
An Optimistic NBAC-based Fair Exchange
Method for Arbitrary Items

Masayuki Terada, Kensaku Mori, and Sadayuki Hongo

NTT DoCoMo, Inc.,
3–5 Hikari-no-oka, Yokosuka, Kanagawa, Japan

Abstract. Fair exchange protocols are important in realizing safe elec-
tronic commerce. In particular, optimistic fair exchange protocols, which
involve a trusted third party only when mutual communication between
exchanging parties fails, are the most promising development because
of their efficiency. Unfortunately, however, existing optimistic protocols
place restrictions on the items that can be exchanged, i.e., at least one
item must be a “strongly generatable” item such as a digital signature.
Without this requirement, only weak fairness that requires (expensive)
external dispute resolution processes (e.g. trials in court) after exchange
failure can be assured. This paper proposes a novel fair exchange method
that enables parties to fairly exchange arbitrary items in an optimistic
manner. This is achieved by realizing an optimistic non-blocking atomic
commitment (NBAC) protocol between two smartcards and adapting the
known result that fair exchange can be reduced to NBAC among trusted
processes.

1 Introduction

To enable consumers and merchants to securely participate in electronic com-
merce without fear of fraud, it is essential to guarantee transaction fairness.
When buying digital content such as a movie or music, for example, the content
data must be exchanged fairly with the payment data; it must be guaranteed
that both data transfers are performed or no valuable data is transferred. Such
an exchange of data is called a “fair exchange”.

Fair exchange is not easy to achieve. To guarantee fairness, several fair ex-
change protocols apply gradual data release and others involve a trusted third-
party (TTP)[1–3]. In particular, optimistic protocols[4–6] (often called off-line
TTP protocols), which involve a TTP in an exchange only when something goes
wrong, appear the most promising approach of their efficiency — they require
many fewer messages than gradual protocols while greatly reducing TTP over-
heads.

All existing optimistic protocols place strong restrictions on the data to be
exchanged[3]; optimistic protocols can fairly exchange items only when at least
one item is a strong generatable item, such as a digital signature (or an item
which essentially contains a digital signature, e.g. a payment) or both are elec-
tronic vouchers[7, 6]. The other exchanges, e.g. the mutual exchange of digital



documents, cannot be performed fairly with existing optimistic protocols, and
so another (more inefficient) sort of fair exchange protocols such as online TTP
protocols must be used for these exchanges. Even if the restriction is satisfied,
an exchange may be unfair if the wrong initiator (who starts the exchange) is
selected. These limitations of optimistic protocols force users to carefully use
different protocols according to the items and situations, and thus make the
practical use of fair exchange difficult and inconvenient.

This paper proposes a novel optimistic fair exchange method that fairly ex-
changes arbitrary items in an optimistic manner with no restriction on items
being exchanged. This is achieved by realizing a smartcard-based optimistic1

non-blocking atomic commitment (NBAC) protocol that solves the NBAC prob-
lem in an optimistic manner, along with the application of the known reduction
of fair exchange to NBAC among trusted processes[8]. Since neither the protocol
nor the reduction algorithm assumes that the exchanged items have any special
property, arbitrary items can be fairly exchanged by this method.

The rest of the paper is organized as follows. Section 2 introduces the defini-
tion of fair exchange and discusses the characteristics of existing fair exchange
protocols, mainly focusing upon the restrictions placed on items by existing op-
timistic protocols. Section 3 describes the NBAC definition and the reduction
algorithm from fair exchange to NBAC, and discusses the practicality of fair
exchange based on previous NBAC protocols. Section 4 details the proposed op-
timistic NBAC protocol. Section 5 analyzes the NBAC properties of the proposed
protocol and the feasibility (and the limitations) of the fair exchange method
based on this protocol.

2 Fair exchange

Assume that party A and B have items iA and iB, respectively, and A wants to
obtain iB from B while B wants iA. Each party has a description of the item to
be exchanged; e.g., A knows dB = desc(iB).

An exchange protocol that exchanges items iA and iB, between exchanging
parties A and B, respectively, is called a fair exchange protocol if it satisfies the
following properties when party A behaves correctly (and vice versa)[4]2.

Effectivity If B also behaves correctly3, and both A and B do not want to
abandon the exchange, then when the protocol completed, A has iB such
that dB = desc(iB).

