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Abstract. Usually, testing smart card software is carried-out by specialized en-
gineers in a proprietary language. Testing represents generally half of smart 
card development effort. With the increasing use of semi-formal and formal 
modeling languages, such as UML, and the emergence of automatic test gen-
erators in the industry, we have studied a way to adapt these techniques for 
smart card. In this article, we present an automatic test generator, named 
AGATHA, and its architecture, which can handle UML specifications. Then, 
we suggest a way to model (U)SIM smart card functionalities in UML. We use 
the test generator on our (U)SIM smart card UML models and automatically 
produce our first test cases. 

1   Introduction 

It’s not necessary to remind that in any industry, the later a bug is discovered in a 
development process, the more it costs to correct it. Today, in the smart card industry, 
half of the effort of the development activity is devoted to testing. Testing includes: 

- unit testing, carried out during the programming activity by programmers, 
which ensures that each elementary item has a correct behaviour and rules out 
basic programming errors, 

- α-testing, carried out after the programming activity by α-testers, which en-
sures that smart cards have a correct behaviour compared with the functional-
ities described in the specifications, 

- β-testing, carried out after α-tests by β-testers, which ensures that smart cards 
in mobile phones, in payment machines or in any other devices also comply 
with the specifications. 

In the context of this long and complex process, handwritten by programmers and 
testers, we would like to study the possible automatic generation of a part of these 
tests. Our first idea, described in this article, consists in taking into account the α-test 
activity. By automatic test generation, we expect to increase the coverage and the 
quality of the tests in order to ensure a complete validation of the specification. 

Moreover, with the increase of system complexity, it’s difficult between two ver-
sions of a project to know which tests evolve, which ones are obsolete, etc. It’s also 
difficult for a non-tester to understand produced tests. Thus, our idea is to combine 



automatic test generation with a simple formalism to represent test specifications and 
their evolution. 

Methods and tools required for validation are not recent, and a lot of researches 
has been done to try to fill the deficiency. For test generation, we can take as exam-
ples [11], [19], [2] and [32]. Semi-formal and formal methods, such as UML [30], B 
[1] or SDL [20], allow an abstract design for a behavioural specification of the system 
under test. Thanks to simple, expressive and abstract notations, textual or graphical, 
we can easily use these types of formalisms to design smart cards. Moreover, these 
formalisms allow the use of existing validation tools. 

The last few years, several studies were conducted on design and validation of 
smart card software. For example, [8] represents results on the CEPS standard, [3] 
shows validation results on the GSM 11.11 standard [12], [31] used automated test 
generation on the WAP Identity Module, [5] describes techniques which can be apply 
at different levels of smart card software, [6] represents an automatic test generation 
with the LEIRIOS tool [26] from B specifications, [29] presents a method to auto-
matically generate test for Java card applets and [7] offers a semi formal model of 
Java Card applications in UML. 

In our context, we would like to use a more simple and graphical formalism, which 
can be used by any engineer. With the emergence of UML in industry and the multi-
ple types of diagrams offered, this formalism represents a good alternative. In the 
panel of automatic test generators (see [33] for examples of automatic test genera-
tors), we were interested by the symbolic approach of the AGATHA1 tool [17], [25], 
[34], [4], [28] and [14], developed at the CEA2-List. 

Therefore, the article is organized as follows. First, we present the AGATHA tool 
and the automatic test generation. Second, after presenting how we can model a part 
of smart card in UML, we describe the use of AGATHA on our semi-formal models 
and present our first results on a PIN command. We finally conclude and explain our 
future actions. 

2   AGATHA, an automatic test generator 

There exists several ways to validate system specifications. A first one consists in 
theorem proving and model checking [9]. These kinds of techniques have success-
fully proved their use for the validation of critical systems. But two major drawbacks 
of these techniques remain: for model checking, the combinatorial explosion due to 
variable domains, and, for theorem proving, the need of high-level skills from the 
developer, who must be aware of formal method foundations. 

