
A Low-Footprint Java-to-Native Compilation
Scheme Using Formal Methods

Alexandre Courbot1, Mariela Pavlova2, Gilles Grimaud1, and Jean-Jacques
Vandewalle3

1 IRCICA/LIFL, Univ. Lille 1, France, INRIA futurs, POPS Research Group
{Alexandre.Courbot, Gilles.Grimaud}@lifl.fr

2 INRIA Sophia-Antipolis, France, Everest Research Group
Mariela.Pavlova@sophia.inria.fr

3 Gemplus Systems Research Labs, La Ciotat, France
Jean-Jacques.Vandewalle@research.gemplus.com

Abstract. Ahead-of-Time and Just-in-Time compilation are common
ways to improve runtime performances of restrained systems like Java
Card by turning critical Java methods into native code. However, native
code is much bigger than Java bytecode, which severely limits or even
forbids these practices for devices with memory constraints.
In this paper, we describe and evaluate a method for reducing natively-
compiled code by suppressing runtime exception check sites, which are
emitted when compiling bytecodes that may potentially throw runtime
exceptions. This is made possible by completing the Java program with
JML annotations, and using a theorem prover in order to formally prove
that the compiled methods never throw runtime exceptions. Runtime
exception check sites can then safely be removed from the generated
native code, as it is proved they will never be entered.
We have experimented our approach on several card-range and embedded
Java applications, and were able to remove almost all the exception check
sites. Results show memory footprints for native code that are up to 70%
smaller than the non-optimized version, and sometimes as low than 115%
the size of the Java bytecode when compiled for ARM thumb.

1 Introduction

Enabling Java on embedded and restrained systems is an important challenge
for today’s industry and research groups [1]. Java brings features like execution
safety and low-footprint program code that make this technology appealing for
embedded devices which have obvious memory restrictions, as the success of Java
Card witnesses. However, the memory footprint and safety features of Java come
at the price of a slower program execution, which can be a problem when the host
device already has a limited processing power. As of today, the interest of Java
for smart cards is still growing, with next generation operating systems for smart
cards that are closer to standard Java systems [2, 3], but runtime performance in
still an issue. To improve the runtime performance of Java systems, a common
practice is to translate some parts of the program bytecode into native code.

Doing so removes the interpretation layer and improves the execution speed,
but also greatly increases the memory footprint of the program: it is expected
that native code is about three to four times the size of its Java counterpart,
depending on the target architecture. This is explained by the less-compact form
of native instructions, but also by the fact that many safety-checks that are
implemented by the virtual machine must be reproduced in the native code. For
instance, before dereferencing a pointer, the virtual machine checks whether it is
null and, if it is, throws a NullPointerException. Every time a bytecode that
implements such safety behaviors is compiled into native code, these behaviors
must be reproduced as well, leading to an explosion of the code size. Indeed, a
large part of the Java bytecode implement these safety mechanisms.

Although the runtime checks are necessary to the safety of the Java virtual
machine, they are most of the time used as a protection mechanism against pro-
gramming errors or malicious code: A runtime exception should be the result of
an exceptional, unexpected program behavior and is rarely thrown when exe-
cuting sane code - doing so is considered poor programming practice. The safety
checks are therefore without effect most of the time, and, in the case of native
code, uselessly bloat the code.

Several studies proposed to factorize these checks or in some case to elim-
inate them, but none proposed a complete elimination without hazarding the
system security. In this paper, we use formal proofs to ensure that run-time
checks can never be true into a program, which allows us to completely and
safely eliminate them from the generated native code. The programs to optimize
are JML-annotated against runtime exceptions and verified by the Java Applet
Correctness Kit (JACK [4]). We have been able to remove almost all of the run-
time checks on tested programs, and obtained native ARM thumb code which
size was comparable to the original bytecode.

The remainder of this paper is organized as follows. In section 2, we overview
the methods used for compiling Java bytecode into native code, and evaluate the
previous work aiming at optimizing runtime exceptions in the native code. Then,
section 3 describes our method for removing runtime exceptions on the basis of
formal proofs. We experimentally evaluate this method in section 4, discuss its
limitations in 5 and conclude in 6.

