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Abstract. Usually, testing smart card software is carrietimuspecialized en-
gineers in a proprietary language. Testing reptssganerally half of smart
card development effort. With the increasing usesefi-formal and formal

modeling languages, such as UML, and the emergeheatomatic test gen-
erators in the industry, we have studied a waydapa these techniques for
smart card. In this article, we present an autamggst generator, named
AGATHA, and its architecture, which can handle UlMpecifications. Then,

we suggest a way to model (U)SIM smart card fumetiies in UML. We use

the test generator on our (U)SIM smart card UML eisdcand automatically
produce our first test cases.

1 Introduction

It's not necessary to remind that in any industhg later a bug is discovered in a
development process, the more it costs to corretoday, in the smart card industry,
half of the effort of the development activity iswibted to testing. Testing includes:

- unit testing, carried out during the programmiagtivity by programmers,
which ensures that each elementary item has aatdredaviour and rules out
basic programming errors,

- o-testing, carried out after the programming actiiy a-testers, which en-
sures that smart cards have a correct behavioupa@a with the functional-
ities described in the specifications,

- PB-testing, carried out after-tests by-testers, which ensures that smart cards
in mobile phones, in payment machines or in angmtlevices also comply
with the specifications.

In the context of this long and complex processdmaitten by programmers and
testers, we would like to study the possible autargeneration of a part of these
tests. Our first idea, described in this articlengists in taking into account thetest
activity. By automatic test generation, we expeciricrease the coverage and the
quality of the tests in order to ensure a complatilation of the specification.

Moreover, with the increase of system complexity, difficult between two ver-
sions of a project to know which tests evolve, whimes are obsolete, etc. It's also
difficult for a non-tester to understand producesits. Thus, our idea is to combine



automatic test generation with a simple formalismepresent test specifications and
their evolution.

Methods and tools required for validation are restent, and a lot of researches
has been done to try to fill the deficiency. Fattgeneration, we can take as exam-
ples [11], [19], [2] and [32]. Semi-formal and faehmethods, such as UML [30], B
[1] or SDL [20], allow an abstract design for a babaral specification of the system
under test. Thanks to simple, expressive and albstraations, textual or graphical,
we can easily use these types of formalisms togdesinart cards. Moreover, these
formalisms allow the use of existing validationIso

The last few years, several studies were conduatedesign and validation of
smart card software. For example, [8] represerdali® on the CEPS standard, [3]
shows validation results on the GSM 11.11 stan@®?{ [31] used automated test
generation on the WAP Identity Module, [5] descsilbechniques which can be apply
at different levels of smart card software, [6]negents an automatic test generation
with the LEIRIOS tool [26] from B specifications, [PBresents a method to auto-
matically generate test for Java card applets @haffers a semi formal model of
Java Card applications in UML.

In our context, we would like to use a more simgate graphical formalism, which
can be used by any engineer. With the emergentMaf in industry and the multi-
ple types of diagrams offered, this formalism représ a good alternative. In the
panel of automatic test generators (see [33] famgptes of automatic test genera-
tors), we were interested by the symbolic apprazdhe AGATHA! tool [17], [25],
[34], [4], [28] and [14], developed at the CERAist.

Therefore, the article is organized as follows. tFine present the AGATHA tool
and the automatic test generation. Second, afesrepting how we can model a part
of smart card in UML, we describe the use of AGATHA @ur semi-formal models
and present our first results on a PIN command finédly conclude and explain our
future actions.

2 AGATHA, an automatic test generator

There exists several ways to validate system spatidins. A first one consists in
theorem proving and model checking [9]. These kiofitechniques have success-
fully proved their use for the validation of craicsystems. But two major drawbacks
of these techniques remain: for model checking,cttrabinatorial explosion due to
variable domains, and, for theorem proving, thednekhigh-level skills from the
developer, who must be aware of formal method fatiods.

Automatic test generation is another way to tatkée problem of system valida-
tion. Compliance testing is the most well knowntpdrthis domain, which consists
in verifying that a system matches its specifigati@ur first purpose is to validate a

1 AGATHA : “Atelier de Génération Automatique de Tétolistiques a partir d’Automates” —
Automatic holistic tests generation framework fotcamates
2 CEA: “Commissariat a 'Energie Atomique” — Frencbratc energy reseach center



system specification, and generate tests in omexécute them on the specification
and possibly on the system itself.

