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Abstract. This paper describes a refinement-based approach to show
that a native Java Card API function fulfills its specification. We refine a
native function from its informal specification (by Sun) through several
intermediate models into a low-level model which is very close to its C
implementations. We formally prove the correctness of the refinement
steps between two adjacent levels. The low-level model is sufficiently
detailed such that its correspondence to the C implementation can be
informally checked. This work provides a framework to enforce the se-
curity of the native code by formal analysis and can be generalized to
verify a complete implementation of the Java Card platform.

1 Introduction

Native API methods are usually written in C and are considered as part of the
Java Card platform. On the contrary, non-native methods are written in Java
Card and can be seen as applications running on the Java Card platform. Formal
analysis of Java Card API methods has been done in several previous works
(i.e., [1–3]) using languages and tools dedicated to Java such as JML [4] (and
its associated tools) and JACK [5]. On the contrary, in our knowledge, native
methods have never been addressed. The main obstacle is related to their C
implementation which is yet to be well handled by formal analysis.

Refinement is one of the cornerstones of formal approaches for software engi-
neering: the process of developing a more detailed design or implementation from
an abstract specification through a sequence of mathematically-based steps that
maintain correctness w.r.t. the original specification. In the formal tools like B-
Method or Esterel, the informal specification can be modelled, refined and then
automatically translated into C code. However, in both of these systems, the
generated code is not sufficiently efficient (in terms of performance and resource
consuming) to fit into smart cards. Some attempts (e.g., [6]) have been done to
optimize the generated code but these optimizations are usually complex and
may jeopardize the rigour provided by formal tools. Furthermore, in the indus-
try, we often need to directly deal with an already developed product rather
than starting from its informal specification.

In this work, we aim at certifying an existing implementation of the native
methods that are already embedded on smart cards. To this end, we build a



low-level model of the JCVM (Java Card Virtual Machine) which is sufficiently
close to its C implementation such that the correspondence between them can
be informally checked. We also build two intermediate models in order to refine
the informal specification of the native methods to the low-level model. Both of
the models are built using the Coq proof assistant [7] which allows us to formally
prove the correctness of each refinement step.

The rest of this paper is organized as follows. Section 2 describes several re-
fining models of the native API methods. In Section 3, we provide their low-level
model basing on a concrete JCVM implementation. Section 4 presents the cor-
rectness of refinement steps and its proof. Section 5 shows the relation between
the low-level model and the concrete implementation. We discuss the related
work in Section 6 and give some concluding remarks in Section 7.

2 Refining Informal Specification

The model of a native method must be built upon a model of the whole JCVM.
In this paper, the JCVM is always modelled as a state machine. A state is a
snapshot of all components of the JCVM: installed CAP files, heap, frame stack,
static fields image, JCRE elements, etc. A primitive operation is a basic access
service to one of these component (e.g., popping and pushing a frame onto the
frame stack, getting and setting an object in the heap). A primitive operation
takes a state and its parameters and yields a new state and (possibly) a value.
Any JCVM function (e.g., a bytecode or a native function) can be seen as a
sequence of primitive operations. The execution of a JCVM function transforms
an (initial) state into a (final) state and (possibly) returns a value. If an exception
is raised during this execution, then the returned value is the address of this
exception which allows the JCVM to lookup for the exception handler.

Model State Data Primitive Implementation Specification of
Machine structures operations dependency ? native methods

FSP FIVM abstract Coq relations no expected input and output
HLD FIVM abstract Coq functions no abstract algorithm
LLD CVM refined Coq functions yes refined algorithm

Fig. 1. Resume of intermediate models

The informal specification of a native method is refined by the following
intermediate models (see a resume in Figure 1):

FSP is the Functional SPecification of the native function and is built upon
the FIVM (Formal Internal Virtual Machine) state machine. In this model,
a native function is specified by its expected input and output which are
respectively defined by a pre-condition and a post-condition following Hoare



logic [8]. These input and output are described in the informal specifica-
tion and hence, the FSP model is completely independent of any concrete
implementation.

HLD is the High-Level Description of the native function which is also built
upon the FIVM state machine. However, in this model, the native function
is specified by its algorithm i.e., a function taking its input and returning
its output. This function is written by a sequence of primitive operations.
Because the data structures and the primitive operations are kept abstract in
FIVM, the HLD model is also independent of any concrete implementation.