2 Java and Ahead-of-Time Compilation

Compiling Java into native code is a common practice in the embedded domain.
This section gives an overview of the different compilation techniques of Java
programs, and points out the issue of runtime exceptions. We are then looking
at how existing solutions address this issue.

2.1 Ahead-of-Time & Just-in-Time Compilation

Ahead-of-Time (AOT) compilation is a common way to improve the efficiency
of Java programs. It is related to Just-in-Time (JIT) compilation by the fact

that both processes take Java bytecode as input and produce native code that
the architecture running the virtual machine can directly execute. AOT and JIT
compilation differ by the time at which the compilation occurs. JIT compila-
tion is done, as its name states, just-in-time by the virtual machine, and must
therefore be performed within a short period of time which leaves little room
for optimizations. The output of JIT compilation is machine-language. On the
contrary, AOT compilation compiles the Java bytecode way before the program
is run, and links the native code with the virtual machine. In other words, it
translates non-native methods into native methods (usually C code) prior to
the whole system execution. AOT compilers either compile the Java program
entirely, resulting in a 100% native program without a Java interpreter, or can
just compile a few important methods. In the latter case, the native code is
usually linked with the virtual machine. AOT compilation has no or few time
constraints, and can generate optimized code. Moreover, the generated code can
take advantage of the C compiler’s own optimizations.

JIT compilation in interesting by several points. For instance, there is no
prior choice about which methods must be compiled: the virtual machine com-
piles a method when it appears that doing so is beneficial, e.g. because the
method is called often. However, JIT compilation requires embedding a com-
piler within the virtual machine, which needs resources to work and writable
memory to store the compiled methods. Moreover, the compiled methods are
present twice in memory: once in bytecode form, and another time in compiled
form. While this scheme is efficient for decently-powerful embedded devices such
as PDAs, it is inapplicable to very restrained devices like smartcards or sensors.
For them, ahead-of-time compilation is usually preferred because it does not
require a particular support from the embedded virtual machine outside of the
ability to run native methods, and avoids method duplication. AOT compilation
has some constraints, too: the compiled methods must be known in advance, and
dynamically-loading new native methods is forbidden, or at least very unsafe.

Both JIT and AOT compilers must produce code that exactly mimics the
behavior of the Java virtual machine. In particular, the safety checks performed
on some bytecodes must also be performed in the generated code.

2.2 Java Runtime Exceptions

The JVM (Java Virtual Machine) [5] specifies a safe execution environment for
Java programs. Contrary to native execution, which does not automatically con-
trol the safety of the program’s operations, the Java virtual machine ensures that
every instruction operates safely. The Java environment may throw predefined
runtime exceptions at runtime, like the following ones:

NullPointerException This exception is thrown when the program tries to
dereference a null pointer. Among the instructions that may throw this

exceptions are: getfield, putfield, invokevirtual, invokespecial, and
the set of type astore instructions4.

ArrayIndexOutOfBoundsException If an array is accessed out of its bounds,
this exception is thrown to prevent the program from accessing an illegal
memory location. According to the Java Virtual Machine specification, the
instructions of the family type astore and type aload may throw such an
exception.

ArithmeticException This exception is thrown when exceptional arithmetic
conditions are met. Actually, there is only one such case that may occur
during runtime, namely the division of an integer by zero, which may be
done by idiv, irem, ldiv and lrem.

NegativeArraySizeException Thrown when trying to allocate an array of neg-
ative size. newarray, anewarray and multianewarray may throw this ex-
ception.

ArrayStoreException Thrown when an object is attempted to be stored into
an array of incompatible type. This exception may be thrown by the aastore
instruction.

ClassCastException Thrown when attempting to cast an object to an incom-
patible type. The checkcast instruction may throw this exception.

IllegalMonitorStateException Thrown when the current thread is not the
owner of a released monitor, typically by monitorexit.

If the JVM detects that executing the next instruction would result in an in-
consistency or an illegal memory access, it throws a runtime exception, that may
be caught by the current method or by other methods on the current stack. If
the exception is not caught, the virtual machine exits. This safe execution mode
implies that many checks are made during runtime to detect potential incon-
sistencies. For instance, the aastore bytecode, which stores an object reference
into an array, may throw three different exceptions: NullPointerException,
ArrayIndexOutOfBoundsException, and ArrayStoreException.