Automatic test generation is another way to tackle the problem of system valida-
tion. Compliance testing is the most well known part of this domain, which consists 
in verifying that a system matches its specification. Our first purpose is to validate a 
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system specification, and generate tests in order to execute them on the specification 
and possibly on the system itself. 

Most validation tools use enumerative techniques and are therefore limited by the 
combinatorial explosion problem when trying to exhaustively identify the numerical 
behaviours of a system. Several validation tools focus on verification on particular 
aspects: test purpose [15], temporal properties [36], etc. 

The solution proposed by AGATHA is exhaustive symbolic path coverage. Test 
generation allows detecting specification deadlocks, unreachable transitions, losses of 
messages, etc. Moreover, the AGATHA toolset is designed to be as transparent as 
possible in order to reduce the effort of detection and comprehension of errors. In that 
context, it is not necessary to be an expert in formal methods, as for model checkers 
or theorem provers, to interpret AGATHA results and to correct specifications or 
implementations. 

The following subsections present the AGATHA architecture and an overview of 
the different academic techniques used in order to reach minimal exhaustive path 
coverage. 

2.1   General principles 

The AGATHA approach intends to help conception and validation of formal specifi-
cations modelled with communicant automata systems. Thus, with symbolic execu-
tion techniques, AGATHA computes the exhaustive symbolic behaviour graph of the 
specification. Then, from this graph, it generates test cases used to debug the specifi-
cation or to validate the implementation, along with an incremental conception proc-
ess. 

Figure 1 details the AGATHA general architecture. 
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 Fig. 1. AGATHA general architecture 

The tool treats automata specifications and translates it into its internal language, 
called STGA (Symbolic Transition Graph with Assignment) [27]. This translation 
allows the symbolic execution of the specification as defined in [18]. Thus, it allows 
obtaining an exhaustive behaviour graph of the specification. Thanks to reduction 
techniques defined in [25] and in [34], with the help of the rewriting tool Brute [21], 
the graph is reduced in a particular STGA. On this particular STGA, AGATHA uses 



a constraint solver Omega [23] providing for each path of the graph corresponding to 
a symbolic behaviour, one or more numerical test cases. 

2.2   Main principle: symbolic execution 

At the beginning, symbolic execution has been proposed in [24] and in [10] to con-
struct structural tests for sequential programs. The main idea of symbolic execution 
consists to use symbols as entry data of the program, denoting any entry data, instead 
of numerical values and to interpret the entry language in a way that allows manipu-
lating symbolic expressions instead of numerical ones. AGATHA uses an adaptation 
of symbolic execution to generate tests from specifications based on automata. 

The input language of AGATHA is based on the STGA formalism [27], which is a 
symbolic transition graph. Like graph formalisms, a STGA includes states and transi-
tions. This type of graph allows representing in an abstract manner all behaviours of a 
specification. Transitions represent events that allow the evolution of the system: 
events can be received or emitted. Triggering a transition can be conditioned by a 
logical expression and system variables can evolve. 

 
STGA example. Figure 2 presents a STGA example of an elevator system. It con-

tains four states and seven transitions. The initial state is Q0. 
 

 

as≠cs,
cs:=cs+d 

Q0 

Q1 

Q2 

Q3 

ask?(as) 

as=cs,d:=0 

 

arrived! 

cs<as,d:=1 as>cs,d:=-1 

as=cs;d:=0 

 
 