LLD is the Low-Level Description of the native function built upon the CVM
(Concrete Virtual Machine) state machine. Like the HLD model, the LLD
model of a native function specifies its algorithm as a sequence of primitive
operations. However, all CVM data structures and primitive operations are
fully defined basing on a concrete JCVM implementation (by Axalto). There-
fore, the LLD model is also strongly related to this concrete implementation.

2.1 Functional Specification Model

FIVM states. In FIVM, the card memory is seen as a set of memory cells.
Each cell is associated to an address which will be used to access to this cell. The
addr null address represents to the null pointer. A FIVM state (fivm state)
is a snapshot of the card memory and is composed of the following components:

1. Installed packages stores the list of already installed packages (CAP files).
2. Heap stores the heap elements which are either an object or an array. An

object is represented by a header structure as follows:
Record fivm object header : Set := {

fivm object status : object context ;
fivm object transient mode : transience;
fivm object remote mode : bool ;
fivm object class : address

}.
This structure contains the security context of the applet that owns the
object, a flag indicating its memory mode (persistent, CLEAR ON RESET or
CLEAR ON DESELECT transient), a boolean flag indicating its remote mode,
and the address of its class info structure (which defines its class) in the
installed packages. Similarly, an array is represented by its header structure
which contains the type of its elements, its length, its security context and
its memory mode.

3. Frame stack stores the stack of frames and is the core data structure needed
for method interpretation [9]. In FIVM, the execution of a method is done
inside a frame which is defined as follows:
Record fivm frame info : Set := {

ifrm pc : address;
ifrm context : frame context ;
ifrm max locals : nat ;



ifrm max stack : nat }.
where ifrm pc is the program counter and points to the next bytecode to be
executed; ifrm context is the currently active context in which the method
is being executed; ifrm max locals is the number of local variables of the
method including its parameters; ifrm max stack is the number of FIVM
words allocated to the operand stack where the intermediate results are
pushed in and popped out during the execution of the method.

4. Static fields image stores the static fields of the installed packages.
5. JCRE stores the information used by the JCRE (Java Card Runtime Envi-

ronment).

Primitive operations. The FSP primitive operations are defined as Coq pred-
icates i.e., relations between the input and the output of the operations in order
to ease the modelling of the pre- and post-conditions. The FSP primitive opera-
tions are abstract i.e., only their signature is given as Coq parameters. We briefly
draw the primitive operations on different FIVM components in the following:

1. Installed packages: FIVM provides primitive operations to check if a given
package has been correctly installed on the card, and to access to all com-
ponents of the installed packages.

2. Heap: FIVM provides primitive operations to access to all heap elements
i.e., object and array headers, object instance fields and array elements. For
example, the access to an object header pointed by an address is done via
the predicate heap object header:
Parameter heap object header : fivm state → address → fivm object header
→ Prop.

3. Frame stack elements: FIVM provides primitive operations to pop the top
frame, and to push a new frame onto the frame stack.

4. Static fields: FIVM provides read and write services for static fields.
5. JCRE: FIVM provides primitive operations to access to all JCRE informa-

tion. For example, the currently active applet is accessed by fivm selected
applet:

Parameter fivm selected applet : fivm state → applet ident → Prop.

Firewall control. The firewall mechanism (Chapter 6 of [10]) ensures that the
access to a JCVM element (e.g., objects, arrays, static fields) is allowed if and only
if the currently active context (i.e., the context of the currently active applet)
is the security context of the element. Exceptionally, the JCRE has a global
privileged context and can access to all JCVM elements. All firewall conditions
can be modelled using the primitive operations described above.

Native methods. The pre-condition defines the constraints on the input which
is composed of the initial FIVM state and the list of parameters encoded as FIVM
words (iword). The post-condition defines the constraints on the output which
is composed of the final FIVM state and a (possibly) returned value encoded as a



FIVM word. This optional returned value is encoded in Coq by the type (option
iword) which covers two cases: (Some v) means that a value v of type iword is
returned and (None iword) means that no value is returned (void return).

