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Abstract. Power analysis is a serious attack to implementation of ellip-
tic curve cryptosystems (ECC) on smart cards. For ECC, many power
analysis attacks and countermeasures have been proposed. In this pa-
per, we propose a novel power analysis attack using differential power
between modular multiplication and modular squaring. We show how
this difference occurs in CMOS circuits by counting the expectation of
signal transition frequency, and present a simulation result on our ECC
co-processor. The proposed attack is applicable to two efficient power
analysis countermeasures based on unified addition formulae and elliptic
curves with Montgomery form.
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1 Introduction

Elliptic Curve Cryptosystems (ECC) offer the same level security with much
shorter key length than RSA cryptosystems, so that they are suitable for imple-
menting on resource-constraint devices such as smart cards. In recent years, a
new class of attacks has been proposed to extract some secret information from a
cryptographic device using side channel information (execution time, power con-
sumption, etc.), that are called side channel attacks. Power analysis attacks, the
most typical side channel attacks, are real threats to smart cards since the power
consumption during cryptographic protocols is relatively dominant in such de-
vices. These attacks include Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) [11]. SPA utilizes a power consumption trace during a single ex-
ecution, whereas DPA requires many power consumption traces and analyzes
them with statistical tools.

For ECC, many SPA/DPA attacks and countermeasures have been investi-
gated since Coron generalized power analysis attacks to a scalar multiplication
dP [5], where d is a secret scalar and P is a point on an elliptic curve. In 2002,
Brier and Joye proposed unified addition formulae that make a point addition
and a point doubling indistinguishable on an elliptic curve with Weierstrass
form [4]. This indistinguishability guarantees SPA-resistance and enables the



use of efficient addition chains such as Non-Adjacent Form (NAF) and so-called
window methods. In the meantime, Montgomery ladder always repeats a point
addition and doubling, thus an SPA attacker cannot know any bit information
of a secret scalar [16]. Montgomery ladder on an elliptic curve with Montgomery
form requires much less costs than that on an elliptic curve with Weierstrass
form [15, 16]. One can easily enhance these two SPA countermeasures to be
DPA-resistant by combining them to randomized projective representation [5,
17] or randomized curve isomorphism [9].

In this paper, we propose a novel attack to these DPA countermeasures.
We firstly describe the difference of power consumption between modular mul-
tiplication and modular squaring. Messerges et al. experimented DPA attacks
to modular exponentiation using distinguishability between multiplication and
squaring [13], but there is no investigation about this bias in CMOS circuits. We
give detailed descriptions of the bias by estimating the transition probability for
each gate in carry-save adder tree, which is a main component of a multiplier,
during Montgomery modular multiplication algorithm. We performed a net-list
timing simulation of our ECC co-processor and confirmed sharp peaks in the dif-
ference between Montgomery modular multiplication and Montgomery modular
squaring.

Secondly, we apply this bias to the above mentioned two SPA/DPA coun-
termeasures. For unified addition formulae, an attacker can distinguish whether
the formulae work as a point addition or doubling, and detect a secret scalar.
For Montgomery ladder on a Montgomery-form curve, we utilize a “special”
point that equalizes both inputs of a certain modular multiplication in a point
doubling. The point satisfies x2 + (A− 4)x + 1 = 0, and the proposed attack is
effective to ECC on any curve that has this point.

The rest of this paper is organized as follows: in section 2 we briefly review
power analysis attacks and countermeasures to ECC. Section 3 provides detailed
description of the bias between Montgomery modular multiplication and Mont-
gomery modular squaring together with a simulation result. In section 4, we
apply the bias to two power analysis countermeasures. Finally, we conclude in
section 5.

2 Elliptic Curve Cryptosystems and Power Analysis

In this section, we introduce power analysis attacks and countermeasures against
elliptic curve cryptosystems, including unified addition formulae and elliptic
curves with Montgomery form. More details are described in [3, Chapter IV
and V].

2.1 Elliptic Curve Cryptosystems

The Weierstrass form of an elliptic curve EW over a prime field IFp (p > 3) is
represented by

EW : y2 = x3 + ax + b (a, b ∈ IFp, 4a3 + 27b2 6= 0).