Fig. 2. STGA sample of an elevator system 

To trigger the output transition of Q0, the elevator system awaits the reception of 
the message ask, denoted ask?(as), which represents a call to a stage by the user in 
the cabin which is stored in the as variable. After the triggering of the transition, the 
system is in the state Q1. Q1 has three output transitions towards Q2. The left one is 
conditioned by the logical expression: cs<as meaning the asked stage as is over (< 
sign) the current stage represented by the cs variable. The right one is conditioned by: 
cs>as meaning the asked stage is under the current stage. The middle one is condi-
tioned by: cs=as meaning the asked stage is equal to the current one. In the first case, 
the elevator moves up the cabin, which is materialized by the operation d:=1 (d repre-
sents the direction), while in the second case, the elevator moves down the cabin, 



which is materialized by d:=-1. In the third one, the elevator leaves the cabin at its 
current stage, which is materialized by d:=0. Q2 has two outgoing transitions: one 
with Q2 for target and one with Q3. The transition with Q2 for target is conditioned by 
the logical expression: as≠cs and increases the current stage cs with the direction d, 
materialized by the operation cs:=cs+d. This transition means that as long as the 
current stage is different from the asked stage, the cabin has to continue to move up 
or down. The second transition is conditioned by: as=cs and initializes the direction d 
to 0. This transition means that if the current stage is equal to the asked stage, the 
cabin is stopped. The Q3 outgoing transition allows to come back to Q0 and tells the 
user in the cabin that the elevator has reached the asked stage, which is represented 
by the emission of the message arrived, denoted arrived!. 

◊ 
 
In the AGATHA context, [25] redefines symbolic execution for STGA using the 

approach defined in [19]. Thus, symbolic execution simulates the behaviour of a 
STGA specification in assigning symbolic values to variables instead of numerical 
ones. Then, the specification is executed according to the semantics of each instruc-
tion and communication. 

The general principle of symbolic execution consists in computing symbolic states 
of a system, each of them being denoted by a couple (guard, symbolic memory), 
where: 

- guard is the condition needed to reach this symbolic state, 
- symbolic memory is a function which associates to each variable of the 

system an expression based on symbolic input values. 
The expression associated to a variable in a symbolic state corresponding to an 

execution path, from the initial state of the system, is computed by interpreting one by 
one instructions met all along this execution path. The associated guard is composed 
of the conjunction of all the execution conditions (denoted by constraints on symbolic 
input values) met all along the considered execution path. This guard is called a path 
condition or PC. To simplify this type of expression, AGATHA uses the simplifier 
Brute [21] extracted from CafeOBJ tool of JAIST3. This is a rewriting tool, which 
transforms terms in normal forms with the help of a set of rewriting rules and evalua-
tion strategies defined by the AGATHA user. 

The result of a symbolic execution is a symbolic execution tree where each path 
represents the symbolic evolution of all variables according to initial symbolic values. 
Each path is a particular behaviour of the STGA specification. 

 
Symbolic execution example. In our example of the elevator system presented in 

Figure 2, an extract of the symbolic execution tree computed by the AGATHA sym-
bolic execution is presented in Figure 3. 

At the initialization, the STGA specification obtained by symbolic execution is in a 
state corresponding to the initial state Q0 of the elevator system. The elevator specifi-
cation manipulates the variables: as, cs and d on which there are no initial constraints. 
A symbolic constant is assigned to each variable: a0, b0 and c0 (resp.) on which there 
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are no initial constraints, denoted by the condition true. The elevator system can 
evolve if it receives the ask message with a value. This value is stored in the variable 
as and is supposed to have the symbolic value a1. a1 is assigned to the as variable. As 
the trigger of the transition is not conditioned, the condition to reach this second sym-
bolic state is always true (true ∧ true = true). 

 
 

ed≠ec,ec:=ec+d 

Q0,true,{as=a0,cs=b0,d=c0} 

Q1,true,{as=a1,cs=b0,d=c0} 

ask?(as) 

Q2,b0>a1,{cs=a1,as=b0,d=-1} 

cs>as,d:=-1 

Q2,b0>a1∧∧∧∧b0≠a1,{cs=a1,as=b0-1,d=-1} 

Q2,b0=a1,{as=a1,cs=b0,d=0} 

cs=as,d:=0 

Q2,b0>a1∧∧∧∧b0≠a1∧∧∧∧b0-1≠a1, 
{as=a1,cs=b0-2,d=-1} 

cs=as,d:=0 cs≠as,cs:=cs+d 

Q3,b0>a1∧∧∧∧b0≠a1∧∧∧∧b0-1=a1, 
{as=a1,cs=b0-1,d=0} 

arrived! 