1 By optimistic we mean that a TTP is involved in an exchange only for exchange res-
olution. Note that this definition differs from that used in the transaction processing
literature, e.g., optimistic transactions, where the resources involved are not locked
(to improve concurrency) and any inconsistency is fixed (compensated) later.

2 In [4], another property called “non-repudiability” is also listed, but we do not
discuss this requirement in this paper since it’s not a mandatory requirement for
fair exchange protocols (as noted in [4])

3 From A’s point of view. That is, failures in the communication channel between A
and B are subsumed in the notion of a misbehaving peer.



Termination A can be sure that the protocol will be completed at a certain
point in time. At completion, the state of the exchange as of that point is
either final or any changes to the state will not degrade the level of fairness
achieved by A so far.

Fairness When the protocol has completed, either A has iB such that dB =
desc(iB), or B has gained no additional information about iA.4

Fair exchange protocols can be classified into the following three categories:
gradual protocols, online TTP protocols, and optimistic protocols.[1–3]

In gradual protocols, each exchanging party gradually (i.e. in a “bit by bit”
manner) releases the item to be exchanged (or the “privilege” to obtain the
expected item). They can exchange items without involving any third-party,
however, there are drawbacks to practical use because the fairness achieved by
this approach is probabilistic and a lot of interactions are needed to achieve
fairness with adequate probability.

Online TTP protocols assure (deterministic) fairness by involving a TTP in
every exchange5. This approach does not require so many messages (usually less
than ten) and can assure fairness deterministically. However, involving a TTP
in every exchange incurs message congestion at the TTP when many exchanges
are concurrently performed, which degrades scalability and the availability of
systems implementing the protocol.

Optimistic protocols also utilize a TTP, but only when the mutual interaction
cannot be concluded because of a misbehaving partner or failure of the commu-
nication channel. This limited use of the TTP resolves the congestion problem
of the online TTP protocols while the number of the messages is comparable
to (mostly less than) that required by the online TTP protocols; an optimistic
protocol typically requires only four messages in errorless cases.[3, 6]

Existing optimistic protocols do, unfortunately, place restrictions on the
items to be exchanged and thus cannot fairly exchange arbitrary items; at least
one of the items (the item to be received by the initiator of a protocol, actually)
must be strongly generatable6[10, 3]. Strong generatability means that a TTP
can always generate the item (or its substitution) when the TTP is invoked to
conclude the protocol.

A digital signature is a strongly generatable item since a TTP can gener-
ate a substitutive signature that has the same effect as the original signature,
provided that the exchanging parties agree upon the substitution in advance
(namely “the replacement token” method[4]). Electronic vouchers (or electronic
rights)[7, 11] can also be assumed to be strongly generatable, but they require

4 This definition is often called strong fairness to distinguish from weak fairness which
is discussed later.

5 Protocols wherein the TTP mediates messages are often classified into another cat-
egory namely “inline TTP protocols”[1, 2].

6 An optimistic protocol that doesn’t require strong generatability but requires a prop-
erty called “strong revocability” has been proposed[9], but this property is also a
strong assumption and only limited items such as closed-loop electronic money are
supported.



an exclusive protocol[6] to be fairly exchanged mainly because of the need to
prevent duplication of vouchers.

Strong generatability, unfortunately, is not possessed by the many other
items, such as digital content and digital documents, exchanged in daily life.
Existing optimistic protocols can guarantee fairness when applied to implement
contract signing, the mutually exchange of two digital signatures, certified mail,
the exchange of a document and its (signed) receipt, and voucher trading, the
mutual exchange of two electronic vouchers, however, they guarantee only the
weaker notion of fairness called weak fairness7 in other exchanges such as mutual
exchange of messages.[3]

Weak fairness requires an external dispute resolution process (e.g. trial in
court) if one party wants to recover from some disadvantage. Considering the
effort and cost imposed by such a process, weak fairness should be avoided as
much as possible.

3 Reducing fair exchange to NBAC

Apart from developing dedicated protocols to solve the fair exchange problem,
several researchers are focusing on the similarity between the notion of fair ex-
change and the problems in distributed computing, e.g., consensus and (non-
blocking) atomic commitment, and have analyzed the relationship among these
problems[8, 12]. In particular, [8] showed that fair exchange is reducible to NBAC
among trusted processes; i.e., the fair exchange problem can be solved if the
NBAC problem among processes on smartcards is solved. Since there is no spe-
cial assumption (such as item generatability) on the items exchanged, a fair
exchange achieved by this approach can exchange arbitrary items.