Most validation tools use enumerative techniques ane therefore limited by the
combinatorial explosion problem when trying to exstavely identify the numerical
behaviours of a system. Several validation tootai$oon verification on particular
aspects: test purpose [15], temporal propertie £36.

The solution proposed by AGATHA is exhaustive symbalath coverage. Test
generation allows detecting specification deadlpakseachable transitions, losses of
messages, etc. Moreover, the AGATHA toolset is daesigto be as transparent as
possible in order to reduce the effort of detectiod comprehension of errors. In that
context, it is not necessary to be an expert imédmrmethods, as for model checkers
or theorem provers, to interpret AGATHA results andcorrect specifications or
implementations.

The following subsections present the AGATHA archiiee and an overview of
the different academic techniques used in orderesmh minimal exhaustive path
coverage.

2.1 General principles

The AGATHA approach intends to help conception ar@laton of formal specifi-
cations modelled with communicant automata systdrhas, with symbolic execu-
tion techniques, AGATHA computes the exhaustive sylimlbehaviour graph of the
specification. Then, from this graph, it generatet tases used to debug the specifi-
cation or to validate the implementation, alonghwah incremental conception proc-
ess.

Figure 1 details the AGATHA general architecture.
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Fig. 1. AGATHA general architecture

The tool treats automata specifications and tragslatinto its internal language,
called STGA (Symbolic Transition Graph with Assignmef27]. This translation
allows the symbolic execution of the specificatasdefined in [18]. Thus, it allows
obtaining an exhaustive behaviour graph of the ifipatton. Thanks to reduction
techniques defined in [25] and in [34], with thdphef the rewriting tool Brute [21],
the graph is reduced in a particular STGA. On thigipular STGA, AGATHA uses



a constraint solver Omega [23] providing for eaakhpof the graph corresponding to
a symbolic behaviouone or more numerical test cases.

2.2 Main principle: symbolic execution

At the beginning, symbolic execution has been psedan [24] and in [10] to con-
struct structural tests for sequential programs. laé idea of symbolic execution
consists to use symbols as entry data of the pmagdanoting any entry data, instead
of numerical values and to interpret the entry leagge in a way that allows manipu-
lating symbolic expressions instead of numericasoAGATHA uses an adaptation
of symbolic execution to generate tests from sptibns based on automata.

The input language of AGATHA is based on the STGA faism [27], which is a
symbolic transition graph. Like graph formalisms$EGA includes states and transi-
tions. This type of graph allows representing irabsatract manner all behaviours of a
specification. Transitions represent events thaiwalthe evolution of the system:
events can be received or emitted. Triggering asitian can be conditioned by a
logical expression and system variables can evolve.

STGA examplerigure 2 presents a STGA example of an elevatstesy. It con-
tains four states and seven transitions. The irstak is Q

{

Qre—————
i ask?(as)

cs<as,d:=1 Q s>cs,d:=-1

as=cs;d:=0

as#cs 2
cs::cs+c<:‘l as=cs,d:=0
Q™ arrived!

Fig. 2. STGA sample of an elevator system

To trigger the output transition ofy,Xhe elevator system awaits the reception of
the messagask denotedask?(as) which represents a call to a stage by the user in
the cabin which is stored in tlas variable. After the triggering of the transitiche
system is in the state;QQ; has three output transitions towards The left one is
conditioned by the logical expressiate<as meaning the asked stageis over (<
sign) the current stage represented byctheariable. The right one is conditioned by:
cs>asmeaning the asked stage is under the current.stdgemiddle one is condi-
tioned by:cs=asmeaning the asked stage is equal to the currentlorhe first case,
the elevator moves up the cabin, which is mategdliby the operatioth:=1 (d repre-
sents the direction), while in the second case,etbeator moves down the cabin,



which is materialized byg:=-1. In the third one, the elevator leaves the cabiitsa
current stage, which is materialized 8y0. @, has two outgoing transitions: one
with Q, for target and one with QThe transition with Qfor target is conditioned by
the logical expressioraszcs and increases the current stagavith the directiond,
materialized by the operatiors:=cs+d This transition means that as long as the
current stage is different from the asked stagectibin has to continue to move up
or down. The second transition is conditioneddsrcsand initializes the directiod
to 0. This transition means that if the current stegequal to the asked stage, the
cabin is stopped. The;@utgoing transition allows to come back tg &d tells the
user in the cabin that the elevator has reachedgked stage, which is represented
by the emission of the messameived, denotedarrived!.