Example 1. This example describes the model of the native method export of
the class javacard.framework.service.CardRemoteObject. This method al-
lows an on-card (remote) object to be (remotely) accessed by the card reader.
The method export has only one parameter which is the address of the object
to be exported. This constraint is modelled by the following pre-condition:

Definition export pre (ctxt :frame context)(args : list iword)
: Prop := ∃ theObj :address, args = (address2iword theObj )::nil.

where address2iword transforms the parameter theObj (which is an address)
into a FIVM word. The output of export depends on its parameter, on the
initial FIVM state (fin) and on the firewall condition1:

– if the parameter points to an allocated object in the heap2 and the firewall
condition is satisfied, then the remote mode of the object is set to true
and export returns void. By changing the remote mode of the object, a new
machine state (fout) is created from fin.

– else, export throws a security exception and the FIVM state is not modified.

Definition export post (args: list iword)
(fin fout : fivm state) (result : option iword): Prop :=
∃ theObj : address, args = (address2iword theObj )::nil ∧
∃ hdr : fivm object header, heap object header fin theObj hdr ∧
∃ selapp: applet ident, fivm selected applet fin selapp ∧

IF (obj jcre or same owner (selected applet context selapp)
(fivm object status hdr))

THEN
let newhdr := Fivm Object Header obj status

(fivm object transient mode hdr) true
(fivm object class hdr)

in (heap object header fout theObj newhdr) ∧ result=(None iword)
ELSE fin=fout ∧ result=(Some (address2iword SecurityException)).

where the predicate (obj jcre or same owner . . . ) checks if the security context
of the currently active applet (selapp) is either the (global) JCRE context or
the security context of the object (to be exported) whose the header structure
is hdr.

2.2 High-Level Model

The HLD model is also built upon the FIVM state machine. The JCVM functions
are specified in the HLD model by their algorithm i.e., by a function taking their
1 For export, the currently active context must be either the JCRE context or the

security context of the object to be exported (cf. Section 6.1.4 of [10]).
2 Actually, this condition is ensured by the Java compiler and if it does not hold, then

there is an inconsistency in the card memory.



input and returning their output. In this context, the HLD primitive operations
must also be specified by Coq (abstract) functions instead of Coq predicates as
in the FSP model.

Primitive operations. In the FSP model, the primitive operations are ex-
pressed as partial functions and defined as relations. A function f having param-
eters of type A1, . . . , An and yielding a value of type B is generally represented
as a relation Rf on S×A1× . . .×An×B, where S represents some FIVM state.
For functions that modify the content of the memory, their return also includes
a new FIVM state. On the other hand, the HLD functions must be defined as
total computable functions in Coq to ensure the termination of its computations.

In order to transform partial FSP functions into HLD total functions, a new
constant (FivmaFatalError) is introduced to lift their co-domain. That is, a
partial function is set to return FivmaFatalError when its output is not defined:

Inductive fivma fatal error : Set := FivmaFatalError : fivma fatal error.
Inductive exc (V E : Set) : Set :=
| Value : V → exc V E
| Error : E → exc V E.

Definition fivma val (A : Set) := exc A fivma fatal error.
Notice that FivmaFatalError represents a model-level error and is not re-

lated to any Java Card runtime error or exception. All HLD functions will now
return a value of type (fivma val A) where A is its return type in the normal
case. For example, the function fivma set remote object header updates
the (boolean) remote mode flag of an object pointed by an address is specified
as follows:
Parameter fivma set remote object header : fivm state → address → bool →
(fivma val fivm state).

This function returns a new FIVM state (because the memory content has
been modified) and is abstract (like all other HLD primitive operations), that
is, its specification consists only of its signature.

Error handling. The error case makes the usage of functions more complex
because there is now one more case to consider in each function call. For smoothly
handling this case, a new construct is defined:

Definition try with (C : Set) (e : exc V1 E1 ) (f : V1 → C ) (g : E1 → C ):
C := match e with
| Value x ⇒ f x
| Error y ⇒ g y
end.

Actually, try with allows one to handle both cases of a total function. In
the error case, the error (y) is handled by the function g. In the normal case,
the returned value of the function (x) is used in the rest of the model (f). A new
syntactic sugar try1 is also defined such that (try1 w=(F e) in H with err



=> G) compiles to (G err) if (F e) returns the error err, and to (H val) if it
returns the value val. In particular, if err and G are omitted, then any error
will be handled by a default procedure which consists in transferring the error
to the higher level (e.g., the invoking function).

Native methods. The algorithm of a native method is defined as a sequence of
the HLD primitive operations. The input of a native method is composed of the
initial FIVM state and the list of parameters encoded as FIVM words. A native
method may return a value or throws an exception by returning its address. In
any case, the output of the method is composed of the final FIVM state and the
(possibly) returned value encoded by the type (option iword).