Input: an n-bit scalar d, a point P
Output: scalar multiplication dP

1. Q← P
2. For i = n− 2 downto 0 do:

2.1. Q← ECDBL(Q)
2.2. if di = 1 then

Q← ECADD(Q, P )
3. Return(Q)

Table 1. Binary method

Input: an n-bit scalar d, a point P
Output: scalar multiplication dP

1. Q[0]← P
2. For i = n− 2 downto 0 do:

2.1. Q[0]← ECDBL(Q[0])
2.2. Q[1]← ECADD(Q[0], P )
2.3. Q[0]← Q[di]

3. Return(Q[0])

Table 2. Double-and-add-always method

The set of all points on EW and a point of infinity O forms an additive group,
where O is a neutral element. Let P0 = (x0, y0), P1 = (x1, y1) be points on EW .
The addition P2 = (x2, y2) = P0 + P1 is defined in different formulae depending
on whether P0 = P1 or not as following: x2 = λ2−x0−x1, y2 = λ(x0−x2)−y0,
where λ = (y1 − y0)/(x1 − x0) for P0 6= ±P1, and λ = (3x0

2 + a)/(2y0) for
P0 = P1. We call P0 + P1 (P0 6= ±P1) an elliptic curve addition (ECADD)
and P0 + P1 (P0 = P1), namely 2P0, an elliptic curve doubling (ECDBL). In
practice, both ECADD and ECDBL are implemented in Jacobian coordinates
by x = X/Z2, y = Y/Z3 because an inversion is much more expensive than any
other arithmetic (addition, subtraction, multiplication) over IFp. In this case,
both are also implemented with different formulae.

In order to construct Elliptic Curve Cryptosystems (ECC) we need to com-
pute a scalar multiplication: computing a point dP = P + · · ·+ P︸ ︷︷ ︸

d

given a scalar

d and a point P . On the other hand, the security of ECC is based on the hardness
of Elliptic Curve Discrete Logarithm Problem (ECDLP): computing d given P
and dP . Therefore, in most ECC protocols, d is used as a secret key; P and dP
are made to be public. The basic method to compute a scalar multiplication is
called as the binary method. Let d = (dn−1 · · · d1d0)2 be a binary representation
of d. The binary method is shown in Table 1.

2.2 Power Analysis Attacks and Countermeasures

Power analysis attacks are serious on resource-constraint devices such as smart
cards. An attacker can successfully reveal some secret information by observ-
ing the power consumption on a device during cryptographic protocols. Simple
Power Analysis (SPA) and Differential Power Analysis (DPA) are typical ones;
SPA requires a power consumption trace during only a single execution, whereas
DPA utilizes many power consumption traces with statistical analysis [11]. These
attacks utilize a correlation between secret information and power consumption,
and are also applicable to ECC.

The binary method shown in Table 1 is vulnerable to SPA. It computes
ECADD only when di = 1, although ECDBL is always computed regardless of
di. ECADD and ECDBL are different operations as described above, and thus
an attacker can easily distinguish ECDBL and ECADD by observing a power



consumption trace and detect secret bit di. Many SPA countermeasures against
ECC have been proposed, and they are principally divided into two types as
follows.

(S1) repeating regular pattern
(S2) unifying ECADD and ECDBL

(S1) includes the double-and-add-always method in Table 2 [5], which repeats
ECDBL and ECADD by appending dummy ECADD to the binary method, and
Montgomery ladder [15], which is discussed in section 2.4. (S2) includes Hessian
curves [10], Jacobi curves [12], and unified addition formulae [4], which is shown
in section 2.3.

The resistance against SPA doesn’t always guarantee the resistance against
DPA because a power consumption trace depends on not only a type of opera-
tions, namely ECADD or ECDBL, but also intermediate values. A DPA attacker
collects many power consumption traces during the scalar multiplication and
guesses a bit of the secret scalar by analyzing correlation between these traces
and intermediate values [5]. In order to resist DPA, intermediate values must be
randomized. There are three standard randomization methods as follows.

(D1) blinding scalar [11, 5]
(D2) randomized projective representation [5, 17]
(D3) randomized curve isomorphism [9]

These three DPA countermeasures together with the SPA countermeasure (S1)
or (S2) enables SPA/DPA resistance. (D1), however, requires more additional
costs than (D2) and (D3), so that the combination of either (S1) or (S2) and
either (D2) or (D3) is thought to be an optimal SPA/DPA countermeasure.