Of the 202 bytecodes defined by the Java virtual machine specification, we
noticed that 43 require at least one runtime exception check before being exe-
cuted. While these checks are implicitly performed by the bytecode interpreter
in the case of interpreted code, they must explicitly be issued every time such
a bytecode is compiled into native code, which leads to a code size explosion.
Ishizaki et al. measured that bytecodes requiring runtime checks are frequent in
Java programs: for instance, the natively-compiled version of the SPECjvm98
compress benchmark has 2964 exception check sites for a size of 23598 bytes. As
for the mpegaudio benchmark, it weights 38204 bytes and includes 6838 excep-
tion sites [6]. The exception check sites therefore make a non-neglectable part of
the compiled code.

Figure 1 shows an example of Java bytecode that requires a runtime check
to be issued when being compiled into native code.

4 the JVM instructions are parametrized, thus we denote by type astore the set of
array store instructions, which includes iastore, sastore, lastore, ...

Java version:

iload i

iload j

idiv

ireturn

C version:

1 int i, j;

2 if (j == 0)

3 THROW(ArithmeticException);

4 RETURN_INT(i / j);

Fig. 1. A Java bytecode program and its (simplified) C-compiled version. The behavior
of the division operator in Java must be entirely reproduced by the C program, which
leads to the generation of a runtime exception check site

It is, however, possible to eliminate these checks from the native code if the
execution context of the bytecode shows that the exceptional case never happens.
In the program of figure 1, the lines 2 and 3 could have been omitted if we were
sure that for all possible program paths, j can never be equal to zero at this
point. This allows to generate less code and thus to save memory. Removing
exception check sites is a topic that has largely been studied in the domain of
JIT and AOT compilation.

2.3 Related Work

Toba [7] is a Java-to-C compiler that transforms a whole Java program into a na-
tive one. Harissa [8] is a Java environment that includes a Java-to-C compiler as
well as a virtual machine, and therefore supports mixed execution. While both
environments implement some optimizations, they are not able to detect and
remove unused runtime checks during ahead-of-time compilation. The “Java?
C!” (JC5) Virtual Machine [9] is a Java virtual machine implementation that
converts class files into C code using the Soot [10] framework, and runs their
compiled version. It supports redundant exceptions checks removal, and is tuned
for runtime performance, by using operating system signals in order to detect ex-
ceptional conditions like null pointer dereferencing. This allows to automatically
remove most of the NullPointerException-related checks.

In [11] and [12], Hummel et al. use a Java compiler that annotates bytecodes
with higher-level information known during compile-time in order to improve
the efficiency of generated native code. [6] proposes methods for optimizing ex-
ceptions handling in the case of JIT compiled native code. These works rely on
knowledge that can be statically inferred either by the Java compiler or by the
JIT compiler. In doing so, they manage to efficiently factorize runtime checks,
or in some cases to remove them. However, they are still limited to the context
of the compiled method, and do not take the whole program into account. In-
deed, knowing properties about a the parameters of a method can help removing
further checks.

5 In the remainder of this paper, the JC abbreviation is always used to refer to the
“Java? C!” virtual machine, and never to JavaCard

We propose to go further than these approaches, by giving more precise di-
rectives as to how the program behaves in the form of JML annotations. These
annotations are then used to get formal behavioral proofs of the program, which
guarantee that runtime checks can safely be eliminated for ahead-of-time com-
pilation.

3 Optimizing Ahead-of-Time Compiled Java Code

For verifying the bytecode that will be compiled into native code, we use the
JACK verification framework (short for Java Applet Correctness Kit). JACK
is designed as a plugin for the Eclipse interface development environment. It
supports both the Java Modeling Language (JML [13]) and the ByteCode Spec-
ification Language (BCSL [14]), respectively at source and bytecode level, and
also supplies a compiler from JML to BCSL. The tool supports only the sequen-
tial subset of the Java and Java bytecode languages, but this is sufficient for the
purpose of the present paper. Thus, from a Java program annotated with JML or
a bytecode program annotated with BCSL, JACK generates proof obligations at
the source or bytecode level respectively. JACK can then translate the resulting
verification conditions for several theorem provers: Coq, Simplify, Atelier B.

Verifying that a bytecode program does not throw Runtime exceptions using
JACK involves several stages:

1. Writing the JML specification at the source level of the application, which
expresses that no runtime exceptions are thrown.

