Towards a Secure and Practical
Multifunctional Smart Card

Idir Bakdi

Lehrstuhl fiir Wirtschaftsinformatik I1
Universitat Regensburg
93040 Regensburg, Germany
idir.bakdi@wiwi.uni-regensburg.de

Abstract. One of the most promising features of smart card techno-
logy is its potential to serve several applications using a single hardware
token. Existing multifunctional smart cards, however, are either simple
and suffer from serious limitations or they have a high complexity that
is not justified for most applications. This paper describes a new scheme
permitting different applications to flexibly share a hardware token. The
proposed solution supports off-line transactions as well as post-issuance
loading. Each application can load one or more “virtual tokens” (re-
motely) into a common smart card. Despite its simplicity, the scheme
guarantees the authenticity and integrity of virtual tokens and prevents
their duplication. Moreover, it protects the privacy of card holders by
providing a possibility to use pseudonymous identities that cannot be
linked to one another.

Keywords: multifunctional smart card; secure hardware token; privacy

1 Introduction

Nowadays, we all carry a lot of tokens in our pockets. These are keys, magnetic
stripe cards, smart cards, tickets, etc. Each application has to implement its own
infrastructure to issue and subsequently use these tokens. From an ergonomic as
well as from an economic point of view, it would be beneficial to virtualize all
those tokens, i.e. to convert them into digital files that can be loaded onto a single
medium. However, as most tokens are critical for the security of the applications
they serve, one cannot just load their virtual counterparts on a storage medium
such as a floppy disk. On the one hand, such a medium would not offer any
protection against misuse in case it gets lost or stolen. On the other hand, a
virtual token could be copied at will as it can be read by anyone holding the
medium. One possibility to overcome these difficulties is to use a microchip as
implemented on smart cards to hold the files representing tokens. This way, they
are protected both against misuse by someone else than the legitimate user and
against unauthorized duplication by the holder himself. This paper describes a
new scheme that uses such a chip to realize a secure and practical multifunctional
token.



The remainder of this paper is organized as follows. After a short review
of existing solutions and their most serious shortcomings in the next section,
the main security requirements of a multifunctional smart card are outlined in
section 3. Section 4 contains a description of the new approach. Finally, the last
section is devoted to some conclusions summarizing this work.

2 State of the Art

The idea of using a single token for multiple purposes is quite an old one. Its
simplest and most famous implementation is perhaps that of a master key able
to open several locks. Recently, many solutions appeared which aim at group-
ing many applications on a single smart card, or more generally, on a single
microchip. Most of them can be categorized into one of two classes. The first
class, denoted by single ID cards in this paper, is the simpler one. So called
multi-application smart cards constitute the second class. They are more com-
prehensive and consequently more complex than single ID cards. In the following,
these two classes are described in more detail sketching their pros and cons.

2.1 Single ID Cards

The simplest realization of a single ID card is to have a number (an ID) that
uniquely identifies a person across several back-end systems stored on a smart
card. Each system keeps its own set of data associated with a given user in its
central database. The smart card merely serves as a reference to that account.
As all systems share the same number for a given user, a single card suffices
to identify him in all of them. Put another way, single ID cards realize an au-
thentication by possession of a person already known to the different systems
through a common identification scheme. A more advanced version of this so-
lution uses smart cards capable of producing digital signatures. The idea is to
have the user’s private key stored on his card, whereas the corresponding public
key is shared by all participating back-end systems. The main advantages and
drawbacks of this class are presented in the following.

Advantages

Simplicity: Solutions built on single ID cards are very simple. A single ID
card merely identifies a person. Each application maps the ID to a data
set associated with the corresponding user. The management of relevant
application data is thus differed from the card to the more powerful back-
end systems, which facilitates implementation.

Generic Digital Signature: In case a digital signature card is used, the card
can additionally be used to digitally sign electronic documents. Thus, a large
category of applications requiring the authenticity and non-repudiation of
electronic documents can be covered. Many countries already have laws that
guarantee to certain kinds of digital signatures a legal status equivalent to
that of a classical (i.e. manual) signature.