In 2003, Goubin presented a new power analysis attack called Refined Power
Analysis (RPA) [6]. This attack utilizes a “special” point (x, 0) or (0, y) that can
be fully randomized by neither (D2) nor (D3). In the addition, an attacker can
pick up the point only in a few power consumption traces because a power trace
in processing this point is distinctive [2]. RPA with a point (x, 0) can be easily
discarded by multiplying co-factor on the underlying curve to an input point P
since the order of (x, 0) is 2 [18]. On the other side, RPA with a point (0, y)
cannot be discarded because (0, y) has large order. Therefore, RPA is effective
on a curve that has a point (0, y).

We extended RPA to Zero-value Point Attack (ZPA) using other “special”
points [2]. We pointed out that, even if a point has no zero coordinate, inter-
mediate values in addition or doubling formulae might become zero. ZPA using
a point addition is actually difficult for a large scalar d, but ZPA using a point
doubling is as effective as RPA if the point that causes zero-value in a point
doubling exists on the underlying curve. Therefore, RPA and ZPA using a point
doubling may oblige not only (D2) or (D3) but also (D1), or another counter-
measure such as randomized initial point countermeasure [7, 14], which leads to
extra costs or memories.



2.3 Unified Addition Formulae

Brier and Joye proposed “unified addition formulae” for an elliptic curve addition
(ECADD) and an elliptic curve doubling (ECDBL) on a Weierstrass-form elliptic
curve as an SPA countermeasure [4]. In their formulae for affine coordinates, a
denominator becomes no longer zero in ECDBL as follows.

Unified Addition Formulae P2 = P0 + P1

x2 =
(

x1
2 + x1x0 + x0

2 + a

y1 + y0

)2

− x0 − x1

y2 =
(

x1
2 + x1x0 + x0

2 + a

y1 + y0

)
(x0 − x2)− y0

Izu and Takagi proposed the exceptional procedure attack that forces a denom-
inator to become zero for ECADD by inputting two points (x0, y0) and (x1, y1),
which satisfy y0 + y1 = 0, but it seems difficult to find a couple of such points
for a large scalar [8].

An SPA attacker cannot distinguish whether the unified formulae work as
ECADD or ECDBL, thus she knows only a hamming weight of a secret scalar
d even if the binary method is used. Moreover, an efficient addition chain such
as Non-Adjacent Form (NAF) or window-based methods leads great efficiency.
The unified addition formulae for projective coordinates were also proposed. The
combination with a DPA countermeasure (D2) or (D3) enables the compatibility
of efficiency and SPA/DPA resistance.

Remark 1. In [21], Walter proposed an SPA attack to unified addition formulae
based on the existence of a final subtraction in Montgomery modular multiplica-
tion. This attack, however, is easily eliminated by computing a final subtraction
in any case.

2.4 Elliptic Curve with Montgomery-Form

The Montgomery form of an elliptic curve EM over IFp, (p > 3) was proposed
by Montgomery to speed up integer factorization [15], and represented by

EM : By2 = x3 + Ax2 + x (A,B ∈ IFp, (A2 − 4)B 6= 0).

About 40% of elliptic curves with Weierstrass form are transformed into Mont-
gomery form, and the order of a Montgomery-form elliptic curve is always divis-
ible by 4 [16]. On a Montgomery-form elliptic curve EM , x-coordinate of the ad-
dition of two points can be computed without y-coordinate if x-coordinate of the
difference of these points is known. Affine coordinate x is transformed into pro-
jective coordinates (X : Z) by x = X/Z. Let P0 = (X0 : Z0) and P1 = (X1 : Z1)
be points on EM . In the following we describe Montgomery addition formulae
P2 = (X2 : Z2) = P0 + P1, where P0 6= ±P1 and P ′ = (X ′ : Z ′) = P0 − P1, and
Montgomery doubling formulae P2 = (X2 : Z2) = 2P0.