This section introduces the definition of NBAC and the reduction algorithm
from fair exchange to NBAC proposed in [8], as well as discussing the practicality
of existing NBAC protocols when applied to fair exchange.

3.1 Definition of NBAC

Assume a set of independent processes, each of which has an initial proposed
value, yes or no, and try to reach a unanimous decision, commit or abort. A
protocol between these processes solves NBAC if it satisfies the following prop-
erties8.

Termination Every correct process eventually reaches a decision.
Agreement No two processes decide differently.

7 Weak fairness is defined as “if (strong) fairness is not satisfied, then A can prove to an
arbiter (a TTP) that B has received (or can still receive) iA such that desc(iA) = dA,
without any further intervention from A.”[4]

8 C-Validity and A-Validity are often called “non-triviality” and “uniform-validity”,
respectively.



Commit-Validity (C-Validity) If all processes propose yes and there is no
failure, then the decision value must be commit.

Abort-Validity (A-Validity) If at least one process proposes no, then the
decision value must be abort.

3.2 Reducing fair exchange to NBAC using smartcards

The following briefly describes how the fair exchange problem can be solved by
NBAC (with help of smartcards).

Assume a system that consists of a set of processes interconnected by a com-
munication network with bidirectional synchronous9 channels. The processes are
divided into two classes, untrusted processes and trusted processes. The trusted
processes are assumed to behave correctly (the untrusted processes are not).
Each untrusted process is associated with a trusted process, and vice versa. The
paired untrusted and trusted processes are adjacent; they are directly connected
by a communication channel. Any two untrusted processes are adjacent, while
no two trusted processes can be adjacent. This system model can be considered
to represent the configuration in which hosts (e.g. PCs and mobile phones) are
connected to a network and smartcards are connected to hosts (e.g. a smartcard
connected to a PC by a card R/W and a SIM card on a mobile phone).

In this system setting, NBAC among the trusted processes solves fair ex-
change among the untrusted processes by the algorithm described below:

FairExchange(item i, description d) {
〈send i to exchange partners over secure channel〉
timed wait for 〈expected item ie from exchange partners〉
〈check d on ie〉

if (check succeeds and no timeout)
then vote := yes else vote := no endif

result := NBAC(vote)
if (result = commit)

then return ie else return 〈abort〉 endif
}

The proof that the above algorithm realizes fair exchange is described in
[8]10.

3.3 Problems in NBAC-based approach

Although fair exchange can be (rather easily) resolved by applying NBAC as
described above, the NBAC problem itself is known as a hard problem[13]. Ex-
isting NBAC protocols mostly focus much on multi-party settings, and so fail to
9 While synchronity of channels is assumed in this section as to [8], we will relax this

assumption in Sect. 4.
10 To be accurate, [8] uses a different approach to defining the fair exchange problem

(mostly same as the definition in [3]) from the definition described in Sect. 2 (follows
the definition in [4], which is more rigorous), but they are basically equivalent in the
two-party setting.



match the efficiency of the optimistic protocols introduced in Sect. 2 when used
to solve the fair exchange problem.

The well-known two-phase commit (2PC) algorithm that solves the atomic
commitment problem (equivalent to NBAC without Termination) cannot solve
NBAC, since a crash of the coordinator process that gathers votes and distributes
a decision may block termination. 2PC can avoid blocking (thus assuring ter-
mination) given a resilient coordinator and synchronous channels between the
coordinator and other processes; these assumptions might not be infeasible since
most TTP-based fair exchange protocols also make similar assumptions (i.e.,
the TTP are assumed to be eventually reachable from every exchanging party),
however, since 2PC requires the coordinator to interact with all processes in
every protocol run, the congestion problem is raised as in the online TTP fair
exchange protocols.

The three-phase commit (3PC) algorithm, which introduces another phase to
elect a coordinator (pre-commit phase), is known to solve NBAC in synchronous
systems without assuming a reliable process[14]. However, 3PC is also known
as a complicated algorithm that is rarely implemented[15] and introducing an
additional phase to 2PC inevitably makes 3PC less efficient than 2PC.