Drawbacks

No Off-line Functionality: As the card merely represents a pointer to a data
set stored in the back-end system, it can only be used given an online access
to the central database. This is especially difficult when the verifier does not
belong to the issuer’s organization. To verify a student card, an employee
sitting at the entrance of a cinema would have to access data from the student
office of the corresponding university.

Privacy Concerns: As all the back-end systems use the same ID, comprehen-
sive user profiles can be easily constructed by matching the different data
sets belonging to a person. This raises privacy concerns because of possible
misuse.

Single Point of Failure: The different back-end systems all rely on a unique
ID per user which is tightly bound to a single card. If this hardware token is
lost, stolen, or compromised, all those systems are affected at once. That is,
the card holder has no possibility to mitigate the risk resulting from a loss
or theft by employing more than one smart card.

High Demands: In case a signature card is used, the requirements concerning
the card’s protection and the key management are very high. This makes
sense when the card is used to generate legally recoverable digital signa-
tures. For most use cases, however, such functionality is not needed. A train
conductor only has to be convinced that a passenger possesses a valid ticket.
He does not need to get the traveller’s legally recoverable signature. In such
cases, high demands would unnecessarily burden the solution.

2.2 Multi-Application Smart Cards

This class employs so called multi-application card operating systems (MACOS)
[14, p. 308] which try, in analogy to computer operating systems, to abstract
the underlying hardware in order to make it possible for different applications
to run on it. They offer an application programmer interface (API) that can be
used to access the card’s services. The newer MACOS (e.g. MULTOS [9] or Java
Card [19] [8] [5]) do not only provide for the hosting of many applications on the
same microprocessor, but also make it possible for the same application to run on
different chips by employing a virtual machine. Using the Java Card platform for
instance, each system can load its applet (a small application written in Java) on
the card where it can be executed together with other applets. In the remainder
of this section, the main advantage of multi-application smart cards as well as
their drawbacks are discussed.

Advantage

Universality: The vision of multi-application smart cards is to have a univer-
sal chip able to execute arbitrary code. That is to say, the goal consists in
the miniaturization of multi-purpose devices such as personal computers or



handhelds. This would enable everyone to write applications that do what-
ever he wants and load them to be executed on card. The employed smart
card would bear all the necessary functionality and would not need to rely on
any back-end system, thus providing a high level of flexibility and autonomy.

Drawbacks

Complexity: Due to their complexity these systems are far from being mature.
This results in the following limitations of current solutions.

e The capabilities of MACOS are restricted due to limitations in processing
performance and storage capacities of the underlying hardware. It will
take some time before they reach the universality of operating systems
running nowadays on personal computers, for instance.

e Many of the current solutions do not offer the possibility of post-issuance
loading. The applications are installed on the card before the latter is
issued. This is for instance the case when using MULTOS [12]. Java
applets can be loaded after the card is issued, but until version 2.2 of the
Java Card specification there was no possibility to remove already loaded
applets. This shows the kind of difficulties encountered in practice.

Security: The main advantage of multi-application smart cards, consisting in
their ability to host arbitrary applications and to execute their code, con-
stitutes at the same time a considerable security risk. Some applications
running on the card may not be trusted. They could access sensitive data
of other applications residing on the same chip. Currently, many efforts are
made to secure smart card applets against one another using e.g. so called
firewalls [6] [18] or byte code verification [13]. This is a cumbersome task.
The cost of evaluating, for instance, an application written for MULTOS
according to ITSEC E6 [7] is estimated to be 150% of the overall devel-
opment cost [4]. Besides, their genericity does not allow to hard-wire once
and for ever protection mechanisms needed to ensure the requirements of
uniqueness and privacy described in the next section. Instead, each applica-
tion has to implement its own security framework, possibly leading to new
vulnerabilities.

3 Security Requirements

A multifunctional smart card as introduced in the first section should satisfy at
least the following security requirements.

Authenticity: Only a legitimate issuer should be able to produce authentic
virtual tokens for a given application. No one besides the student office should
be capable of issuing valid student cards.

Integrity: A solution has to make sure that, once issued, a virtual token can
not be modified, not even by its holder. The student must not be able to
change the validity period of his card himself.



Uniqueness: Virtual tokens have to be protected against duplication. This is
especially important when considering applications where the token is used
as a dongle or as a ticket. Imagine a railway ticket that can be duplicated at
will.