2. Compiling the Java sources and their JML specification6.
3. Generating the verification conditions over the bytecode and its BCSL speci-

fication, and proving the verification conditions. During the calculation pro-
cess of the verification conditions, they are indexed with the index of the
instruction in the bytecode array they refer to and the type of specification
they prove (e.g. that the proof obligation refers to the exceptional postcondi-
tion in case an exception of type Exc is thrown when executing the instruc-
tion at index i in the array of bytecode instructions of a given method).
Once the verifications are proved, information about which instructions can
be compiled without runtime checks is inserted in user defined attributes of
the class file.

4. Using these class file attributes in order to optimize the generated native
code. When a bytecode that has one or more runtime checks in its semantics
is being compiled, the bytecode attribute is queried in order to make sure
that the checks are necessary. If it indicates that the exceptional condition
has been proved to never happen, then the runtime check is not generated.

Our approach benefits from the accurateness of the JML specification and
from the bytecode verification condition generator. Performing the verification

6 the BCSL specification is inserted in user defined attributes in the class file and so
does not violate the class file format

over the bytecode allows to easily establish a relationship between the proof obli-
gations generated over the bytecode and the bytecode instructions to optimize.

In the rest of this section, we explain in detail all the stages of the optimiza-
tion procedure.

3.1 JML Annotations

JML is a rich behavioral interface specification language, similar to Java and
designed for it, that follows the design by contract paradigm [15]. Among the
features that JML supports and which we use in this study are:

Method preconditions The method precondition states what must hold when
the method is called, i.e. the precondition must hold at every method call
site.

Method postconditions JML allows to specify both the exceptional and nor-
mal terminations of a method. One can express which property should hold
if a method terminates normally and which property should hold if a method
terminates by throwing an exception. The exceptional and normal postcon-
ditions state what the method guarantees after its execution and are verified
when establishing the correctness of the method implementation.

Class invariants These properties must be established at every visible pro-
gram state. In particular, the property must hold before and after every
method call. The class invariant is not required to hold before calling the
class constructor, but must hold once the constructor returns.

Loop invariants and loop frame conditions A loop invariant is a predicate
that must hold every time the corresponding loop entry is reached. The loop
frame condition states which locations are modified by the loop.

3.2 Methodology for Writing A Specification Against Runtime
Exceptions

We now illustrate with an example which annotations must be generated in
order to check if a method may throw an exception. Figure 27 shows a Java
method annotated with a JML specification. The method clear declared in class
Code_Table receives an integer parameter size and assigns 0 to all the elements
in the array field tab whose indexes are smaller than the value of the parameter
size. The specification of the method guarantees that if every caller respects
the method precondition and if every execution of the method guarantees its
postcondition then the method clear never throws an exception of type or
subtype java.lang.Exception8. This is expressed by the class and method
specification contracts. First, a class invariant is declared which states that once
an instance of type Code_Table is created, its array field tab is not null. The
class invariant guarantees that no method will throw a NullPointerException
when dereferencing (directly or indirectly) tab.
7 although the analysis that we describe is on bytecode level, for the sake of readability,

the examples are also given on source level
8 Note that every Java runtime exception is a subclass of java.lang.Exception

final class Code_Table {

private/*@spec_public */short tab[];

//@invariant tab != null;

...

//@requires size <= tab.length;

//@ensures true;

//@exsures (Exception) false;

public void clear(int size) {

1 int code;

2 //@loop_modifies code, tab[*];

3 //@loop_invariant code <= size && code >= 0;

4 for (code = 0; code < size; code++) {

5 tab[code] = 0;

}

}

}

Fig. 2. A JML-annotated method

The method precondition requires the size parameter to be smaller than the
length of tab. The normal postcondition, introduced by the keyword ensures,
basically says that the method will always terminate normally, by declaring
that the set of final states in case of normal termination includes all the pos-
sible final states, i.e. that the predicate true holds after the method’s normal
execution9. On the other hand, the exceptional postcondition for the excep-
tion java.lang.Exception says that the method will not throw any exception
of type java.lang.Exception (which includes all runtime exceptions). This is
done by declaring that the set of final states in the exceptional termination case
is empty, i.e. the predicate false holds if an exception caused the termination of
the method. The loop invariant says that the array accesses are between index
0 and index size - 1 of the array tab, which guarantees that no loop iter-
ation will cause an ArrayIndexOutOfBoundsException since the precondition
requires that size <= tab.length.