0

In the AGATHA context, [25] redefines symbolic exdon for STGA using the
approach defined in [19]. Thus, symbolic executionutates the behaviour of a
STGA specification in assigning symbolic values triables instead of numerical
ones. Then, the specification is executed accorttirthe semantics of each instruc-
tion and communication.

The general principle of symbolic execution consistsomputing symbolic states
of a system, each of them being denoted by a cofgpilard, symbolic memory)
where:

- guardis the condition needed to reach this symbolitesta
- symbolic memorys a function which associates to each variablthef
system an expression based on symbolic input values

The expression associated to a variable in a symistdite corresponding to an
execution path, from the initial state of the systés computed by interpreting one by
one instructions met all along this execution patie associated guard is composed
of the conjunction of all the execution conditiqdenoted by constraints on symbolic
input values) met all along the considered exeoupath. This guard is called a path
condition or PC. To simplify this type of expressi&xGATHA uses the simplifier
Brute [21] extracted from CafeOBJ tool of JARSThis is a rewriting tool, which
transforms terms in normal forms with the help @k of rewriting rules and evalua-
tion strategies defined by the AGATHA user.

The result of a symbolic execution is a symbolicceien tree where each path
represents the symbolic evolution of all variatdesording to initial symbolic values.
Each path is a particular behaviour of the STGA djpation.

Symbolic execution example. our example of the elevator system presented in
Figure 2, an extract of the symbolic execution temputed by the AGATHA sym-
bolic execution is presented in Figure 3.

At the initialization, the STGA specification obtaihby symbolic execution is in a
state corresponding to the initial statgdthe elevator system. The elevator specifi-
cation manipulates the variables, csandd on which there are no initial constraints.
A symbolic constant is assigned to each variablelyaand g (resp.) on which there

3 JAIST: Japan Advanced Institute Technology



are no initial constraints, denoted by the condittcue. The elevator system can
evolve if it receives the ask message with a valiés value is stored in the variable
asand is supposed to have the symbolic valueas assigned to the as variable. As
the trigger of the transition is not conditiondtk tondition to reach this second sym-
bolic state is always true (trletrue = true).

Qo,true{as=ay,cs=bo,d=co}
ask?(as)
Qytrue{as=a;,cs=bo,d=co}
cs<as,d:=1 cs>as,d:=-1l cs=as,d:=0

Qzbo<ay{as=a;,cs=bo,d=1}  Qzbo>a{cs=aj,as=bo,d=-1}  Qybe=ay{as=ay,cs=hy,d=0}
ed#ec,ec:=ec+d
v v
Qa,bo>a bo#ay {cs=a;,as=by-1,d=-1}
cstas,cs:csy cs=as,d:=0
Q. be>a;dog#a;[by-17al, Qs,bp>a;beZa; hy-1=ay,
{as=al,cs=hy-2,d=-1} {as=ay,cs=bo-1,d=0}
larrived!
v
Qobo>aibe#a;[bo-1=ay,
{as=a;,cs=bo-1,d=0}

Fig. 3. Extract of the symbolic execution of the elevatgstem

To leave the state Qthere are three transitions. So to leave the slimbtate Q,
there are also three transitions.

As the first transition is conditioned by the exg®mien:cs<as and, axs = ky and
as = a in this state, the condition to reach the symbstite Q corresponds to
bp<a;. On this transition, 1 is also assigneddtavhich is reflected in the symbolic
State.