Q0,b0>a1∧∧∧∧b0≠a1∧∧∧∧b0-1=a1, 
{as=a1,cs=b0-1,d=0} 

Q2,b0<a1,{as=a1,cs=b0,d=1} 

cs<as,d:=1 

 
 

Fig. 3. Extract of the symbolic execution of the elevator system 

To leave the state Q1, there are three transitions. So to leave the symbolic state Q1, 
there are also three transitions. 

As the first transition is conditioned by the expression: cs<as, and, as cs = b0 and 
as = a1 in this state, the condition to reach the symbolic state Q2 corresponds to 
b0<a1. On this transition, 1 is also assigned to d, which is reflected in the symbolic 
state. 

As the second transition is conditioned by the expression: cs>as, the condition to 
reach the symbolic state Q2 corresponds to b0>a1 and –1 is assigned to d. 

As the third transition is conditioned by the expression: cs=as, the condition to 
reach the symbolic state Q2 corresponds to b0=a1 and 0 is assigned to d. 

To leave the symbolic state Q2 where d=-1, two transitions have to be considered. 
The first one is conditioned by: as=cs and the second one by: as≠cs. However, as 
b0>a1, predictably as≠cs and only the second transition can be triggered. The output 
transition of the symbolic state Q2 where d=-1 leads to another symbolic state Q2 
reached if the condition: b0>a1 and as≠cs is verified and such as as=a1, cs=b0-1 and 
d=-1. In this state, we can also trigger the two same transitions. As the symbolic 
value of cs evolves, the two transitions can be triggered. The first one leads to the 
symbolic state Q3 and the second one to another symbolic state Q2. The trigger of the 
first transition implies that the condition to verify to reach the symbolic state Q3 is: 
b0>a1 and as≠cs and a1=b0-1 and as=a1, cs=b0-1 and d=0. To leave this state the 
only transition is conditioned by the emission of the message arrived and allows the 
system to come back to state Q1. 



The other steps of the computation are based on the same principle. 
◊ 

2.3   Further techniques 

As the symbolic execution tree represents all behaviours of a specification, its con-
struction is subordinated to reduction procedures in order to eliminate as many re-
dundant paths as possible. There exists different tactics such as: 

- use a classical graph coverage, as for example a transition coverage (the 
symbolic execution stops when all the transitions are triggered once if 
possible), a state coverage, a path coverage, etc, 

- cut “empty” path conditions when detected both from a Boolean criteria 
or polyhedral criteria. AGATHA uses the Omega constraint solver, 
based on Presburger theory [23] to achieve that, 

- avoid computation of a path deductible from another modulo an inter-
leaving detection less sophisticated than in [35]: an internal transition 
without any temporal constraint with other transitions, 

- compute comparison procedures between symbolic nodes and, if neces-
sary for the current calculated nodes, refer to an already existing sym-
bolic node. 

These procedures are necessary to avoid the state explosion problem. 
AGATHA uses several heuristics to compute comparison procedures for each 

symbolic node: 
- an equality procedure: two symbolic nodes are considered as equivalent 

if the corresponding control nodes are the same and the symbolic guards 
are syntactically equal, 

- an inclusion procedure: two symbolic nodes are considered as equiva-
lent if the corresponding control nodes are the same and if the polyhe-
dron induced by variable domains defined by the guard of one is in-
cluded in the other polyhedron, 

- an equivalence procedure: two symbolic nodes are considered as equiva-
lent if the corresponding control nodes are the same and if polyhedrons 
induced by variable domains defined by guards are equal. 