Input: an n-bit scalar d, a base point P
Output: scalar multiplication dP

1. Q[0]← P, Q[1]← 2P
2. For i = n− 2 downto 0 do:

2.1. Q[1− di]← mECADD([Q[0], Q[1])
2.2. Q[di]← mECDBL([Q[di])

3. Return(Q[0])

Table 3. Montgomery ladder

Montgomery Addition Formulae (mECADD) P2 = P0 + P1 (P1 6= ±P0)

X2 = Z ′((X0 − Z0)(X1 + Z1) + (X0 + Z0)(X1 − Z1))2

Z2 = X ′((X0 − Z0)(X1 + Z1)− (X0 + Z0)(X1 − Z1))2

Montgomery Doubling Formulae (mECDBL) P2 = 2P0

4X0Z0 = (X0 + Z0)2 − (X0 − Z0)2

X2 = (X0 + Z0)2(X0 − Z0)2

Z2 = (4X0Z0)((X0 − Z0)2 + ((A + 2)/4)(4X0Z0))

A scalar multiplication dP can be computed by so-called Montgomery ladder
in Table 3. Montgomery ladder always repeats mECADD and mECDBL whether
di = 0 or 1. Therefore, an SPA attacker cannot guess any bit information of a
secret scalar d [16]. Montgomery ladder on an elliptic curve with Weierstrass
form was also proposed, but the costs of a point addition and a point doubling
on a Weierstrass-form curve are much larger than mECADD and mECDBL. One
can enhance Montgomery ladder to be DPA-resistant by applying randomized
projective representation [17]. In the addition, RPA and ZPA are easily elimi-
nated by checking whether 4P is a point at infinity or not for a input point P
because the order of a point (0, y) for RPA, (−1, y) and (1, y) for ZPA are 2, 4
and 4, respectively.

3 Differential Power between Multiplication and
Squaring

Here we show that there exists the difference of power consumption between
modular multiplication and modular squaring in CMOS circuits. We estimate
the transition probability of each signal in some full adders, and present a result
of net-list timing simulation in order to confirm this difference.

3.1 Montgomery Modular Multiplication

We assume the following standard smart card environment. The embedded CPU
on a smart card, typically an 8 or 16 bit CPU, has only so poor computing



Input: M = (M4 · · ·M0)b, X = (X4 · · ·X0)b, Y = (Y4 · · ·Y0)b,
b = 232, R = b5, gcd(m, b) = 1, m′ = M−1

0 mod b
Output: XY R−1 mod M

1. A← 0 ((A = (A5 · · ·A0)b)
2. For i from 0 to 4 do:

2.1. temp← 0
2.2. For j from 0 to 4 do:

{temp, Aj} ← XjYi + Aj + temp
2.3. A5 ← temp, temp← 0, ui ← A0m

′ mod b
2.4. For j from 0 to 5 do:

{temp, Aj} ←Mjui + Aj + temp
2.5. A← A/b

3. If A ≥M then A← A−M
4. Return(A)

Table 4. 160-bit Montgomery modular multiplication using a 32-bit multiplier

power that we usually equip a co-processor for implementing ECC. An addition,
subtraction, multiplication and inversion over a base field IFp are implemented
in an ECC co-processor to compute elliptic curve operations such as a point
addition, point doubling and scalar multiplication. The modular multiplication
is the most frequently used among those modular operations.

Recall that Montgomery modular multiplication algorithm is a standard al-
gorithm for computing modular multiplication over general prime fields. In this
paper we analyze a 160-bit Montgomery modular multiplication with 32-bit word
size is shown in Table 4, which is a standard size in current implementation of
ECC. In this algorithm there are three 32-bit multiplications computed by a
32-bit multiplier, namely XjYi in step 2.2, A0m

′ in step 2.3, and Mjui in step
2.4.

We will later show that signal transition probability in a 32-bit multiplier
during computing XjYi is biased if the inputs of Montgomery modular multipli-
cation, X and Y , satisfy X = Y .

3.2 Structure of a Multiplier

In this section we deal with a 6-bit multiplier instead of a 32-bit multiplier
because of space limitation. All observations, however, are applicable to a 32-bit
multiplier.

In general, a multiplier consists of three stages: Partial Product Generator
(PPG), Partial Product Accumulator (PPA) and Final Stage Adder (FSA). The
PPG stage generates partial products from multiplicand and multiplier in paral-
lel. The PPA stage then performs multi-operand addition for all partial products
and produces their sum in carry-save form. Finally, the carry-save form is con-
verted to the binary output at the FSA stage.
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Fig. 2. Half Adder (HA) and Full Adder (FA)

In Fig.1, we show the detailed structure of a 6-bit multiplier x ∗ y using
simple XORs as PPG and Wallace tree as PPA, where x = (x5x4x3x2x1x0)2
and y = (y5y4y3y2y1y0)2 are binary representations of x and y, respectively. All
partial products aij = xi&yj for 0 ≤ i, j ≤ 5 are summed in carry-save form at
Wallace tree that is composed of Half Adders (HA) and Full Adders (FA) shown
in Fig.2. In the final stage, a carry propagate adder generates a product from
11-bit sum and 9-bit carry.