The Monte-Carlo NBAC algorithm[8] solves a weaker variant of NBAC,
wherein the Agreement property is satisfied with some probability p (0 < p < 1).
This algorithm doesn’t involve a coordinator and thus avoids the congestion
problem, but probabilistic Agreement implies that achievable fairness is also
probabilistic; a large number of interactions are needed to achieve fairness with
adequate probability, alike the gradual fair exchange protocols.

4 Optimistic NBAC protocol

As mentioned in Sect. 3, fair exchange based on NBAC among trusted processes
doesn’t require any special assumptions on the exchanged items. If NBAC can
be performed in an optimistic manner, it would be possible to realize optimistic
fair exchange that can exchange arbitrary items. This is the key point of our
approach.

In this section, we propose an optimistic NBAC protocol between two smart-
cards. Similar to optimistic fair exchange protocols, this protocol runs in an
optimistic manner, i.e., a TTP is involved only when something goes wrong,
but solves NBAC rather than fair exchange. This protocol requires only three
messages to be passed between the participating smartcards to solve NBAC in
errorless cases; this is comparable to existing optimistic protocols, most of which
require four messages.

4.1 System model

The system model assumed by this protocol is similar to the system described
in Sect. 3.2, except for the following:

– the number of parties (the number of associated pairs) is two,



– a TTP process, which is a reliable trusted process adjacent to each untrusted
process is added to the system, and

– untrusted processes are connected by an asynchronous channel instead of a
synchronous channel.

The first and second differences are introduced as we consider optimistic
exchanges between two parties here. The last difference relaxes the network
assumption; because communication channels among hosts pass across a widely-
distributed network such as the Internet and mobile phone networks, it is difficult
to assume that all communication is synchronous11.

The channels between each associated pair, i.e., between an untrusted process
and a trusted process, stay synchronous as well as those between the TTP and
untrusted hosts.

The feasibility of these system assumptions are discussed in Sect. 5.2.

4.2 Protocol

Assume trusted processes A and B (on smartcards), which communicate with
each other through associated untrusted processes. Both A and B have their own
signing key, kept secret from any other party, and the corresponding public key
certificate. voteA is the input vote value of A and voteB is that of B. resultA
and resultB are similar. H() is a collision-resistant one-way hash function (such
as SHA1), SigX(m) is m and a digital signature by X’s signing key, and CertX
is X’s public key certificate corresponding to X’s signing key.

The mutual communication part of this protocol (namely the main proto-
col) is performed as follows. The abort subprotocol and the resolve subprotocol
invoked from this protocol are described later.

1. A generates random number r and calculates s := H(r).
2. A → B: m1 := {SigA(s, voteA), CertA}. If voteA = no, A terminates the

protocol with the output resultA := abort after sending m1.
3. B verifies the signature of m1. If this fails, B waits m1 again. If the verification

succeeds and voteA = yes, B proceeds to the next step. If voteA = no or
the reception of (correct) m1 timeouts, B terminates the protocol with the
output resultB := abort.

4. B → A: m2 := {SigB(s, voteB), CertB}.
5. A verifies the signature of m2. If this fails, A waits m2 again. If the verifica-

tion succeeds and voteB = yes, A proceeds to the next step. If voteB = no,
A terminates the protocol with the output resultA := abort. When the re-
ception of m2 timeouts, A abandons this protocol (i.e. ignores m2 even if
received later) and invokes the abort subprotocol.

11 This relaxation does not affect the reducibility from fair exchange to NBAC of the
algorithm described in Sect. 3.2, since (besides the NBAC execution) this algorithm
use the channels among untrusted processes only to receive item ie and timing out
the reception of ie.



6. A → B: m3 := r. After sending m3, A terminates the protocol with the
output resultA := commit.

7. Using s in m1 and r in m3, B verifies if s = H(r). If this fails, B waits
m3 again. If the verification succeeds, B terminates the protocol with the
output resultB := commit. When the reception of m3 timeouts, B invokes
the resolve subprotocol.

Since the abort subprotocol and the resolve subprotocol are performed in the
almost same way, we describe them together. In the following description of the
subprotocol(s), P is either A or B that invoked the protocol and flag is a flag that
indicates which protocol is being performed; i.e., let P := A and flag := abort
when performing the abort subprotocol, while P := B and flag := commit with
the resolve subprotocol.