As symbolic expressions of variables may also quickly grow, a last simplification 
procedure must be applied “on-the-fly” in order to shorten expression and to detect 
useless paths [16]. We use the simplifier Brute, based on rewriting techniques. These 
rewriting rules actually composed of more than three hundred rules, allow both to 
maintain symbolic expressions within a reasonable size range and to obtain normal 
forms of expressions, easing the comparison between expressions needed by algo-
rithms such as comparison procedures. 

Other tactics and reduction techniques have been introduced in [34] and in [33]. 
Generally, a mix of the different tactics is used to obtain the minimal result required 
to guarantee the entire coverage of the specification. 



2.4   Test extraction 

Symbolic test cases are extracted from the symbolic execution tree. As each path of 
the tree represents a symbolic behaviour of the specification, a test case is extracted 
from each leaf of this symbolic tree. From each symbolic test case, one or more nu-
merical test cases may be produced with the help of constraint resolution techniques 
used on the path condition associated to the tree leaves. The constraint solver is used 
to extract the symbolic value of each variable with the associated path condition and 
to generate numerical values, which respect the path condition. The choice of the 
constraint solver connected to AGATHA depends on the applicative context. For 
example, we can use the Omega tool [23]. 

 
Test extraction example. With the symbolic execution of the elevator system, Fig-

ure 3, we identify the path: Q0Q1Q2Q2Q3Q0, which represents the symbolic test case 
such as the asked stage, is under the current stage of one stage. To generate a numeri-
cal test case corresponding to this symbolic test case, we have to find numerical val-
ues for: a0, a1, b0 and c0 which verify the path condition: b0>a1 ∧ b0≠a1 ∧ b0-1=a1. 

For example, we can choose: a0 = 2, a1 = 3, b0 = 2 and c0 = 0. 
Any other series of numerical values verifying the path condition is valid and 

forms a possible numerical test case. Techniques used by AGATHA allow consider-
ing that every numerical test case contained in a symbolic one are equivalent. So, 
only one numerical test case by each symbolic one is required to cover all the specifi-
cation. 

Moreover, note that the size of our elevator, which is not defined, doesn’t step in 
the symbolic computation. Thus, our specification allows representing an elevator 
with two, three or more stages. 

◊ 
 

These test cases can be simulated either on industrial tools that allow generating 
specifications or on implementations. It often requires an adjustment to the adequate 
formats. 

3.   Application to (U)SIM smart card 

The aim of this article is to study the utility of the AGATHA tool in the smart card 
environment. To begin our experience, we shall limit our domain to (U)SIM smart 
cards. For (U)SIM smart cards, there are different standards, which describe a lot of 
card features. Function specifications are described in the 3GPP 11.11 standard [12] 
and tests on these functions are described in the 3GPP 11.17 standard [13]. For Ober-
thur Card Systems, a test case is a sequence of instructions in a proprietary language, 
using hexadecimal codes. 

In this section, we propose a UML representation for test cases of (U)SIM smart 
card behaviours. Then, we present results obtained by the application of AGATHA 
on these UML models. 



3.1   A UML representation for (U)SIM smart card tests 

As smart card tests consist in sequences of instructions and as we would like to repre-
sent smart card tests and smart card behaviours, we propose to use UML state dia-
grams. For the moment, we only use this type of diagram. It is very intuitive and can 
be learned very quickly even by a UML uninitiated: it’s a sort of automata language, 
with states and transitions. The trigger of a transition can be conditioned by a mes-
sage reception, a message emission, a logical expression, etc. For our work, we only 
use a sub-part and not the entire power of state diagram notations. 

 
Suppose that we would like to represent a test case from the 3GPP 11.17 standard. 

As for a function, the test is a sequence of instructions. Our corresponding UML state 
diagram reflects this sequence. In some instances, we can identify sub-parts in a test 
case and represent these sub-parts in the UML state diagram, as described in the fol-
lowing example. 
 