Privacy: This requirement could also be entitled “separability”. Physical to-
kens, although perhaps belonging to the same user, are not a priori linked
to each other. Often they are not even associated with their holder. In no
way can a car key be linked to any of the other tokens a user has in his
pocket, nor is it related to his person. The same should hold when replacing
physical tokens by virtual ones. Else, profiles existing in the different systems
could be easily matched to get a comprehensive picture of the user. Also,
when virtual tokens need to be verified it should be possible to present them
separated from each other, though residing on the same chip. All a train
conductor has to know is that the traveller paid for his trip. This requires
him to look at the passenger’s ticket but not to learn his identity.

The requirements of authenticity and integrity are satisfied by letting the
issuer digitally sign each virtual token he issues. Verifying this signature ensures
that only authentic and untampered virtual tokens are accepted as valid. The
scheme described in the next section also guarantees uniqueness and privacy.

4 New Approach

The proposed solution is based on the concept of virtual tokens (VT) introduced
above. These are hosted by a microchip called digital pocket (DP) in this paper,
in analogy to a pocket that holds physical tokens. VTs can be loaded (e.g.
over the Internet) into a DP after the latter is issued (post-issuance loading).
They can even be moved by their holder from one DP to another without any
intervention by the issuer, which makes the scheme very flexible. In a certain way,
VTs resemble attribute certificates as described e.g. in [3]. The main difference
is that a VT can only be used in conjunction with a single hardware token (i.e.
a DP) at a given time, thus preventing its duplication.

Each DP is embedded into a container that provides it with power supply and
a communication interface. The most obvious realization of this idea is to use a
smart card in conjunction with a reader providing the required infrastructure.
However, it could be implemented as well in a mobile phone, in a wrist watch, or
in any other object the user bears with him. For the sake of simplicity a smart
card realization is assumed in this paper.

The main actors taking part in the scheme are identified in the next sub-
section. After sketching DP’s architecture and describing the involved key pairs,
the scheme is outlined in subsection 4.4. Finally, a short analysis of the trust
relationships that have to be assumed among the different roles and a discussion
comparing the new scheme to existing solutions are presented.



(@)
N

DPProvider
1. DP distribution
Q
W 2. VT distribution
VTlssuer
O
& / j )
g VTHolder
< 3.VThinding &
unbinding

VTRegistrar

4. VT verification

Ko

VTVerifier

Fig. 1. The different roles and their interactions

4.1 Roles

The following actors take part in the considered setting. Fig. 1 summarizes their
interactions.

— Digital Pocket Provider (DPProvider): is the issuer of DPs.

— Virtual Token Issuer (VTIssuer): issues VTs (e.g. the railway company).

— Virtual Token Holder (VTHolder): is a person holding one or more VTs (e.g.
a railway passenger).

— Virtual Token Verifier (VT Verifier): verifies VTs (e.g. a train conductor).

— Virtual Token Registrar (VTRegistrar): represents a trusted institution as-
suring that there is no more than one active copy of a given VT at any
time.

These roles may be assumed by distinct persons and/or institutions. How-
ever, a single organization may also assume several of them. DPProvider and
VTRegistrar could for example be embodied by the same infrastructure opera-
tor. Another option is to have VTIssuer ensure the uniqueness of VT's he issues,
thereby additionally playing VTRegistrar’s role.



4.2 Architecture

The proposed solution can be readily implemented using standard hardware
components as they can be found on modern smart cards. More precisely, DP’s
architecture consists of the following elements.

— Protected Memory (PM): represents the area of the chip where VTs and all
relevant public keys are stored. This area is accessible to VT Holder after
authorization, e.g. using a PIN or some kind of biometrics. The protection
is meant to prevent VT Verifier or someone else from randomly reading the
content of a DP without VTHolder’s consent.!

— Tamper-Resistant Memory (TRM)?: is an area that can not be read from
the outside, not even by VIT'Holder. It serves as a storage for private keys.

— Tamper-Resistant Processing Unit (TRPU): represents a processing unit for
the execution of computations involving secrets.

— Controller: coordinates the single actions of a DP and provides an inter-
face to the outside world. It handles the communication with VTHolder,
VTVerifier and VTRegistrar.