Example 2. The algorithm of export (see Example 1) is described as follows:

1. if the list of arguments is empty, then a fatal error is raised, else,
2. convert the first argument into an object address using iword2address;
3. extract the object header pointed by this address using fivma get object

header;
4. check if the currently active context is either the global JCRE context (using

fivma test jcre context), or the security context of the object (using
fivma test obj same owner) (the firewall condition);

5. if the firewall condition is satisfied, then return void and the final state
(which has been updated by fivma set remote object header), else re-
turn the address of the security exception and the initial state.

Definition fivma export (args: list iword) (fin : fivm state)
: (option iword) × fivm state :=

match args with
| fst :: ⇒ let obj := iword2address fst in

try1 hdr := fivma get object header fin obj in
try1 selapp := fivma selected applet fin in
IF (fivma test jcre context (selected applet context selapp))||

(fivma test obj same owner (selected applet context selapp)
(fivm object status hdr))

THEN
try1 fout := fivma set remote object header fin obj true in

((None iword), fout)
ELSE ((Some (address2iword SecurityException)), fin)

| ⇒ raise FivmaFatalError
end.

3 Low-Level Model of a JCVM implementation

The LLD model specifies a real JCVM implementation on a new state machine
called CVM (Concrete Virtual Machine). All the components of this state ma-
chine are defined as concrete data structures. Therefore, all CVM primitive op-
erations can now be defined as concrete algorithms. The algorithm of a native



method are then refined to be close to its C implementation. In this section, for
space reason, we only concentrate on the frame stack as well as on the invoking
and the returning process of a (Java Card or native) method.

3.1 Frame stack

A CVM frame is composed of the following elements:

– an operand stack is a stack of 16-bits words (cvm word).
– a table of local variables, each of them being a 16-bits word.
– a security information representing the currently active context.
– a program counter pointing to the next bytecode to be executed.

As in FIVM state machine, the frame stack is part of the CVM state and is
defined as follows:

current frame

local variables header operand stack

local variables header

current frame

operand stack

ctxt jspold old old

parameters

locals

previous frame

additional variables

locals ctxt jspctxt−>localsOffset

other frames

Fig. 2. The storage of the CVM frame stack

Record cvm state : Set := {
cvm frame stack : c memory segment ;
jsp : c address;
locals : c address;
ctxt : c address; ... }.

– The contiguous memory segment cvm_frame_stack stores successively the
frame stack itself. For each frame, firstly appears the local variable table,
then its header, and finally its operand stack (see Figure 2).

– jsp is a pointer to the top of the operand stack of the current frame (i.e.,
the top frame).

– locals points to the beginning of the local variable table of the current
frame.

– ctxt points to the header of the current frame. This header is composed of:



• localsOffset: a byte representing the offset from the header of the
current frame (current ctxt) to the first item of the local variable table
of the previous frame. This information is needed to recover the previous
frame upon return from the current method i.e., to recover the old value
of locals.

• contextInfo: a byte containing the currently active context.
• nextpc: a program counter pointing to the location where the virtual

machine resumes upon return from the current method.
• prev: a pointer to the header of the previous frame (old ctxt).

3.2 Java Card methods

Invocation. When a Java Card method is invoked, a new frame is pushed onto
the frame stack. The local variable table (locals) of the new frame is set to the
first parameter of the invoked method which have been pushed onto the operand
stack of the previous frame by the invoking method (see Figure 2). This is an
optimization in the JCVM implementation to avoid copying these parameters and
to reduce memory consumption. The header of the invoked method is stored after
the new local variable table whose the length is determined by its method info
structure stored in its CAP file. Then the global variables are updates according
to the new current frame:

– jsp points to the operand stack of the new frame i.e., just after its header.
– locals points to the first item of the new local variable table.
– ctxt points to the header of the new frame.

Return. The returning process consists in popping the top frame by restoring
the values of the global variables as follows:

1. jsp is assigned to the value of locals, that is all parameters must have been
popped from the operand stack during executing the invoked method.

2. locals is assigned to the current value of ctxt minus the value of the
localsOffset field of the header of the current frame. This indeed points
to the local variable table of the previous frame.

3. ctxt is assigned to the value of the prev field of the header of the current
frame.