The CHANGE CHV4 function example: UML representation for test cases. Above 
all, we recall the CHANGE CHV specification extracted of the 3GPP 11.11 standard 
([12] p.34): 

The CHANGE CHV function assigns a new value to the relevant CHV sub-
ject to the following conditions being fulfilled: CHV is not disabled; CHV is 
not blocked. 
The old and new CHV will be presented. 
1) If the old CHV presented is correct, the number of remaining CHV at-
tempts for that CHV will be reset to its initial value 3 and the new value for 
the CHV becomes valid. 
2) If the old CHV presented is false, the number of remaining CHV attempts 
for that CHV will be decremented and the value of the CHV remains un-
changed. After 3 consecutive false CHV presentations, not necessarily in the 
same card session, the respective CHV is blocked and the access condition 
can never be fulfilled until the UNBLOCK CHV function has been per-
formed successfully on the respective CHV. 
Input: indication CHV1, old CHV1, new CHV1. 
Output: none. 

The test case of the CHANGE CHV function, extracted from the 3GPP 11.17 stan-
dard (see [13] pp.65-67), is composed of: 

1) An incorrect CHANGE CHV, steady of a status verification: how much 
attempts remained, a correct CHANGE CHV and a status verification, 
2) Two incorrect CHANGE CHV, steady of a reset, an incorrect CHANGE 
CHV, a reset, an incorrect CHANGE CHV and a correct UNBLOCK CHV, 
3) A correct DISABLE CHV, an incorrect CHANGE CHV and a correct 
ENABLE CHV. 

                                                           
4 chv: card holder verification information; access condition used by the SIM for the verifica-

tion of the identity of the user. 



A correct function is characterized by a returned status 90 00 and an incorrect one 
is characterized by a returned status 98 04 or 98 40, this one meaning that the smart 
card is blocked. Status verification is done by comparison of expected data and effec-
tive data. 

The corresponding state diagram is presented in Figure 4. The initial state is •. We 
suppose that the output transition from the initial state to state A contains data for 
initializing smart card such as the personalization. A holds two output transitions. 

 
 

A 

 [used_chv1=chv1]/STATUS:=90 00 

B C 

 disable_chv(chv1_ref,used_chv1) 
[used_chv1!=chv1]/STATUS:=98 04 

 change_chv(chv1_ref,used_chv1,new_chv1)

STATUS:=90 00 

D E 

status(22) 

[used_chv1!=chv1]/STATUS:=98 04 
 change_chv(chv1_ref,used_chv1,new_chv1)

<<compare>> 

 change_chv(chv1_ref,used_chv1,new_chv1) 
 [used_chv1!=chv1]/STATUS:=98 04 

H G 

powerOn() 

 change_chv(chv1_ref,used_chv1,new_chv1)
 [used_chv1!=chv1]/STATUS:=98 40

J K 

 status(22)/STATUS:=90 00 
<<compare>> 

L 

powerOn() 

 change_chv(chv1_ref,used_chv1,new_chv1)
 [used_chv1!=chv1]/STATUS:=98 40

M 
 unblock_chv(chv1_ref,used_unbl_chv1,new_chv1)

 [used_unbl_chv1!=unbl_chv1]/STATUS:=90 00

N 

 [used_chv1=chv1]/STATUS:=90 00 
 disable_chv(chv1_ref,used_chv1) 

F 

 [used_chv1=chv1]/STATUS:=90 00 
 enable_chv(chv1_ref,used_chv1) 

I 

 
 

Fig. 4. The 3GPP 11.17 test of the CHANGE CHV function 
 
The right one to C is conditioned by the reception of the message  

disable_chv(chv1_ref, used_chv1) which represents the DISABLE CHV function. 
This transition is also conditioned by the logical expression used_chv1 = chv1, which 
represents the fact that the chv used by DISABLE CHV, is equal to the chv of the 
card. The expected status for this reception is 90 00. Next transitions represent the 
sub-case 3 of the CHANGE CHV test. 