4.3 Involved Key Pairs

The presented solution relies on public key cryptography. In the remainder of this
paper, a private key used to create a digital signature is always denoted by S, (for
some index x), whereas P, stands for the corresponding public key employed for
signature verification. More precisely, the following key pairs are used to generate
and verify digital signatures in the different phases of the scheme.

(SvTissuer , PvTissuer): Every VT issued by a VTTssuer is signed with his private
key Svrissuer and can be checked for validity using the corresponding public
key PVTIssucr~

(SVTRegistrar ) PVTRegistrar): VTRegistrar employs his private key SVTRegistrar to
generate binding confirmations that can be verified using PyTRegistrar-

(Svt, Pyr): Each VT is bound to a DP using a dedicated key pair (Syr, PyT).

(Sq, Py): Before their distribution, DPs are divided by DPProvider into groups.
All the DPs of a given group are assigned the same key pair (Sy , Py).

DPs are grouped in order to protect the privacy of their holders. That is, all
DPs belonging to the same group g share a common key pair (Sg , P;). Thus,

! To make such a protection effective a secure communication channel between
VTHolder and DP is needed. This involves an input device (e.g. a keypad) and
an output device (e.g. a small display) that are tamper-resistant. However, to keep
the system’s description simple this point will not be further elaborated in this paper.
As a perfect protection of hardware tokens averting every attack can hardly be
achieved [1], the term “tamper-resistant” is used instead of “tamper-proof” to make
clear that despite great efforts to protect the microchip, a risk of compromise still
exists. The assumption is of course, as with other schemes, that the token’s physical
protection is sufficient for its purpose.



they cannot be distinguished from one another. If each DP had its own key
pair, the different identities connected to it could be linked together. This is
prevented by letting an individual DP hide in its group much in the same way
that a single Internet user hides in a group of surfers when using anonymizer
services built on crowds [15]. Although the fact that several chips carry the
same private key would appear to increase the security risk, such is not the case.
As will become clear from the following description of the scheme, the damage
caused by a compromised DP is independent of whether it was assigned a unique
key or whether it shares it with a number of other DPs.

4.4 How it Works

The main phases of the scheme comprise:

a) Initialization: Before its delivery to a VITHolder, each DP is initialized by
DPProvider. To initialize a group of DPs, DPProvider generates a new key pair
(Sq, Py). The private key S, is stored in the tamper-resistant memory (TRM)
of each card in the group. Further, the corresponding public key P, is included
into PubList, which is the list of the public keys of all DPs issued so far.?

b) Distribution: Once the DPs have been initialized, they can be distributed
to VTHolders through any channel. At this stage, all the DPs are identical in the
sense that they are neither VTHolder specific nor VTIssuer specific. A VT Holder
could just buy an “empty” DP in the supermarket to load his VTs on it.

c) Virtual Token Generation: In order to issue a VT, VTIssuer has to write
the application dependent data into a file and to sign it with his private key
SvTissuer- The format of this file may be freely chosen by VTIssuer (as long as
VT Verifier is able to make sense of it). The signed file constituting a VT can
be transferred to VITHolder via e-mail or any other means. If the VT contains
confidential data it must, of course, be protected on its way to VTHolder. After
receiving a VT, VTHolder has to bind it to a particular DP before it will be
accepted by VT Verifier.

d) Binding: Binding a VT to a DP ensures that it can not be duplicated (see
the requirement of uniqueness in section 3). VTRegistrar knows about every
VT he has bound to a DP and is responsible for the prevention of multiple
bindings. To do so, he stores the hash value of each VT that he binds in a
list called BoundList. Storing only a hash value and not the VT itself prevents
VTRegistrar from learning the token’s content, thus guaranteeing VIT'Holder’s
privacy as required in section 3. Moreover, the use of a hash value improves the
system’s efficiency, especially when a big number of VTs has to be managed.
The details of the binding process are depicted in protocol 1 (see also Fig. 2).

