE Standard for Local and Metropoli-
tan Area Networks, part 16, Air Interface for Fixed Broadband Wireless Access Sys-
tems,”, IEEE Standard 802.16, 2001.

7. 3GPP TS 35.206 V5.0.0, “3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; 3G Security; Specification of the MILENAGE Algo-
rithm Set: An example algorithm set for the 3GPP authentication and key generation func-
tions f1, f1*, f2, f3, f4, f5 and f5*; Document 2: Algorithm Specification”, 3GPP, June
2002.

8. RFC 3559, “RADIUS (Remote Authentication Dial In User Service) Support For Extensi-
ble Authentication Protocol (EAP)”, B. Aboba, P. Calhoun, September 2003.

9. Institute of Electrical and Electronics Engineers, “Supplement to Standard for Telecom-
munications and Information Exchange Between Systems - LAN/MAN Specific Require-
ments - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification for Enhanced Security”, IEEE standard 802.11i, 2004.

10. RFC 3748, “Extensible Authentication Protocol, (EAP)”, B. Aboba, L. Blunk, J. Voll-
brecht, J. Carlson, H. Levkowetz, Ed. June 2004.

11. P. Urien, M. Badra, M. Dandjinou, “EAP-TLS Smartcards, from Dream to Reality”, 4th
Workshop on Applications and Services in Wireless Networks, ASWN’2004, Boston
University, Boston, Massachusetts, USA, August 8-11, 2004.

12. J.-M. Douin, P. Paradinas, C. Pradel, “Open Benchmark for Java Card Technology”, e-
Smart’2004, Sophia Antipolis, France, September 22-24, 2004.

13. Internet Draft, .“Extensible Authentication Protocol Method for 3rd Generation Authenti-
cation and Key Agreement (EAP-AKA)”, draft-arkko-pppext-eap-aka-15.txt, December
2004.

14. Institute of Electrical and Electronics Engineers, “Approved Draft IEEE Standard for
Local and metropolitan area networks part 16: Air Interface for Fixed and Mobile Broad-
band Wireless Access Systems Amendment for Physical and Medium Access Control
Layers for Combined Fixed and Mobile Operation in Licensed Bands”, IEEE 802.16e,
December 2005.

15. Internet Draft, “EAP-Support in Smartcard”, draft-eap-smartcard-09.txt, October 2005.
16. P. Urien, M. Dandjinou, “The OpenEapSmartcard project”, short paper, Applied Cryptog-

raphy and Network Security 2005, ANCS 2005, Columbia University, June 7-10, New
York, USA, 2005.

17. RFC 4072, “Diameter Extensible Authentication Protocol (EAP) Application”, P. Eronen,
T. Hiller, G. Zorn, August 2005.

18. V. Guyot, “Smartcard, a mobility vector”, Phd defense, September 30th 2005, University
of Paris 6, Paris, France.

19. P. Urien, M. Dandjinou, M. Badra, “Introducing micro-authentication servers in emerging
pervasive environments”, IADIS International Conference WWW/Internet 2005, Lisbon,
Portugal, October 19-22, 2005.

20. OpenEapSmartcard WEB site, http://www.enst.fr/~urien/openeapsmartcard
21. RFC 2131, “Dynamic Host Configuration Protocol, DHCP”, March 1997.
22. TCG, “TPM Main Part 1: Design Principles, Specification Version 1.2 Revision 85”,

February 2005.
23. 3GPP TS 11.14, “Digital cellular telecommunications system (Phase 2+); Specification of

the SIM Application Toolkit (SAT) for the Subscriber Identity Module - Mobile Equip-
ment (SIM-ME) interface”, 2003.

24. 3GPP TS 03.48, “Digital cellular telecommunications system (Phase 2+); Security mecha-
nisms for the SIM Application Toolkit; Stage 2”, 2001.