3.3 Compiling JML annotations into BCSL specifications

Once the source code is completed by the JML specification, the Java source
is compiled using a normal non-optimizing Java compiler that generates debug
information like LineNumberTable and LocalVariableTable, needed for compiling
the JML annotations. From the resulting class file and the specified source file,
9 Actually, after terminating execution the method guarantees that the first size

elements of the array tab will be equal to 0, but as this information is not relevant
to proving that the method will not throw runtime exceptions we omit it

the JML annotations are compiled into BCSL and inserted into user-defined
attributes of the class file. Figure 3 gives the bytecode version of the clear
method shown earlier and its BSCL specification. In the example, lv[0] stands
for the this instance and lv[1] stands for the first parameter that the method
receives. A detailed description of the JML compiler can be found in [14].

//@invariant tab(lv[0]) != null;

...

//@requires lv[1] <= length(tab(lv[0]));

//@ensures true;

//@exsures (Exception) false;

method clear

0 iconst_0

1 istore_2

2 goto 15

5 aload_0

6 getfield tab

9 iload_2

10 iconst_0

11 sastore

12 iinc 2 by 1

15 iload_2

16 iload_1

17 if_icmplt 5

20 return

Fig. 3. The specified bytecode of method clear

3.4 Generation of the Verification Conditions

In order to generate the verification conditions, we use a bytecode verification
condition generator (vcGen) based on a bytecode weakest precondition calcu-
lus [14]. The weakest precondition function wp returns, for every instruction
ins, normal postcondition ψ, and exceptional function ψexc the weakest pred-
icate wp(ins, ψ, ψexc) such that if it holds in the pre-state of the instruction
ins and if the instruction terminates normally, then the normal postcondition
ψ holds in the poststate and if ins terminates on an exception Exc, then the
predicate ψexc(Exc) holds. From the annotated bytecode the vcGen calculates
a set of verification conditions for every method of the application. The verifi-
cation conditions for a method are generated by tracing all the execution paths

in it starting at every return, athrow and loop end instruction up to reach-
ing the method entry point. During the process of generation of the verification
conditions, for every instruction that may throw a runtime exception a new
verification condition is generated.

In figure 4, we show the weakest precondition rule for the getfield in-
struction. As the virtual machine is stack-based, the rule mentions the stack
stack and the stack counter cntr, thus the stack top element is referred as
stack(cntr). If the top stack element stack(cntr) is not null, getfield pops
stack(cntr) which is an object reference and pushes the value of the referenced
field onto the operand stack in stack(cntr). If the stack top element is null, the
Java Virtual Machine specification says that the getfield instruction throws a
NullPointerException.

When the verification condition generator works over a method, it labels
the formula related to the exceptional termination of every instruction with
the index of the instruction in the bytecode array of the method. For example,
if a getField instruction is met in the bytecode of a method, a conjunction
is generated and the conjunct related to the exception is labeled as shown by
figure 4. Finally, indexing the verification conditions allows to identify later in
the proof phase which instructions can be optimized.

Another important point is that the underlying vcGen is proved to be correct
[14], thus our methodology also correctly performs optimizations.

wp(ind : getfield Cl.f, ψ, ψexc) =

(
stack(cntr) 6= null⇒
ψ [stack(cntr)← Cl.f(stack(cntr))]

∧
ind : stack(cntr) = null⇒
ψexc(NullPointerException)

[cntr← 0]
[stack(0)← refNullPointer]

)

Fig. 4. The weakest precondition rule for the putfield instruction

3.5 From Program Proofs to Program Optimizations

In this phase, the bytecode instructions that can safely be executed without
runtime checks are identified. Depending on the complexity of the verification
conditions, Jack can discharge them to the fully automatic prover Simplify, or
to the Coq and AtelierB interactive theorem prover assistants.

There are several conditions to be met for a bytecode instruction to be op-
timized safely – the precondition of the method the instruction belongs to must
hold every time the method is invoked, and the verification condition related
to the exceptional termination must also hold. In order to give a flavor of the

verification conditions we deal with, figure 5 shows part of the verification con-
dition related to the possible ArrayIndexOutOfBounds exceptional termination
of instruction 11 sastore in figure 3, which is actually provable.