3 An update of PubList is regularly propagated to VTRegistrar (e.g. using a public
key infrastructure).



@) S

I

VTHolder VTRegistrar

P ‘ VTRegistrar ‘ ‘ PubList H BoundList ‘

Verifypy
(s1, h[Pvr)

Generate a
random
bit string ry

Soi= SignSVTReg\sUal
(Hash(h[Pvrr1))

(IDyr, VT, Py, Sz,
r1, AuthMeth

Fig. 2. Binding a VT to a DP by VTRegistrar (Protocol 1)




Protocol 1 (Binding of a VT to a DP by VTRegistrar):

1

W N

=]

10.
11.

12.
13.

. TRPU calculates a hash value of VT:
h:= Hash(VT).4

. A new key pair (Syr, Pyr) is generated inside TRPU.
. Syt is stored in TRM.
. TRPU signs the bit string h|Pyr using Sy:

S1 = Signsg (h|PVT).5

. The tuple (P,, Py, h, s1) is sent to VTRegistrar.

. VTRegistrar verifies that P, is contained in PubList.

. VTRegistrar verifies that h is not yet contained in his list of bound VTs
(BoundList).

. VTRegistrar checks the validity of s; using Pj:

Verifyp,(s1, h|Pyr).

. VTRegistrar stores h in BoundList.
VTRegistrar generates a random bit string ry.
VTRegistrar signs Hash(h|Pyr|r1) with his private key Syrregistrar:

S92 1= SignSVTR,cgistrar (HaSh(h‘PVTVl))'

VTRegistrar sends the pair (s2,71) back to VTHolder.

The tuple (IDyr, VT, Pyr, s2, 11, AuthMeth) is stored in PM, where I Dy
stands for the ID of the application VT belongs to and AuthMeth for the
authentication method to enforce before granting access to this particular
VT.6

By signing Hash(h|Pyr|r1) in step 11 VTRegistrar confirms that the VT

which hashes to h was bound to the DP that holds the corresponding private
key Sy in its TRM. Such a confirmation is only issued if three conditions are
met:

i. The binding was actually requested using a DP (step 8 of the previous

protocol),

ii. that DP is genuine, i.e. its public key P, is contained in PubList (step 6),

and

iii. the VT in case is not yet bound to another DP (step 7).

4

5
6

Hash(-) is assumed to be a cryptographically secure hash function, i.e. one that is

collision and preimage resistant (see e.g. [11, p. 323]).

b1|b2 stands for the concatenation of the bit strings b1 and bs.

Depending on the use case, AuthMeth is determined either by VTlssuer or by
VTHolder.



Remark 1. Ifin step 11 VTRegistrar just signed h| Py instead of Hash(h|Pyr|r1)
then chosen-ciphertext attacks could be feasible. This is why [16, p. 54] points
out that “it is foolish to encrypt arbitrary strings”.

Remark 2. The key pair (Syr , Pyr) has to be generated securely inside the
TRPU so that nobody learns its value. Some smart cards use pseudo random
number generators with a seed set by the manufacturer [14]. Such smart cards
are unsuitable for this scheme as everyone knowing the seed could deduct the
entire pseudo random number sequence. The keys rather have to stem from a
physical source of randomness (see e.g. [2] for a true random number generator
suitable for integration on smart cards).

e) Verification: When a DP is asked to present a given VT to VT Verifier, it
first requests an authorization from VTHolder as mentioned in section 4.2. In
case VTHolder approves, DP sends VT together with the binding confirmation
to VT Verifier who checks their validity. Protocol 2 (depicted by Fig. 3) contains
the necessary steps.

Protocol 2 (Verification of a VT by VT Verifier):

1. VTVerifier generates a random challenge c.

2. VTVerifier requests VT from DP’s Controller by sending it the pair (I Dy, ¢).

3. Controller uses the specified AuthMeth to ask VTHolder for permission to
show VT Verifier the VT in case.

4. TRPU generates a random bit string rs.

5. TRPU generates the following signature:

sg := Signg, (Hash(c|rz2)).