The left one to B is conditioned by the reception of the message 
change_chv(chv1_ref, used_chv1, new_chv1), which represents the CHANVE CHV 
function. This transition is also conditioned by the logical expression  
used_chv1 != chv1 which represents the fact that the chv used by CHANGE CHV is 
not equal to the chv of the card. The expected status for this reception is 98 04. C 
holds two output transitions. The right path represents the sub-case 1 of the 
CHANGE CHV test and the left one the sub-case 2. 

A status verification is represented by a transition conditioned by the reception of 
message status(n) where n represents the size of the data to verify, in byte, 22 for our 



example. The expected status for this reception is 90 00. The data to compare are 
given in the <<compare>> stereotype. For example, on the transition from B to E, 
the <<compare>> stereotype contains: xxxx xxxx xxxx xx xxxxxx xx xx xx xx xx xx xx 
xx 83 xxxxxx which means the 19th byte is 83 and other bytes are any value, denoted 
x. 

◊ 

3.2   A UML representation for smart card specification 

With a UML state diagram, we can also represent a function specification. This dia-
gram contains all the behaviours of a function in the same way as for a test. This 
abstract vision allows representing a function specification exhaustively. For exam-
ple, on the CHANGE CHV function, this diagram has to represent a case with a direct 
correct CHANGE CHV, which is not considered in Figure 4. 

 
The CHANGE CHV function example: UML representation for specification. To 

represent the CHANGE CHV specification exhaustively, we consider the 3GPP 11.11 
standard given before. The corresponding state diagram is presented in Figure 5. 

 
 

A 

B 

C 

 /try:=3 

 status(22)/STATUS:=90 00 
 <<compare>> 

powerOn()

change_chv(chv1_ref,used_chv1,new_chv1)  disable_chv(chv1_ref,used_chv1) 

change_chv(chv1_ref,used_chv1_new_chv1) 
/STATUS:=98 08 

 enable_chv(chv1_ref,used_chv1) 
 [used_chv1=chv1]/STATUS:=90 00;try:=3 

 [used_chv1=chv1]/STATUS:=90 00 

 [used_chv1 != chv1 and try =1] 
 /STATUS:=98 40;try:=0 

[used_chv1 != chv1 and try >1] 
/STATUS:=98 04;try:=try-1 

[used_chv1 = chv1] 
/STATUS:=90 00;try:=3 

 status(22)/STATUS:=90 00
 <<compare>>

 change_chv(chv1_ref,used_chv1,new_chv1)
 /STATUS:=98 40 

unblock_chv(chv1_ref,used_unbl_chv1,new_chv1) 
[used_unbl_chv1=unbl_chv1]/STATUS:=90 00;try:=3 

 
 

Fig. 5. Example of an abstract state-transition diagram for the CHANGE CHV functionalities 
 

As we abstract the behaviour of the function, we introduce a counter try, which 
represents the number of attempts to change a chv. The initial state is •. The output 
transition of the initial state is improved with the initialization of the try variable to 3 
as mentioned in the specification. 

The sub-case 1 of the specification is represented with bold lines: a 
change_chv(chv1_ref, used_chv1, new_chv1) message is received. The used_chv1 is 
equal to chv1 so the expected status is 90 00, the chv1 is changed to new_chv1 and we 
can verify the status by the transition form A to A with the status message. As this 
diagram is an abstraction of the specification, the <<compare>> stereotype contains: 
xxxx xxxx xxxx xx xxxxxx xx xx xx xx xx xx xx xx (80+try) xxxxxx. 