. . .
length(tab(lv[0]) ≤ lv[2]15 ∨ lv[2]15 < 0
∧
lv[2]15 ≥ 0
∧
lv[2]15 < lv[1]

∧
lv[1] ≤ length(tab(lv[0]))

⇒ false

Fig. 5. The verification condition for the ArrayIndexOutOfBoundException check re-
lated to the sastore instruction of figure 3

Once identified, proved instructions can be marked in user-defined attributes
of the class file so that the compiler can find them.

3.6 More Precise Optimizations

As we discussed earlier, in order to optimize an instruction in a method body,
the method precondition must be established at every call site and the method
implementation must be proved not to throw an exception under the assumption
that the method precondition holds. This means that if there is one call site where
the method precondition is broken then no instruction in the method body will
be optimized.

Actually, the analysis may be less conservative and therefore more precise.
We illustrate with an example how one can achieve more precise results.

Consider the example of figure 6. On the left side of the figure, we show source
code for method setTo0 which sets the buff array element at index k to 0. On the
right side, we show the bytecode of the same method. The iastore instruction
at index 3 may throw two different runtime exceptions: NullPointerException,
or ArrayIndexOutOfBoundException. For the method execution to be safe (i.e.
no runtime exception is thrown), the method requires some conditions to be
fulfilled by its callers. Thus, the method’s precondition states that the buff ar-
ray parameter must not be null and that the k parameter must be inside the
bounds of buff. If at all call sites we can establish that the buff parameter is
always different from null, but there are sites at which an unsafe parameter k
is passed, the optimization for NullPointerException is still safe although the
optimization for ArrayIndexOutOfBoundException is not possible. In order to
obtain this kind of preciseness, a solution is to classify the preconditions of a
method with respect to what kind of runtime exception they protect the code
from. For our example, this classification consists of two groups of preconditions.

The first is related to NullPointerException, i.e. buff != null and the sec-
ond consists of preconditions related to ArrayIndexOutOfBoundException, i.e.
k >= 0 && k <= buff.length. Thus, if the preconditions of one group are es-

tablished at all call sites, the optimizations concerning the respective exception
can be performed even if the preconditions concerning other exceptions are not
satisfied.

...

//@requires buff != null;

//@requires k >= 0 ;

//@requires k <= buff.length;

//@ensures true;

//@exsures (Exception) false;

public void setTo0(int k,int[] buff)

{

buff[k] = 0;

}

0 aload_2

1 iload_1

2 iconst_0

3 iastore

4 return

Fig. 6. The source code and bytecode of a method that may throw several exceptions

4 Experimental Results

This section presents an application and evaluation of our method on various
Java programs.

4.1 Methodology

We have measured the efficiency of our method on two kinds of programs, that
implement features commonly met in restrained and embedded devices. crypt
and banking are two smartcard-range applications. crypt is a cryptography
benchmark from the Java Grande benchmarks suite, and banking is a little bank-
ing application with full JML annotations used in [4]. scheduler and tcpip are
two embeddable system components written in Java, which are actually used in
the JITS [16] platform. scheduler implements a threads scheduling mechanism,
where scheduling policies are Java classes. tcpip is a TCP/IP stack entirely
written in Java, that implements the TCP, UDP, IP, SLIP and ICMP protocols.
These two components are written with low-footprint in mind ; however, the
overall system performance would greatly benefit from having them available in
native form, provided the memory footprint cost is not too important.

For every program, we have followed the methodology described in section
3 in order to prove that runtime exceptions are not thrown in these programs.
We look at both the number of runtime exception check sites that we are able
to remove from the native code, and the impact on the memory footprint of the

natively-compiled methods with respect to the unoptimized native version and
the original bytecode. The memory footprint measurements were obtained by
compiling the C source file generated by the JITS ahead-of-time (AOT) compiler
using GCC 4.0.0 with optimization option -Os, for the ARM platform in thumb
mode. The native methods sizes are obtained by inspecting the .o file with nm,
and getting the size for the symbol corresponding to the native method.