3.3 Native methods

When a native method is invoked, its parameters are also pushed into the
operand stack (of the current frame) as it is done when invoking a Java Card
method. However, the native function is executed in the same frame of the invok-
ing method and no new frame is created on the frame stack. After the execution
of the native function, a returned type, which is of type short, is pushed on the
top of the operand stack. If this type is 1 or 2, then there is a returned value
which has been pushed onto the operand stack just under the returned type.



Otherwise, the method returns void. The CVM retrieves the returned value if
there is any, pops out the parameters and moves the program counter to the
next bytecode to be executed.

In the LLD model, a native method is defined as a total function using the
CVM primitive operations. These primitive operations, which are abstract in the
HLD model, are fully defined as Coq functions in the LLD model. The input of
a native method is composed of the initial CVM state and the list of parameters
encoded as CVM words (cvm word). The output of the method is only composed
of the final CVM state because the (possibly) returned value and its type are
already pushed onto the operand stack of the current frame.

Example 3. The following LLD model of export is very similar to the HLD
model presented in Example 2 except for the returning process: in the LLD
model, the (possibly) returned value and its type are explicitly pushed onto the
operand stack (by cvm frame push).

Definition cvm export (args: list cvm word) (cin: cvm state): cvm state :=
match args with
| fst :: ⇒ let obj := cvm word2address fst in

try1 hdr := cvm get object header cin obj in
try1 selapp := cvm selected applet cin in
IF (fivma test jcre context (selected applet context selapp))||

(fivma test obj same owner (selected applet context selapp)
(cvm object status hdr))

THEN
cvm frame push (cvm set remote object header cin obj true) szero

ELSE
cvm frame push
(cvm frame push cin (address2cvm word SecurityException)) stwo

| ⇒ raise CvmFatalError
end.

4 Correctness of Refinement

Informally, the refinement from a model to another model is correct if there is a
correspondence between the executions of a native method in these two model.

Theorem 1 (Correctness of refinement). Let M1 be a model of a native
function and M2 be a refined model of M1. Let R1 be a relation between the
states of M1,M2 and R2 be a relation between the data of M1,M2. Suppose
that the two initial states of the native method are related by R1, and their
corresponding parameters are related by R2. The refinement from M1 to M2 is
said to be correct if:

1. the two final machine states are related by R1, and
2. the two returned values of the method, if there is any, are related by R2.



4.1 FSP to HLD refinement

This refinement step is correct if the algorithm defined in the HLD model fulfills
its specification defined in the FSP model. In Hoare logic, a function f fulfills
its pre-condition Pref and post-condition Postf if:

∀xy : y = f(x) → Pref (x) → Postf (y)

where x, y respectively represent the input and the output of f . This statement
is translated in Coq for the method export as follows:

Theorem fivma export proof :
∀ (args: list iword)(fin fout : fivm state)(result : option iword),
(fivma export args fin) = (result, fout) →
(export pre args fin) → (export post args fin fout result).
It is not difficult to see that this theorem is a special case of Theorem 1 where

both R1 and R2 are the identity relation because both FSP and HLD models
are built upon the state machine FIVM.

4.2 HLD to LLD refinement

For any native method, this refinement step is correct if the returning process
from the method produce a similar effect in the FIVM and CVM state machines.
In the HLD model, because the frame stack is abstract, the (possibly) returned
value is pushed onto the operand stack and then, be popped by the invoking
method in an opaque way. In the LLD model (see Section 3.3), the frame stack
is detailed and all pop and push operations are explicitly performed on the
operand stack. We need to chow that the two returning process produce the
corresponding final states and returned values, providing that the initial states
and the method parameters are respectively related by cvm fivm link state
(which abstractly relates CVM states to FIVM states) and cvm word2iword
(which abstractly converts CVM words into FIVM words).

Therefore, the correctness of the refinement must be stated for all two exe-
cution scenarios of a native method: (1) it returns a value or the address of an
exception, and (2) it returns void. For example, the two theorems to be proved
for export are described as follows:

1. export returns a value or the address of an exception:

Theorem cvm export value proof : ∀ cst1 cst2 fst1 args cst’ cst” typ val,
(cvm fivm link state cst1 fst1 ) →
(cvm export args cst1 ) = cst’ →
(cvm frame pop cst’ ) = (typ,cst”) →
(andb (Zle bool typ stwo) (Zge bool typ sone)) = true →
(cvm frame pop cst”) = (val,cst2 ) →
∃ fst2 : fivm state, (cvm fivm link state cst2 fst2 ) ∧