6. Controller sends the tuple (VT, Pyr, s2,71, $3,72) to VI Verifier.
7. VT'Verifier checks the validity of sy using PyTRegistrar:

Veri fypryrpegistrar (s2, Hash(Hash(VT)|Pyr|r1)).
8. VT Verifier checks the validity of s3 using Pyr:
Verifyp,,(ss, Hash(c|rs)).
9. VTVerifier checks the authenticity and integrity of VT using Pyrissuer-

In step 7 of this protocol, VT Verifier gets convinced that the VT he received
is uniquely bound to the DP that holds the private key Syt corresponding to
Pyr. By looking at s3 in step 8, he verifies that he is actually communicating
with that DP. Finally, the authenticity and the integrity of the VT itself are
verified in the last step.

Remark 3. DP could use a suitable zero-knowledge protocol as described e.g. in
[11, pp. 405-417] to convince VT Verifier that it holds Sy without divulging it.
However, in this paper a digital signature was chosen for this purpose in order
to simplify matters.



@,

5

VT Verifier

VT Verifier

Generate a
random
challenge ¢

VerifvaTRegislrar
(s2, Hash(Hash(VT)|

Pyr(r))

VerifvaTlssuer (VT)

VTHolder

‘ Controller ‘

(|D\/T, C)

Q/T, Pyr, S2, I1,S3, I2)

(l DVT: AuthM eth)
—

‘VTHoIder‘ ‘ TRPU ‘

Authenticate

Generate a
random

o bit string r»

S3.=
Signsvr (Hash(c|r2))

Fig. 3. Verification of a VT by VT Verifier (Protocol 2)




f) Unbinding: VTHolder may want to use more than just one DP and to be
able to transfer VT's among them. He could use a DP for his private VTs and
a separate one for the VT's he needs at work. When going on a vacation trip he
may choose to only take certain VTs with him in order to reduce the damage
caused by a possible loss or theft. To satisfy this requirement, a mechanism is
needed which enables the unbinding of a VT from the DP it is bound to. Protocol
3 realizes this task.

Protocol 3 (Unbinding of a VT from a DP by VTRegistrar):

1. TRPU calculates
h:= Hash(VT).

2. TRPU signs h with Syr:
84 := Signg ().

Sy is removed from TRM.
The tuple (h, Py, 82,71, 84) is sent to VT Registrar.
5. VTRegistrar checks the validity of sy using his own public key PyrRegistrar:

= Lo

VerifyPVTchistrar (827 h|PVT|r1))'
6. VTRegistrar checks the validity of s4 using Pyt

Verifypy,(sa,h).
7. VTRegistrar removes h from BoundList.

Step 5 of the above protocol ensures that the VT which hashes to h was
actually bound to the key pair (SyT, Pyr). In Step 6 VTRegistrar gets convinced
that the unbinding request comes from the DP to which VT is currently bound,
namely the one holding Syr.

Remark 4. So far, a single VI Registrar was assumed in order to keep the de-
scription simple. Nevertheless, the scheme is able to accommodate any num-
ber of VTRegistrars. By letting each VTRegistrar manage his own BoundList,
a decentralized solution is obtained. The different VTRegistrars do not even
need to communicate with each other. In order to designate a VITRegistrar re-
sponsible for the uniqueness of a given VT, VTIssuer would include the public
key PyTRegistrar Of that VITRegistrar into the VT before signing it. This way,
VT Verifier learns which public key he has to employ in order to verify so (step 7
of protocol 2). This flexibility is especially important to make a viable business
model possible, because it avoids dependency on a single institution. A VTIssuer
himself could for instance care about the binding of VTs issued by him. For the
sake of completeness, it should be mentioned that the drawback of having many
VTRegistrars is the bigger overhead when moving VTs from one DP to another.
For each VT being transferred the corresponding VTRegistrar has to be con-
tacted to unbind it from the first DP and to rebind it subsequently to the second
one. This could impair the flexibility of the scheme in case VTs are frequently
moved.



4.5 Who Trusts Whom?

To better understand the dependencies between the single roles their trust rela-
tionships are examined in the following.

VTRegistrar: The only thing VTRegistrar has to rely on is that the DPs
behave correctly, i.e. that they do not divulge private keys and that they
execute operations only according to the protocols presented above. In other
words, VTRegistrar has to trust DPProvider to only issue DPs that work
as specified and to provide him with the correct list of valid public keys
(PubList). In all the other actors VIRegistrar does not need to trust.