T is the TTP, which has its own signing key and corresponding certificate
CertT. T manages two sets Sabort and Scommit, whose initial states are Sabort =
Scommit = {φ}.

The abort and resolve subprotocols are performed as follows.

1. P → T: mt1 := {SigP (flag, s), CertP }.
2. T receives mt1 and executes the followings:

(a) verifies the signature of mt1, and waits mt1 again if the verification failed,
and

(b) arbitrates whether this protocol should be aborted or committed:
– if s ∈ Sabort, then let resultT := abort,
– if s ∈ Scommit, then let resultT := commit, or
– if neither, then let Sflag := Sflag∪s (i.e. add s to Sabort when aborting

(or Scommit when resolving)) and resultT := flag.
3. T → P : mt2 := {SigT(resultT, s), CertT}.
4. P verifies the signature of mt2. If this fails, then P waits mt2 again. If it

succeeds, P terminates the protocol with the output resultP := resultT.

5 Discussions

5.1 Analysis of NBAC properties

We discuss below how the protocol proposed in Sect. 4.2 satisfies the NBAC
properties in Sect. 3.1. In the following analysis, we assume r has enough length
and randomness that the possibility of r being predicted before A reveals m3 is
negligible.

Termination property When there is no failure in the communication chan-
nels and either party is honest (the associated untrusted process that forward the
messages to the other behaves correctly), both A and B can obviously terminate
the protocol with a decision in the main protocol12.
12 Since the TTP is not involved in the main protocol, this also confirms that this

protocol is an optimistic protocol.



We then discuss the situation in which either process, A or B, can terminate
if the execution of the protocol is interupted by failures in the communication
channels or a misbehaving partner.

The execution of process A may be interrupted only by the non-arrival of
correct m2. In this case, A timeouts and can determine resultA by invoking the
abort subprotocol.

The execution of B may be interrupted by the non-arrival of correct m1 or
m3. When m1 doesn’t arrive, B can terminate the protocol with resultB := abort
in step 3 of the main protocol. In case m3 doesn’t arrive, B timeouts and can
determine resultB by invoking the resolve subprotocol.

Hence, either A or B can terminate the protocol and issue result, and the
Termination property is satisfied.

Agreement property First, we show that (resultA = commit) ⇒ (resultB =
commit).

Process A may terminate the protocol with resultA = commit iff it suc-
cessfully executes step 6 (and terminates) in the main protocol or the TTP
arbitrates that the protocol should conclude by commit (i.e. sends mt2 where
resultT = commit to A) in the abort subprotocol.

When assuming that A successfully executed step 6 in the main protocol, B
must terminate the protocol with resultB = commit by receiving m3, or invoke
the resolve subprotocol by timeout of m3, in step 7 of the main protocol. The
agreement is obviously reached in the former case. In the latter case, since A is
assumed to have successfully executed step 6 in the main protocol, A must not
have invoked the abort subprotocol; the resolve subprotocol inevitably concludes
with resultB = commit.

If A terminates the protocol by receiving resultT = commit in the abort
subprotocol, T must have received mt1 from B in the resolve subprotocol before
receiving it from A in the abort subprotocol. In this case, the resolve subprotocol
must have concluded (or will conclude) with resultB = commit.

Next, we show the converse, (resultB = commit) ⇒ (resultA = commit).
Process B may terminate the protocol with resultB = commit iff it success-

fully received m3 in step 7 of the main protocol, or it received resultT = commit
in the resolve subprotocol. In the former case, A must have successfully executed
step 6 in the main protocol and terminated with resultA = commit. In the latter
case, mt1 of the abort subprotocol by A must not have arrived at T yet; A has
terminated in step 6 in the main protocol, or mt1 from A will arrive at T later.
In either case, A terminates with resultA = commit.

As a corollary of the above results,

(resultA = commit) ⇔ (resultB = commit). (1)

Since each process decides either commit or abort, ¬(resultX = commit) ⇒
(resultX = abort), and therefore,

(resultA = abort) ⇔ (resultB = abort). (2)



Hence, A and B do not decide differently, and the Agreement property is
satisfied.