(fivma export (map cvm word2iword args) fst1 ) = ((cvm word2iword
val), fst2 ).
where the primitive operation cvm frame pop pops a short value from the
operand stack of the current frame and returns a new machine state; Zle bool
represents the less-or-equal operator on short values; andb represents the
conjunctive operator on boolean values.
This theorem states that in the LLD model, after executing export on
the initial state cst1 and on the list of parameters args, if we pop a
short value (typ) from the top of the operand stack and this value is 1
or 2, then popping the next short value from the stack yields the returned
value (val) of export and the final CVM state cst2. Now if we execute
export in the HLD model on the corresponding FIVM state fst1 (because
(cvm fivm link state cst1 fst1) holds), and on the corresponding pa-
rameters (map cvm word2iword args), then we obtain the final FIVM state
fst2 which corresponds to cst2. Moreover the LLD-returned value val also
corresponds to the HLD-returned value (cvm word2iword val).

2. export returns void:

Theorem cvm export void proof : ∀ cst1 cst2 fst1 args cst’ typ,
(cvm fivm link state cst1 fst1 ) →
(cvm export args cst1 ) = cst’ →
(cvm frame pop cst’ ) = (typ,cst2 ) →
(andb (Zle bool typ stwo) (Zge bool typ sone)) = false →
∃ fst2 : fivm state, (cvm fivm link state cst2 fst2 ) ∧
(fivma export (map cvm word2iword args) fst1 ) = ((None iword), fst2 ).

In the LLD model, the short value at the top of stack is neither 1 nor 2
and there is no returned value. In this case, the HLD model of export must
return void. Furthermore, the two final states (fst2 and cst2) must also be
related by cvm fivm link state.

These two theorems are a special case of Theorem 1 where R1 is the relation
cvm fivm link state and R2 is the function cvm word2iword.

4.3 General proof scheme

The general structure of a native function can be seen as a tree whose leaves are
primitive operations. The internal nodes of this tree are Coq constructs used for
defining the native function. The general proof scheme for the refinement on the
native function between two adjacent models is described as follows:

1. Decompose the native function into more simple operations in both models
until the primitive operations are reached.

2. Prove the correctness for each decomposition step: because the definitions
of the native function in both models follow the same structure, this proof
is feasible.

3. Apply the appropriate refinement hypotheses (see Section 4.4) to conclude
the correctness for the primitive operations.



This proof scheme is closely related to the structure of the native function.
For example, if it is a recursive function, then for proving the correctness of
the decomposition steps over it, an proof by induction is needed. Furthermore,
because a native function needs to cover all possible error cases, the proof must
be done on all of its execution paths. In many cases, this leads to huge and
unreadable proof. In order to ease the proof readability and maintenance, we
have modularized and factorized the proofs by defining numerous common tactics
and lemmas.

4.4 Refinement hypotheses

Because the HLD primitive operations are abstract, the correctness of their
refinement from the FSP model must be supposed as hypotheses of the FSP-to-
HLD refinement proof. Actually, those hypotheses express the internal consis-
tency of the FIVM state machine.

On the other hand, the LLD primitive operations are fully defined and the
correctness of their refinement from the HLD model must also be supposed as
hypotheses of the HLD-to-LLD refinement proof. Actually, those hypotheses are
part of the abstract relation between the FIVM and CVM state machines. This
relation is also expressed by the abstract relations between FIVM states and
CVM states (cvm fivma link state), and between FIVM data and CVM data
(e.g., cvm word2iword).

Example 4. Let us consider the primitive operation that yields the header struc-
ture of an object. In the FSP model, this operation is modelled by the predi-
cate head object header and in the HLD and LLD models by the functions
fivma get object header and cvm get object header. The refinements from
the FSP model to HLD model and from the HLD model to LLD model are respec-
tively supposed in Coq by the hypotheses fivma get object header proof
and fivma get object header refinement:

Hypothesis fivma get object header refinement :
∀ (fst : fivm state) (addr : address) (hdr : fivm object header),

(fivma get object header fst addr)=hdr → (heap object header fst addr hdr).

Hypothesis fivma get object header refinement :
∀ (cst : cvm state) (fst : fivm state) (addr : address),
(cvm fivma link state cst fst) →
(cvm get object header cst addr) = (fivma get object header fst addr).