VTHolder: Like VTRegistrar, VI Holder has to trust DPProvider. If his DP
functions correctly and keeps its secrets safe, VI Holder does not have to
trust VT Registrar, because the latter does not learn any sensitive informa-
tion in the course of binding and unbinding VTs. Conversely, assuming the
trustworthiness of VT Registrar, VT Holder cannot be fooled into using a ma-
nipulated DP, because he would notice it as soon as he tries to use the chip
for the first binding. This renders the distribution channel for DPs uncritical.

VTIssuer/VTVerifier: VTIssuer and VT Verifier have to trust VITRegistrar
to ensure the uniqueness of VTs, i.e. that binding confirmations are only
issued for VTs not already bound. In particular, they have not to rely on
the genuineness of a given DP, because VT Holder would not be able to get
a binding confirmation from VTRegistrar if his hardware token were not
working properly.

Remark 5. Someone who learns S; would be able to request bindings that he
may copy. This is because he could generate a key pair (Syr , Pyr) outside a
DP, use S, to get a binding confirmation from VTRegistrar, and thus know the
private key Sy that is necessary for duplication. However, he would not be able
to generate a second binding for a given VT using a different pair (Syr , Pyr),
nor could he use any previously bound VT if he lacks the corresponding DP.
This is why the consequences of compromising a DP’s private key are the same
whether it is shared within a group of DPs or not.

Remark 6. The scheme described above assumes a running public key infrastruc-
ture (PKI). This PKI is, however, only needed in order to manage PubList and
the public keys of VTRegistrars and VTIssuers. While PubList has to be acces-
sible to VTRegistrars, the only actor interested in getting authentic public keys
of VTRegistrars and VTIssuers is VT Verifier. VI'Holders and their DPs have
no public keys to be managed by this PKI. This makes the required PKI much
simpler than one needed by single ID cards able to generate digital signatures,
for instance.

4.6 Discussion

The solution proposed in this paper can be seen as a pragmatic compromise
between the inflexible single ID cards, on one hand, and the cumbersome multi-
application smart cards, on the other hand. While single ID cards represent the



simplest solution and have therefore many serious limitations, multi-application
smart cards provide the most flexible system, but still need a lot of work to
reach their vision. The main difference between the new approach and single ID
cards is that the former employs an independent virtual token for each back-
end system. The virtual tokens can be used without any online access to a
central database and they can be transferred from one hardware token to another
without being duplicable. In contrast to multi-application smart cards, a DP
merely stores data on the chip, but no application-specific code is executed
on it. This makes implementation easier and avoids many security problems.
[17] states that “...for many applications, using a smart card securely means
understanding it not as a ‘trusted’ computation platform, but as a data storage
device with limited computational abilities”.

Nevertheless, there are also applications not covered by the new scheme.
These are use cases requiring some application-specific code to be executed on
card (e.g. digital signature cards, digital cash cards with a purse-to-purse func-
tionality such as Mondex [10], etc.). Hence, the approach presented above is
not meant as a substitute for the other solutions but rather as a complement.
Note that it is for example possible to combine a digital signature card with
the scheme presented in this paper to cover an even larger set of applications.
Summarizing, one could say that the presented approach, although not covering
all use cases, is able to avoid undue complexity and still serve a big number of
applications adequately.

5 Conclusions

A new scheme for a multifunctional hardware token was described in this paper.
It is based on the observation that many applications (e.g. driving licenses, stu-
dent ID cards, credit cards, loyalty cards, pay TV cards, subway tickets, etc.) do
not necessarily need the execution of application-specific code on card nor the
ability to generate digital signatures. The role of each actor in the scheme, which
can be assumed by any person or organization, was clearly defined and the inter-
actions taking place between the different actors were specified. The architecture
of a microchip needed to host different virtual tokens was roughly sketched. Un-
like attribute certificates, virtual tokens are bound to a single hardware token,
which prevents them from being duplicated. Not only does the scheme enable
off-line use and post-issuance loading, but virtual tokens can also be transferred
among different hardware tokens making the solution very flexible. Moreover, the
scheme inherently provides for authenticity, integrity, and privacy. Comparing it
to other approaches it was shown that while certainly not providing a universal
solution, it may help considerably towards a secure and practical multifunctional
smart card.