Regarding the number of eliminated exception check sites, we also compare
our results with the ones obtained using the JCk virtual machine mentioned
in 2.3, version 1.4.6. The results were obtained by running the jcgen program on
the benchmark classes, and counting the number of explicit exception check sites
in the generated C code. We are not comparing the memory footprints obtained
with the JITS and JC AOT compilers, for this result would not be relevant.
Indeed, JC and JITS have very different ways to generate native code. JITS
targets low memory footprint, and JC runtime performance. As a consequence,
a runtime exception check site in JC is heavier than one in JITS, which would
falsify the experiments. Suffices to say that our approach could be applied on
any AOT compiler, and that the most relevant measurement is the number of
runtime exception check sites that remains in the final binary - our measurements
on the native code memory footprint are just here to evaluate the size impact of
exception check sites.

4.2 Results

Table 1 shows the results obtained on the four tested programs. The three first
columns indicate the number of check sites present in the bytecode, the number
of explicit check sites emitted by JC, and the number of check sites that we were
unable to prove useless and that must be present in our optimized AOT code.
The last columns give the memory footprints of the bytecode, unoptimized native
code, and native code from which all proved exception check sites are removed.

Table 1. Number of exception check sites and memory footprints when compiled for
ARM thumb

Program
of exception check sites Memory footprint (bytes)

Bytecode JC Proven AOT Bytecode Naive AOT Proven AOT

crypt 190 79 1 1256 5330 1592
banking 170 12 0 2320 5634 3582
scheduler 215 25 0 2208 5416 2504
tcpip 1893 288 0 15497 41540 18064

On all the tested programs, we were able to prove that all but one exception
check site could be removed. The only site that we were unable to prove from
crypt is linked to a division, which divisor is a computed value that we were
unable to prove not equal to zero. JC has to retain 16% of all the exception

check sites, with a particular mention for crypt, which is mainly made of array
accessed and has more remaining check sites.

The memory footprints obtained clearly show the heavy overhead induced by
exception check sites. Despite of the fact that the exception throwing convention
has deliberately been simplified for our experiments, optimized native code is less
than half the size of the non-optimized native code. The native code of crypt,
which heavily uses arrays, is actually made of exception checking code at 70%.

Comparing the size of the optimized native versions with the bytecode reveals
that proved native code is just slightly bigger than bytecode. The native code of
crypt is 27% bigger than its bytecode version. Native scheduler only weights
13.5% more that its bytecode, tcpip 16.5%, while banking is 54% heavier. This
last result is explained by the fact that, being an application and not a system
componant, banking includes many native-to-java method invocations for calling
system services. The native-to-java calling convention is costly in JITS, which
artificially increases the result.

Finally, table 2 details the human work required to obtain the proofs on the
benchmark programs, by comparing the amount of JML code with respect to
the comments-free source code of the programs. It also details how many lemmas
had to be manually proved.

Table 2. Human work on the tested programs

Program
Source code size (bytes) Proved lemmas

Code JML Automatically Manually

crypt 4113 1882 227 77
banking 11845 15775 379 159
scheduler 12539 3399 226 49
tcpip 83017 15379 2233 2191

On the three programs that are annotated for the unique purpose of our
study, the JML overhead is about 30% of the code size. The banking program
was annotated in order to prove other properties, and because of this is made of
more JML annotations than actual code. Most of the lemmas could be proved
by Simplify, but a non-neglectable part needed human-assistance with Coq. The
most demanding application was the TCP/IP stack. Because of its complexity,
nearly half of the lemmas could not be proved automatically.

The gain in terms of memory footprint obtained using our approach is there-
fore real. One may also wonder whether the runtime performance of such opti-
mized methods would be increased. We did the measurements, and only noticed
a very slight, almost undetectable, improvement of the execution speed of the
programs. This is explained by the fact that the exception check sites conditions
are always false when evaluated, and therefore the amount of supplementary
code executed is very low. The bodies of the proved runtime exception check
sites are, actually, dead code that is never executed.

5 Limitations

Our approach suffers from some limitations and usage restrictions, regarding its
application on multi-threaded programs and in combination with dynamic code
loading.

5.1 Multi-Threaded Programs

As we said in section 3, JACK only supports the sequential subset of Java.
Because of this, we are unable to prove check sites related to monitor state
checking, that typically throws an IllegalMonitorStateException. However,
they can be simplified if it is known that the system will never run more than
one thread simultaneously. It should be noted, that Java Card does not make
use of multi-threading and thus doesn’t suffer from this limitation.