The sub-case 2 of the specification is represented with normal lines: a change_chv 
is received. The used_chv1 is not equal to chv1 so the expected status is 94 04 if try is 
different from 1 and is 98 40 if try is equal to 1. If status is 94 04, the transition goes 
in A and we can verify the status or reset the session card, which has no impact on the 
variable try and so on the remaining number of attempts to change. If the status is 98 
40, the card is blocked and the transition goes in C where we can verify the status and 
receive change_chv messages. As the card is blocked, nothing appends. Except if an 
unblock_chv(chv1_ref, used_unblock_chv1, new_chv1) message is received with 
used_unblock_chv1 equal to unblock_chv1. 

We improved the specification with a behaviour described in the 3GPP 11.17 test 
but missing in the 3GPP 11.11 specification: the use of a correct DISABLE CHV 
before a CHANGE CHV. This behaviour is designed with dashed lines. 

◊ 

3.3   Automatic test generation for UML smart card model 

In part 2.2, we present how the AGATHA tool can generate automatically test cases. 
We applied this tool to our UML diagrams. 

Firstly, as our representation of smart card test is very sequential, we use a cover-
age of transitions to compute a set of symbolic test cases. In that case in our example, 
AGATHA computes three paths. AGATHA extracts three numerical test cases. For a 
card that validates the 3GPP 11.17 tests, it also validates these automatically gener-
ated tests. 

Secondly, for our representation of smart card specification, we use a more com-
plicated criterion, the inclusion one to cover all the symbolic behaviours. In that case 
in our example, AGATHA computes more than two hundred paths, each of them 
corresponding to a symbolic behaviour. On a card that validates the 3GPP 11.17 tests, 
it has also to validate these automatically generated tests. It could be impressive to 
pass two hundred tests for a simple function but we test all possible behaviours of the 
CHANGE CHV function. Current works on AGATHA will certainly permit to reduce 
this number of tests with some optimization associated to the inclusion criteria. But in 
our case this reduction will not be very important due to the fact that the number of 
distinct symbolic behaviours associated to our example remains very close to the 
present one calculated by AGATHA: this is the price of exhaustiveness. 

4   Related work and conclusion 

In this article, we have summarized a solution to automatically generate tests for 
smart card functions. Assuming the validity of our approach, we have presented an 
automatic test generator, AGATHA based on symbolic execution techniques. We 
have also presented a way to design smart card functions with UML state diagram. 
We have used AGATHA on our UML diagrams and exposed obtained results. This 
first experience shows that it is possible to generate tests for smart card functions in 
an automatic way. Surely, and this is our first objective, our approach has to be used 



in a real context and in a complete development cycle of a smart card to completely 
improve its efficiency. We could reasonably hope an increase of the coverage and 
quality of test for each function taken separately. 

Our approach is closed to the one developed in STG [22]. However, in STG, the 
test purposes must be defined by an expert. In that case, we may obtain « clever » test 
purposes but we have no way to measure the specification coverage. On the contrary, 
AGATHA suggests a limited number of predefined test purposes linked to structural 
or semantical coverage criteria. In that case, the set of generated tests allows to con-
trol with a great confidence the level of specification coverage. 

LTG, the LEIRIOS test generator [26], uses classical structural coverage criteria 
which limit the combinatory of generated test cases. AGATHA also proposes criteria 
based on the analysis of the specification behaviours. Such criteria may be more accu-
rate when generating test cases but can also be more subject to combinatory explo-
sion. To avoid this problem, we are currently introducing some heuristics which al-
lows to reasonably limit the number of generated test cases. 

The use of UML state diagrams to design smart card behaviours allows us to con-
sider more global behaviours that mix different smart card functions. Then we test the 
card rigorously and monitor the results. We also could consider atypical (or negative) 
tests that allow verifying smart card reactions outside of the admissible input domain 
defined by the specification. In this context, we could ensure a complete validation of 
a smart card. 

Last point, as AGATHA is not only a test generator, we consider validating smart 
card properties corresponding to a security policy as defined for example in common 
criteria. In this context, we could ensure security properties of smart cards. 
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