5 C Implementation vs. Coq Low-Level Model

The conformance of the Axalto implementation w.r.t. the LLD model is infor-
mally checked by a hypertext document which relates the C code to the Coq
model. This is the only informal step in the refinement chain from the informal



specification to the implementation of a native function. However, the fact that
the LLD model has been refined basing on the C implementation makes the their
conformance much more evident.

Example 5. The C implementation of export is quoted as follows.

void CARDREMOTEOBJECT_export()
{

PEOBJECTHANDLE pHandle;
u1 isExport;
pHandle = soft_check_ref(pass_byteword_0());
if(!isHandleRemote(pHandle)) {

_VM_WriteU2((GEN_ADDRESS)(&pHandle->datalength),
(u2)(pHandle->datalength | HANDLE_REMOTE)); }

}

In the heap, an object header is represented by a bit vector that contains
the remote mode flag. Accessing to different fields of the object header is done
via macros like isHandleRemote, which check the value of the corresponding
bits. In the C code of a native function, the macro pass byteword n is used to
pop its nth parameter from the operand stack of the current frame. For export,
pass byteword 0 pops the address of the remote object. The soft check ref
function checks the firewall condition on this object and raises a security excep-
tion if it is violated. Otherwise, the function checks if the object has been already
exported before setting the remote flag of the object header (pHandle) using the
HANDLE REMOTE mask. This check is an optimization of the implementation be-
cause writing on E2PROM is costly. In the LLD model, the flag is updated
without this check (by cvm set remote object header) because the model is
not executable and hence, we are not really concerned by the performance.

6 Related Work

Numerous researchers have worked on the formal analysis of the Java Card plat-
form. However, most of them concentrate on ensuring some high-level security
properties of the Java Card applets such as well-typedness [11, 12], confidential-
ity, noninterference, information-flow security [13–15].

While Java Card API can be formally analyzed as for Java Card applets [1–
3, 16], verifying native functions requires us to work on the C code. Currently,
the application of formal methods to the verification of the C code is still at
its very early stage. Indeed, the semantics of C is not strictly defined and varies
between different compilers3. C is however largely used in the embedded software
industry thanks to its efficiency. There are currently two approaches for formally
handling C code: in the bottom-up approach, the formal model is built using the

3 Actually, part of the C memory management is not built in the language but is
intentionally left to programmers for efficiency reason.



C code while in the top-down approach, the informal specification is formalized
and refined to an C implementation.

The top-down approach is used in several works [6] using B-Method to auto-
matically generate C code from a formal model. The bottom-up approach is used,
for example, in [17] to generate Coq model of C code using tools like Caduceus
and Why. The method presented in this paper can be seen as a mixed approach
because the low-level model is designed by refining the higher-level models and
by abstracting the C code to be certified.

While formal verification of C code is still not straightforward, many re-
searchers have focused on the static analysis of information flow [18] (and/or
abstract interpretation) as a feasible means to improve the security of C code.
In this direction, the research has given rise to several industrial tools such as
CAVEAT [19] or PolySpace.

7 Concluding Remarks

We described a refinement-based approach to verify the conformance of a Java
Card native function w.r.t. their specification. The main idea is to use three
intermediate models: the FSP model describes the expected input and output of
the function (basing on the informal specification), the HLD model defines the
algorithm of the function on an abstract JCVM, and the LLD model refines this
algorithm on a concrete JCVM implementation. The refinement steps between
two adjacent models are formally proved in Coq. This approach can be applied
as well to the bytecode interpretation because a native function is actually a
programmer-customized extension to the Java Card instruction set.

The two state machines (FIVM and CVM) used in this work were built
during the French-funded FORMAVIE research project to fulfill the Common
Criteria requirements [20] on the JCVM development. Using these models, we
showed the conformance of the Java Card interpreter and linker developed in
Axalto w.r.t. the JCVM specification (by Sun). The verification of the native API
methods is an extension of this project and is an ongoing work. Actually, the
set of native API methods varies between different implementations (this set
is not precisely defined in the API specification) but for many methods, only
a native implementation can be satisfactory in terms of performance and/or
security (e.g., the update operation on arrays or the PIN operations). We based
on the Axalto implementation to built the LLD model. On the contrary, the
higher-level FSP and HLD models are abstract and can be used for checking
other implementations. Furthermore, both of these models can be used to reason
on the high-level security properties of the native functions and of the JCVM
platform.
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