As the second transition is conditioned by the eggion:cs>as the condition to
reach the symbolic state, Qorresponds tby>a; and —1 is assigned tb

As the third transition is conditioned by the exgsien:cs=as the condition to
reach the symbolic state, Qorresponds tby=a, and 0 is assigned tb

To leave the symbolic state, @here d=-1, two transitions have to be considered.
The first one is conditioned bys=csand the second one bgszcs However, as
bo>a,, predictably agcs and only the second transition can be triggeree. diitput
transition of the symbolic state,@vhere d=-1 leads to another symbolic state Q
reached if the conditiorby>al and ascsis verified and such ass=a,, cs=hy-1 and
d=-1. In this state, we can also trigger the two saraasitions. As the symbolic
value ofcs evolves, the two transitions can be triggered. fits¢ one leads to the
symbolic state @and the second one to another symbolic statd e trigger of the
first transition implies that the condition to grio reach the symbolic state; @3:
bp>al and aszcs and a=by-1 andas=a, cs=by-1 andd=0. To leave this state the
only transition is conditioned by the emission loé imessagarrived and allows the
system to come back to state Q



The other steps of the computation are based osetine principle.

2.3 Further techniques

As the symbolic execution tree represents all bieas of a specification, its con-
struction is subordinated to reduction proceduresrier to eliminate as many re-
dundant paths as possible. There exists differetitsasuch as:

- use a classical graph coverage, as for examjpémaition coverage (the
symbolic execution stops when all the transitiores taggered once if
possible), a state coverage, a path coverage, etc,

- cut “empty” path conditions when detected botinfra Boolean criteria
or polyhedral criteria. AGATHA uses the Omega caistr solver,
based on Presburger theory [23] to achieve that,

- avoid computation of a path deductible from aeotmodulo an inter-
leaving detection less sophisticated than in [3B]:internal transition
without any temporal constraint with other trarmsis,

- compute comparison procedures between symbotiesxand, if neces-
sary for the current calculated nodes, refer tala@ady existing sym-
bolic node.

These procedures are necessary to avoid the satsiex problem.
AGATHA uses several heuristics to compute comparipoocedures for each
symbolic node:

- an equality procedure: two symbolic nodes aresiclamed as equivalent
if the corresponding control nodes are the sameladymbolic guards
are syntactically equal,

- an inclusion procedure: two symbolic nodes anesittered as equiva-
lent if the corresponding control nodes are theesamd if the polyhe-
dron induced by variable domains defined by therdjud one is in-
cluded in the other polyhedron,

- an equivalence procedure: two symbolic nodesansidered as equiva-
lent if the corresponding control nodes are theesamd if polyhedrons
induced by variable domains defined by guards qoale

As symbolic expressions of variables may also duigkow, a last simplification
procedure must be applied “on-the-fly” in orderstworten expression and to detect
useless paths [16]. We use the simplifier Bruteghaon rewriting techniques. These
rewriting rules actually composed of more than ¢hheindred rules, allow both to
maintain symbolic expressions within a reasonalde sange and to obtain normal
forms of expressions, easing the comparison betvegpressions needed by algo-
rithms such as comparison procedures.

Other tactics and reduction techniques have beeodunced in [34] and in [33].
Generally, a mix of the different tactics is usedbtain the minimal result required
to guarantee the entire coverage of the specificati



2.4 Test extraction

Symbolic test cases are extracted from the symigszution tree. As each path of
the tree represents a symbolic behaviour of theifpstion, a test case is extracted
from each leaf of this symbolic tree. From each lsglic test case, one or more nu-
merical test cases may be produced with the helos$traint resolution techniques
used on the path condition associated to the ¢é@eek. The constraint solver is used
to extract the symbolic value of each variable wiith associated path condition and
to generate numerical values, which respect the pandition. The choice of the
constraint solver connected to AGATHA depends on applicative context. For
example, we can use the Omega tool [23].

Test extraction exampl®Vith the symbolic execution of the elevator syst&im-
ure 3, we identify the path: Q:Q.Q.Q3Qo, Which represents the symbolic test case
such as the asked stage, is under the currentstage stage. To generate a numeri-
cal test case corresponding to this symbolic tasécwe have to find numerical val-
ues for: @, &, by and g which verify the path conditiongba, [ by#za, O bg-1=a;.

For example, we can choosg=a2,a =3, =2 and g=0.

Any other series of numerical values verifying th&h condition is valid and
forms a possible numerical test case. Techniquesd s GATHA allow consider-
ing that every numerical test case contained iyrabslic one are equivalent. So,
only one numerical test case by each symbolic smequired to cover all the specifi-
cation.