C-Validity property If (voteA = yes) ∩ (voteB = yes) and there is no failure,
then process A terminates with resultA = commit in step 6 in the main protocol
and B terminates with resultB = commit in step 7.

The C-Validity property is satisfied therefore.

A-Validity property If voteA = no, then process A terminates with resultA :=
abort in step 2 in the main protocol. Similarly, B terminates with resultB := abort
in step 3 if voteB = no. In either case, resultA = resultB = abort according to
Eq. (2).

The A-Validity property is satisfied.

5.2 Feasibility

In the following, we show that this exchange method based on the optimistic
NBAC protocol proposed in Sect. 4.2 and the reduction algorithm introduced in
Sect. 3.2 can be feasibly implemented under the system assumptions described
in Sect. 4.1.

Implementation of the processes Besides communication channels, the sys-
tem consists of associated pairs of an untrusted process and a trusted process,
and a trusted third-party (TTP) process. Each exchange party is assumed to be
represented by an associated pair.

An untrusted process is easily implemented on a host connected to a network
(e.g. a personal computer and a mobile phone). It is not assumed to be reliable
and there are no difficulties to implementing it; what it has to do are to input the
item to be sent and a description of the item to be received into the associated
trusted process, and to forward the messages among trusted processes.

A trusted process (associated with an untrusted process) is required to be
implemented on a tamper-resistant user device such as a smartcard connected
to a host through a card reader/writer (card R/W) or embedded in a host (like
a SIM card in a mobile phone). If not, an exchange becomes completely un-
fair because a party can obtain the received item regardless of the result of
the NBAC run in the reduction algorithm; tamper-resistance is an essential re-
quirement in applying this method. Assuming such a trusted device might be
not so impractical nowadays considering the rapid penetration of smartcards;
e.g., most GSM phones and 3G mobile phones have (U)SIM cards. However, re-
garding implementation on a smartcard, the performance bottlenecks associated
with smartcards should be carefully considered. Performance estimation of the
smartcard implementation is discussed later.

The TTP process will be implemented as a server connected to a network.
This server should be managed by a trusted third-party. This server is involved



in an exchange when either of the exchanging parties invokes an abort or resolve
subprotocol. Since the protocol is optimistic, these invocations are performed
only when something goes wrong in mutual interactions between exchanging
parties; when many exchanges are conducted concurrently, the TTP server is
involved in a part of them. Under the assumption that failures that need arbi-
tration by the TTP are rare, this system will avoid congestion of messages on
the TTP and be scalable, like existing optimistic fair exchange protocols.

Implementation of the channels As described in Sect. 4.1, we assume a
system where the channels between untrusted processes are asynchronous and
the other channels (the channels between an associated pair and those between
the TTP and untrusted processes) are synchronous. When considering to apply
the system to exchanges in electronic commerce, the system should be able to be
implemented in a widely-distributed and unreliable network such as the Internet
and mobile phone networks.

Asynchronous channels between untrusted processes obviously can be imple-
mented in such networks. Since both processes in an associated pair are managed
by an exchanging party, the synchronous communication channel between them
is mostly local and should be easily implemented; although a user can block
interactions between them, e.g., by removing the smartcard from the card R/W,
we can treat this as misbehavior of the untrusted process (on the host).

The channels between the TTP process and each untrusted process might
not be local; hosts are most likely to communicate with the TTP server through
a network. However, different from communicating with another host, which
may be unsure where it is and who manages it, the TTP can be expected to
be connected to the network continuously. Although the communication channel
can be (permanently) lost if the host is disconnected from the network by its user,
we can also treat this as misbehavior of an untrusted process. This assumption
is, accordingly, also feasible.

Performance The possible bottlenecks of a smartcard implementation are the
I/O performance, the processing speed (especially cryptographic calculation)
and the number of write operations to non-volatile memory (write operations
to EEPROM are much slower than those to RAM). Since no persistent store of
data into a smartcard is needed in the proposed exchange, we focus on the I/O
interactions and the cryptographic processes.

The proposed NBAC protocol can terminate with unanimous decisions by
exchanging three messages between trusted processes in errorless cases (i.e. in
the main protocol). In this protocol, the required cryptographic calculations in
each trusted process, i.e. each smartcard, are a pair of signature generation and
verification (using the corresponding certificate) and a single hash calculation.
When something goes wrong in the mutual interaction, an additional round-
trip message exchange, which involves another pair of signature generation and
verification, with a TTP may be required. This load does not exceed that of



existing optimistic protocols, so this protocol can be considered to be practical
for implementation on current smartcards.