References

1. Anderson, Ross and Kuhn, Markus: Tamper Resistance - a Cautionary Note. In:
Proceedings of the Second USENIX Workshop on Electronic Commerce, Oakland,



11.

12.

13.

14.

15.

16.

17.

18.

19.

CA, USA (1996), 1-11.

Bucci, Marco; Germani, Lucia; Luzzi, Raimondo; Trifiletti, Alessandro and Vara-
nonuovo, Mario: A High Speed Oscillator-Based Truly Random Number Source
for Cryptographic Applications on a Smart Card IC . In: IEEE Transactions on
Computers, No. 4, Vol. 52 (2003), 403-409.

Chadwick, David W.: The X.509 Privilege Management Infrastructure. In: Pro-
ceedings of the NATO Advanced Networking Workshop on Advanced Security
Technologies in Networking, Bled, Slovenia, 2003.

Chan, Siu-cheung Charles: Infrastructure of Multi-Application Smart Card (in
the concerns of access control). http://home.hkstar.com/~alanchan/papers/
multiApplicationSmartCard/, download 2005-02-28 (1997).

Chen, Zhiqun: Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide. Addison-Wesley Professional, Amsterdam (2000).

Eluard, Marc; Jensen, Thomas and Denney, Ewen: An Operational Semantics of
the Java Card Firewall. In: Proceeding of Smart Card Programming and Security
(ESMART), Lecture Notes in Computer Science, 2140, Springer-Verlag, Berlin
Heidelberg New York (2001), 95-110.

European Union (ed.): Information Technology Security Evaluation Criteria (I'T-
SEC). http://www.bsi.de/zertifiz/itkrit/itsec-en.pdf, download 2005-02-
28 (1992).

. Grimaud, Gilles and Vandewalle, Jean-Jacques: Introducing research issues for next

generation Java-based smart card platforms. In: Proceedings of the Smart Objects
Conference (SOC), Grenoble, France (2003), 138-141.
MAOSCO, Ltd: MULTOS. http://www.multos.com, download 2004-06-07 (2004).

. MasterCard International: Mondex. http://www.mondex.com, download 2004-06-

07 (2004).

Menezes, Alfred J.; van Qorschot, Paul C. and Vanstone, Scott A.: Handbook of
Applied Cryptography. CRC Press, Boca Raton et al. (1997).

Niwano, FKikazu; Hatanaka, Masayuki; Hashimoto, Junko and Yamamoto,
Shuichiro: Early Experience of a Dynamic Application Downloading Platform for
Multi-Application Smart Cards. In: Proceedings of the Fifth Joint Conference on
Knowledge-Based Software Engineering (JCKBSE) Maribor, Slovenia (2002).
Posegga, Joachim and Vogt, Harald: Byte Code Verification for Java Smart Cards
Based on Model Checking. In: Proceedings of the Fifth European Symposium on
Research in Computer Security (ESORICS), Louvain-la-Neuve, Belgium, Lecture
Notes in Computer Science, 1485, Springer-Verlag, Berlin Heidelberg New York
(1998), 175-190.

Rankl, Wolfgang and Effing, Wolfgang: Handbuch der Chipkarten: Aufbau - Funk-
tionsweise - Einsatz von Smart Cards. Hanser Verlag, Munich et al. (2002).
Reiter, Michael K. and Rubin, Aviel D.: Crowds: Anonymity for Web Transactions.
ACM Transactions on Information and System Security, No. 1, Vol. 1 (1998), 66—
92.

Schneier, Bruce: Applied cryptography: protocols, algorithms and source code in
C. John Wiley & Sons, Inc., New York et al. (1996).

Schneier, Bruce and Shostack, Adam: Breaking Up Is Hard To Do: Modeling Secu-
rity Threats for Smart Cards. In: Proceedings of the USENIX Workshop on Smart
Card Technology, USENIX Press (1999), 175-185.

Siveroni, Igor; Jensen, Thomas and Eluard, Marc: A Formal Specification of the
Java Card Firewall. Nordic Workshop on Secure IT-Systems (2001).

Sun Microsystems, Inc.: Java Card Technology. http://java.sun.com/products/
javacard/, download 2004-06-07 (2004).