Moreover, note that the size of our elevator, whghot defined, doesn't step in
the symbolic computation. Thus, our specificatiolovas representing an elevator
with two, three or more stages.

0

These test cases can be simulated either on inalustals that allow generating
specifications or on implementations. It often riegs an adjustment to the adequate
formats.

3. Application to (U)SIM smart card

The aim of this article is to study the utility dfet AGATHA tool in the smart card
environment. To begin our experience, we shall limit domain to (U)SIM smart
cards. For (U)SIM smart cards, there are diffestahdards, which describe a lot of
card features. Function specifications are desdringhe 3GPP 11.11 standard [12]
and tests on these functions are described in@rP311.17 standard [13]. For Ober-
thur Card Systems, a test case is a sequencetafamsns in a proprietary language,
using hexadecimal codes.

In this section, we propose a UML representationtést cases of (U)SIM smart
card behaviours. Then, we present results obtaigyetthé application of AGATHA
on these UML models.



3.1 A UML representation for (U)SIM smart card tests

As smart card tests consist in sequences of in&insgcand as we would like to repre-
sent smart card tests and smart card behaviourprogose to use UML state dia-
grams. For the moment, we only use this type afrdia. It is very intuitive and can

be learned very quickly even by a UML uninitiateits & sort of automata language,
with states and transitions. The trigger of a tt@msican be conditioned by a mes-
sage reception, a message emission, a logical &sipre etc. For our work, we only
use a sub-part and not the entire power of staigrain notations.

Suppose that we would like to represent a test frasethe 3GPP 11.17 standard.
As for a function, the test is a sequence of irsions. Our corresponding UML state
diagram reflects this sequence. In some instaneeg,an identify sub-parts in a test
case and represent these sub-partee UML state diagram, as described in the fol-
lowing example.

The CHANGE CHW¥function example: UML representation for test cagdsove
all, we recall the CHANGE CHYV specification extrattef the 3GPP 11.11 standard
([12] p.34):

The CHANGE CHYV function assigns a new value to tHevant CHV sub-
ject to the following conditions being fulfilled:H}/ is not disabled; CHV is
not blocked.

The old and new CHYV will be presented.

1) If the old CHV presented is correct, the numbgremaining CHV at-
tempts for that CHV will be reset to its initiallua 3 and the new value for
the CHV becomes valid.

2) If the old CHV presented is false, the numberemhaining CHV attempts
for that CHV will be decremented and the value lid CHV remains un-
changed. After 3 consecutive false CHV presentationt necessarily in the
same card session, the respective Ubl¥locked and the access condition
can never be fulfilled until the UNBLOCK CHV functiohas been per-
formed successfully on the respective CHV.

Input: indication CHV1, old CHV1, new CHV1.

Output:none.

The test case of the CHANGE CHYV function, extractednfthe 3GPP 11.17 stan-
dard (see [13] pp.65-67), is composed of:

1) An incorrect CHANGE CHYV, steady of a status veafion: how much
attempts remained, a correct CHANGE CHV and a stattification,

2) Two incorrect CHANGE CHYV, steady of a reset, atpimect CHANGE
CHV, a reset, an incorrect CHANGE CHYV and a cort&dBLOCK CHV,
3) A correct DISABLE CHV, an incorrect CHANGE CHYV ardcorrect
ENABLE CHV.

4 chv: card holder verification information; accessdition used by the SIM for the verifica-
tion of the identity of the user.



A correct function is characterized by a returnidus 90 00 and an incorrect one
is characterized by a returned status 98 04 or®8hs one meaning that the smart
card is blocked. Status verification is done by parison of expected data and effec-
tive data.