An optimistic fair exchange protocol for electronic vouchers, which is slightly
more complex than the proposed protocol (requires four messages and almost
the same cryptographic calculations), performs an exchange in less than two
seconds when implemented on mid-range smartcards.[16] This implies that the
proposed NBAC protocol can be performed in the same or less time.

On the other hand, the reduction algorithm seems to need some performance
improvement for applications that exchange huge data. This algorithm requires
trusted processes to send and receive the whole items to be exchanged. However,
since the I/O performance of the current smartcards is not so high (approxi-
mately 10kbps ∼ 400kbps), it might be infeasible to exchange a large amount of
data, such as digital content. Some measure, e.g., exchanging encrypted items
in advance and exchanging the description keys fairly, could be introduced to
exchange large items, but it may make the item verification (i.e. checking the
description of the expected item on the received item) difficult. This could be
an open problem.

5.3 Limitation

Although the proposed NBAC protocol and fair exchange method is more ef-
ficient than existing NBAC protocols and fair exchange protocols that can ex-
change arbitrary items (i.e., gradual and online TTP protocols), respectively, it
cannot replace either protocols in general; it lacks applicability to multi-party
settings and relies upon trusted devices and a TTP.

Since most exchanges are conducted by two parties, e.g., trades in commerce,
the support for two-party setting should be attractive enough to stimulate the
frequency of fair exchange. However, distributed transactions often need consis-
tency in three or more (independently managed) resources. This protocol cannot
be applied to guarantee atomic commit in such transactions. Secure multi-party
computation, which often requires fairness, is another example. These applica-
tions will need another protocol to assure consistency or fairness.

Relying upon trusted devices and a TTP should not spoil the feasibility as
discussed in Sect. 5.2, however, there may be environments where assuming them
is difficult. Our method cannot be adopted in such environments.

5.4 Comparison to existing smartcard-based exchange protocols

Several protocols have been proposed for fair exchange via smartcards.
One of them is a reduction from fair exchange to a weaker variant of NBAC

(Monte-Carlo NBAC)[8], mentioned in Sect. 3. As described before, this has sim-
ilar characteristic to gradual exchange protocols and shares the same problems
(probabilistic fairness and high interaction costs).

A similar approach based on (a variant of) the consensus problem (named
Biased Consensus) among trusted processes is introduced in [12]. This achieves



deterministic fair exchange if a majority of the untrusted processes are honest
(behave correctly), but fairness becomes probabilistic if half or more processes
are dishonest; in two-party exchanges, which will be the most common setting,
a misbehaved partner is enough to lose the honest majority and thus only prob-
abilistic fairness can be assured.

In [17, 18], several protocols that use a smartcard to achieve optimistic fair
exchange between two parties are introduced. These protocols exchange items
between a party called vendor and another party customer, who uses a smartcard
(the vendor does not use a smartcard). One of the protocols, called the basic
protocol, can exchange arbitrary items13; it does not assume generatability or
revocability on either item. However, these protocols have a drawback in that
the Termination property (of fair exchange) is not assured to the vendor; the
vendor is not assured to be able to know if its item is sold or not.

Another smartcard-based optimistic fair exchange protocol is proposed in [6].
This protocol fairly exchanges electronic vouchers stored in smartcards as well as
preventing illegal acts on the vouchers (forgery, alteration, and duplication). This
protocol can be applied only to the exchange of particular items, i.e., vouchers
stored in smartcards, as it is14.

6 Conclusion

In this paper, we argued that existing optimistic protocols place an excessive
restriction on exchanged items, i.e., at least one of the item has to be a strongly
generatable item such as a digital signature. To circumvent this restriction, we fo-
cused on NBAC-based fair exchange using smartcards, which is based on NBAC
between trusted processes, and proposed a novel NBAC protocol that can be
performed between smartcards in an optimistic manner. The NBAC properties
and feasibility of the protocol were also discussed; the proposed protocol satis-
fies all of the NBAC requirements and can be efficiently implemented on current
smartcards.