5.2 Dynamic Code Loading

Our removal of runtime exception check sites is based on the assumption that a
method’s preconditions are always respected at all its call sites. For closed sys-
tems, it is easy to verify this property, but in the case of open systems which may
load and execute any kind of code, the property could not always be ensured. In
the case where the set of applications that will run on the system is not stati-
cally known, our approach could not be safely applied on public methods since
dynamically-loaded code may call them without respecting their preconditions.

5.3 Implications Regarding Security

In addition to the two limitations mentioned above, one should also be aware
that our method doesn’t protect the system from errors injections in the code
through hardware attacks. Suppressing dynamic checking on systems that are
subject to such attacks would potentially open a security breach.

6 Conclusion

The main contribution of the present article is a new Java-to-native code opti-
mization technique based on static program verification using formal methods.
The methodology gives more precise and therefore better results than other ex-
isting solutions in the field and allows us to remove almost all the exception
check sites in the native code, as we show in section 4. The memory footprints of
natively-compiled methods thus become comparable with the ones of the original
bytecode when compiled in ARM thumb.

Although we applied this work to the ahead-of-time compilation of Java
methods, the bytecode annotations could also be interpreted by JIT compilers,
which would then also be able to completely get rid of a considerable part of
runtime exceptions.

Acknowledgments

The authors would like to thank Jean-Louis Lanet for kindly providing us with
the JML-annotated sources of the banking, scheduler and tcpip programs
evaluated in this paper.

References

1. D. Mulchandani, “Java for embedded systems,” Internet Computing, IEEE, vol. 2,
no. 3, pp. 30 – 39, 1998.

2. L. Lagosanto, “Next-generation embedded java operating system for smart cards,”
in 4th Gemplus Developer Conference, 2002.

3. G. Grimaud and J.-J. Vandewalle, “Introducing research issues for next generation
Java-based smart card platforms,” in Proc. Smart Objects Conference (sOc’2003),
(Grenoble, France), 2003.

4. L. Burdy, A. Requet, and J.-L. Lanet, “Java applet correctness: A developer-
oriented approach,” in FME 2003: Formal Methods: International Symposium of
Formal Methods Europe (K. Araki, S. Gnesi, and D. Mandrioli, eds.), vol. 2805,
pp. 422–439, 2003.

5. T. Lindholm and F. Yellin, Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., 1999.

6. K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma,
T. Onodera, H. Komatsu, and T. Nakatani, “Design, implementation, and evalua-
tion of optimizations in a just-in-time compiler,” in JAVA ’99: Proceedings of the
ACM 1999 conference on Java Grande, (New York, NY, USA), pp. 119–128, ACM
Press, 1999.

7. T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham, and S. A.
Watterson, “Toba: Java for applications: A way ahead of time (wat) compiler,” in
Third USENIX Conference on Object-Oriented Technologies (COOTS), (Portland,
Oregon), University of Arizona, June 1997.

8. G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa: a flexible and efficient
java environment mixing bytecode and compiled code,” in Third USENIX Con-
ference on Object-Oriented Technologies (COOTS), Portland, Oregon: USENIX,
June 1997.

9. “JC Virtual Machine.” http://jcvm.sourceforge.net/.
10. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co, “Soot

- a java optimization framework,” in Proceedings of CASCON 1999, pp. 125–135,
1999.

11. J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau, “Annotating the Java byte-
codes in support of optimization,” Concurrency: Practice and Experience, vol. 9,
no. 11, pp. 1003–1016, 1997.

12. A. Azevedo, A. Nicolau, and J. Hummel, “Java annotation-aware just-in-time (ajit)
complilation system,” in JAVA ’99: Proceedings of the ACM 1999 conference on
Java Grande, (New York, NY, USA), pp. 142–151, ACM Press, 1999.

13. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Mller, and
J. Kiniry, JML Reference Manual, July 2005.

14. M. Pavlova, “Java bytecode logic and specification,” tech. rep., INRIA, Sophia-
Antipolis, 2005. Draft version.

15. B.Meyer, Object-Oriented Software Construction. Prentice Hall, 2 revised ed., 1997.
16. “Java In The Small.” http://www.lifl.fr/RD2P/JITS/.