The corresponding state diagram is presented irré&iguThe initial state is. We
suppose that the output transition from the inititgite to state A contains data for
initializing smart card such as the personalizat®holds two output transitions.

change_chv(chvl_ref,used_chvl,new_| disable_chv(chvl_ref,used_chvl)
[used_chv1!=chv1]/STATUS:=98 04 [used_chv1=chv1]/STATUS:=90 00

disable_chv(chv1_ref,used_chvl)
[used_chv1l=chv1]/STATUS:=90 00

Lo J ([ &)
poweron( change_chv(chvl_ref,used_chvl,new_chvI) enable_chv(chvl_ref,used_chvl)
[used_chv1!=chv1]/STATUS:=98 04 [used_chvl=chv1]/STATUS:=90 00
(L e J [ n ]

change_chv(chvl_ref,used_chvl,new_chvl) status(22)/STATUS:=90 00
[used_chv1!=chv1]/STATUS:=98 40 <<compare>>

Fig. 4. The 3GPP 11.17 test of the CHANGE CHYV function

The right one to C is conditioned by the receptioh the message
disable_chv(chvl_ref, used_chwihich represents the DISABLE CHV function.
This transition is also conditioned by the logicgpeessionused_chvl = chylwhich
represents the fact that the chv used by DISABLE Cid\&qual to the chv of the
card. The expected status for this reception is @ON&xt transitions represent the
sub-case 3 of the CHANGE CHYV test.

The left one to B is conditioned by the reception tfe message
change_chv(chvl_ref, used_chvl, new_chwhjch represents the CHANVE CHV
function. This transition is also conditioned by thiegical expression
used_chvl != chvivhich represents the fact that the chv used by BEE CHV is
not equal to the chv of the card. The expected stituthis reception is 98 04. C
holds two output transitions. The right path repnesethe sub-case 1 of the
CHANGE CHYV test and the left one the sub-case 2.

A status verification is represented by a transittonditioned by the reception of
messageatatus(n)wheren represents the size of the data to verify, in bfefor our



example. The expected status for this receptioi®® The data to compare are
given in the<<compare>> stereotype. For example, on the transition fronmo Bt
the <<compare>> stereotype containgxxx XXxx XXXX XX XXXXXX XX XX XX XX XX XX XX
xx 83 xxxxxwhich means the 9byte is 83 and other bytes are any value, denoted
X.

0

3.2 A UML representation for smart card specification

With a UML state diagram, we can also representnation specification. This dia-
gram contains all the behaviours of a functionha same way as for a test. This
abstract vision allows representing a function spation exhaustively. For exam-
ple, on the CHANGE CHYV function, this diagram hasdpresent a case with a direct
correct CHANGE CHYV, which is not considered in Figur.

The CHANGE CHYV function example: UML representatiansfiecification.To
represent the CHANGE CHYV specification exhaustivelg,consider the 3GPP 11.11
standard given before. The corresponding state atiagg presented in Figure 5.

status(22)/STATUS:=90 00
<<compare>>

I Itry:=3
poweron( (\
.

Y ““""“"*7
change_chv(chvl_ref,used_chvl,new_gh ‘\ﬁisable_chv(chvl_ref,used_chvl) H
s, Jused_chvl=chv1]/STATUS:=90 00 E
\‘\‘ E enable_chv(chvl_ref,used_chvl)
[used_chv1 = chv1] [used_chvl!=chviandtry>1] | B = fo-mmmmmmmmmmmmoe J [used_chvi=chv1/STATUS:=90 00itry:=3
/STATUS:=90 00;try:=3 /STATUS:=98 04;try:=try-1 7

change_chv(chv1_fefused_chvi_new_chvi)
ISTATUS:=98 08

[used_chv1 != chvl and try =1]
ISTATUS:=98 40;try:=0

status(22)/STATUS:=90
<<compare>>

change_chv(chvl_ref,used_chvl,new_chv1)
ISTATUS:=98 40

unblock_chv(chv1_ref,used_unbl_chvl,new_chvl)
[used_unbl_chvl=unbl_chv1]/STATUS:=90 00;try:=3

Fig. 5. Example of an abstract state-transition diagrantfie CHANGE CHYV functionalities

As we abstract the behaviour of the function, wieotluce a counteiry, which
represents the number of attempts to change aTdterinitial state i2. The output
transition of the initial state is improved withetinitialization of thery variable to 3
as mentioned in the specification.