NBAC does not only realize fair exchange but is also useful for diverse trans-
actions in electronic commerce. Considering the popularity of mobile phones
equipped with smartcards and the rapid improvement of smartcard process
technologies, this protocol may broadly contribute to realize safe and secure
electronic commerce.
13 The other protocols require one of the items (from the customer to the vendor) to

be strongly revocable.
14 However, interestingly, its use of a different notion of fairness to prevent duplication

of vouchers assures that if one party successfully terminates (i.e. commit) an ex-
change, then the other party never aborts the exchange; this implies the Agreement
property of NBAC, while the (original) fairness property doesn’t (a misbehaved party
can abort if the other party successfully commits). Actually, NBAC is reducible to
fair voucher exchange (cf. fair exchange is reducible to NBAC, but not vice versa)
and the proposed NBAC protocol can also be considered as a generalization of the
voucher exchange protocol.



References

1. Zhou, J., ed.: Non-repudiation in electronic commerce. Artech House, Norwood,
MA, USA (2001)

2. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation
protocols. Computer Communications 25 (2002) 1606–1621

3. Pagnia, H., Vogt, H., C.Gärtner, F.: Fair exchange. The Computer Journal 46
(2003) 55–75

4. Asokan, N.: Fairness in Electronic Commerce. PhD thesis, University of Waterloo
(1998)

5. Schunter, M.: Optimistic Fair Exchange. PhD thesis, Universität des Saarlandes
(2000)

6. Terada, M., Iguchi, M., Hanadate, M., Fujimura, K.: An optimistic fair exchange
protocol for trading electronic rights. In: Proc. 6th Working Conference on Smart
Card Research and Advanced Applications (CARDIS’04), IFIP (2004) 255–270

7. Fujimura, K., Eastlake, D.: RFC 3506: Requirements and Design for Voucher
Trading System (VTS). (2003)

8. Avoine, G., Gärtner, F., Guerraoui, R., Kursawe, K., Vaudenay, S., Vukolic, M.:
Reducing fair exchange to atomic commit. Technical Report 200411, Swiss Federal
Institute of Technology (EPFL), School of Computer and Communication Sciences,
Lausanne, Switzerland (2004)

9. Vogt, H.: Asynchronous optimistic fair exchange based on revocable items. In:
Proc. 7th International Financial Cryptography Conference, IFCA (2003) 208–222

10. Vogt, H., Pagnia, H., Gärtner, F.C.: Modular fair exchange protocols for electronic
commerce. In: Proc. 15th Annual Computer Security Applications Conference.
(1999) 3–11

11. Terada, M., Kuno, H., Hanadate, M., Fujimura, K.: Copy prevention scheme for
rights trading infrastructure. In: Proc. 4th Working Conference on Smart Card
Research and Advanced Applications (CARDIS’00), IFIP (2000) 51–70

12. Avoine, G., Gärtner, F., Guerraoui, R., Vukolic, M.: Gracefully degrading fair
exchange with security modules. In: Proc. 5th European Dependable Computing
Conference (EDCC). (2005) 55–71

13. Guerraoui, R.: Revisiting the relationship between non-blocking atomic commit-
ment and consensus. In: Proc. 9th International Workshop on Distributed Algo-
rithms (WDAG95). (1995) 87–100

14. Skeen, D.: Nonblocking commit protocols. In: Proc. 1981 ACM SIGMOD Inter-
national Conference on Management of Data. (1981) 133–142

15. Gray, J., Lamport, L.: Consensus on transaction commit. Technical Report MSR-
TR-2003-96, Microsoft Research (2004)

16. Terada, M., Mori, K., Ishii, K., Hongo, S., Usaka, T., Koshizuka, N., Sakamura,
K.: TENeT: A framework for distributed smartcards. In: Proc. 2nd International
Conference on Security in Pervasive computing (SPC2005). Volume 3450 of LNCS.,
Springer-Verlag (2005) 3–17

17. Vogt, H., Pagnia, H., Gärtner, F.C.: Using smart cards for fair exchange. In: Proc.
2nd International Workshop on Electronic Commerce (WELCOM 2001). (2001)
101–113

18. Vogt, H., Gärtner, F.C., Pagnia, H.: Supporting fair exchange in mobile environ-
ments. ACM/Kluwer Journal on Mobile Network and Applications (MONET) 8
(2003) 127–136