The sub-case 1 of the specification is representaeth Wold lines: a
change_chv(chvl_ref, used_chvl, new_chwé3sage is received. Theed_chvis
equal tochv1lso the expected status is 90 00,dhelis changed taew_chvland we
can verify the status by the transition form A towth the statusmessage. As this
diagram is an abstraction of the specification,<keompare>> stereotype contains:
XXXX XXXX XXXX XX XXXXXX XX XX XX XX XX XX XXOIB) XXXXXX



The sub-case 2 of the specification is representddnermal lines: ahange_chv
is received. Theaised_chvis not equal tehvlso the expected status is 94 Othyifis
different from 1 and is 98 40 ify is equal to 1. If status is 94 04, the transitioes
in A and we can verify the status or reset theisessard, which has no impact on the
variabletry and so on the remaining number of attempts togdhalf the status is 98
40, the card is blocked and the transition go&s where we can verify the status and
receivechange_chwmessages. As the card is blocked, nothing appé&aept if an
unblock_chv(chvl ref, used_unblock chvl, new_clmé¥sage is received with
used_unblock_chwdqual tounblock_chvl

We improved the specification with a behaviour diésd in the 3GPP 11.17 test
but missing in the 3GPP 11.11 specification: the aba correct DISABLE CHV
before a CHANGE CHV. This behaviour is designed wlidished lines.
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3.3 Automatic test generation for UML smart card model

In part 2.2, we present how the AGATHA tool can gateeautomatically test cases.
We applied this tool to our UML diagrams.

Firstly, as our representation of smart card ®stery sequential, we use a cover-
age of transitions to compute a set of symbolitdases. In that case in our example,
AGATHA computes three paths. AGATHA extracts threenetical test cases. For a
card that validates the 3GPP 11.17 tests, it addidates these automatically gener-
ated tests.

Secondly, for our representation of smart card ifipation, we use a more com-
plicated criterion, the inclusion one to coverth® symbolic behaviours. In that case
in our example, AGATHA computes more than two huddpaths, each of them
corresponding to a symbolic behaviour. On a caatithlidates the 3GPP 11.17 tests,
it has also to validate these automatically geedraésts. It could be impressive to
pass two hundred tests for a simple function buteseall possible behaviours of the
CHANGE CHYV function. Current works on AGATHA will ceinly permit to reduce
this number of tests with some optimization asgedi#o the inclusion criteria. But in
our case this reduction will not be very importdoe to the fact that the number of
distinct symbolic behaviours associated to our gtamemains very close to the
present one calculated by AGATHA: this is the pofexhaustiveness.

4 Related work and conclusion

In this article, we have summarized a solution ttomnatically generate tests for
smart card functions. Assuming the validity of @gproach, we have presented an
automatic test generator, AGATHA based on symbaliecation techniques. We
have also presented a way to design smart cardidnscwith UML state diagram.
We have used AGATHA on our UML diagrams and expodadined results. This
first experience shows that it is possible to gateetests for smart card functions in
an automatic way. Surely, and this is our firsteshiye, our approach has to be used



in a real context and in a complete developmentecgta smart card to completely
improve its efficiency. We could reasonably hopeirmrease of the coverage and
quality of test for each function taken separately.

Our approach is closed to the one developed in P& However, in STG, the
test purposes must be defined by an expert. Incted, we may obtain « clever » test
purposes but we have no way to measure the spaificcoverage. On the contrary,
AGATHA suggests a limited number of predefined mstposes linked to structural
or semantical coverage criteria. In that case stiteof generated tests allows to con-
trol with a great confidence the level of specifica coverage.

LTG, the LEIRIOS test generator [26], uses classigalciiral coverage criteria
which limit the combinatory of generated test cagdSATHA also proposes criteria
based on the analysis of the specification behasic&uch criteria may be more accu-
rate when generating test cases but can also be subject to combinatory explo-
sion. To avoid this problem, we are currently introichg some heuristics which al-
lows to reasonably limit the number of generatstl ¢ases.

The use of UML state diagrams to design smart cand\beurs allows us to con-
sider more global behaviours that mix different groard functions. Then we test the
card rigorously and monitor the results. We alsald@onsider atypical (or negative)
tests that allow verifying smart card reactionssaé of the admissible input domain
defined by the specification. In this context, veaild ensure a complete validation of
a smart card.

Last point, as AGATHA is not only a test generatog, eonsider validating smart
card properties corresponding to a security paisydefined for example in common
criteria. In this context, we could ensure secysityperties of smart cards.
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