3.3 Biased Signal Transition Probability in a Multiplier

Power consumption in CMOS circuits depends on the transition probability of
signals without power consumption caused by the leakage current, which is de-
termined by the characteristics of the CMOS process. Therefore, regarding to
power analysis, we have only to consider transition probability of signals [19, 20].
When the transition probability in two cases is biased, the difference of power
consumption occurs.

Here we estimate the signal transition probability of FA0, FA1, FA2, FA4,
FA5, FA7, FA10 and FA13, depth-1 full adders of Wallace tree, in Fig.1. The
all three inputs A,B, Ci of these full adders consist of partial products aij . We
consider the following two cases about the inputs (x, y) of the 6-bit multiplier:

(i) transition from (s, t) to (s′, t),
(ii) transition from (s, t) to (t, t),



signal transition TypeN TypeA1 TypeA2 TypeA3 TypeA4

A 0 → 1 1/8 1/8 1/8 1/4 1/8
1 → 0 1/8 1/8 1/8 0 1/8

B 0 → 1 1/8 1/8 1/8 1/8 1/4
1 → 0 1/8 1/8 1/8 1/8 0

Ci 0 → 1 1/8 1/8 1/4 1/8 1/8
1 → 0 1/8 1/8 0 1/8 1/8

n0 0 → 1 3/16 3/16 3/16 1/4 1/4
1 → 0 3/16 3/16 3/16 1/8 1/8

n1 0 → 1 9/128 9/64 9/64 3/32 3/32
1 → 0 9/128 3/64 3/64 1/32 1/16

n2 0 → 1 3/64 3/54 3/64 3/32 3/32
1 → 0 3/64 3/64 3/64 1/32 1/32

Q 0 → 1 7/32 1/8 1/4 1/4 1/4
1 → 0 7/32 5/16 3/16 3/16 3/16

Co 0 → 1 13/128 5/32 21/128 21/128 5/32
1 → 0 13/128 1/16 9/128 9/128 1/16

Total 2 33/16 133/64 133/64 33/16

Table 5. Signal transition probability of Full Adders (FAs)

where s, s′ and t are 6-bit random values, respectively. aij = 1 generally occurs
with probability 1/4 by aij = xi&yj .

In case (i), all the eight FAs have the same transition probability of inputs,
internal nodes and outputs as TypeN shown in Table 5. Meanwhile, in case (ii)
FA4 and FA5 also have the same probability as TypeN, but the other FAs are
divided into four types, which have different probability from TypeN in Table 5,
as follows.

TypeA1 A = Ci and B = aii (FA0, FA13)
TypeA2 B = Ci (FA1, FA10)
TypeA3 Ci = aii (FA2)
TypeA4 A = aii (FA7)

This biased transition probability results from the following biased state: aij =
aji and aii = 1 with probability 1/2 when (x, y) = (t, t). The expectation of the
total transition frequency for these FAs in case (ii) is larger by 13/32 than that
in case (i). Moreover, the biased transition probability of outputs Q,Co in these
FAs influences transition probability of depth-2/3 adders in Wallace tree and
the carry propagate adder. Therefore, the power consumption traces of the 6-bit
multiplier in case (i) and (ii) differ, which will not depend on the bit-width and
structure of a multiplier — the difference will occur, for example, when using a
32-bit multiplier with booth encoder as PPG and 4:2 compressor tree as PPA.

We denote Montgomery modular multiplication with inputs X and Y satis-
fying X = Y , namely Montgomery modular squaring, by SQR and Montgomery
modular multiplication with general X and Y by MUL. Let CS and CM be
power consumption traces during SQR and MUL, respectively. During SQR, the
inputs of multiplier transit from (Xi−1, Xi) to (Xi, Xi) at j = i in step 2.2,
which corresponds to case (ii). On the other hand, during MUL, the inputs of
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multiplier then transit to from (Xi−1, Yi) to (Xi, Yi), which corresponds to case
(i). Therefore, the difference ∆C = CS − CM will present a peak at j = i in
step 2.2. Similarly, ∆C also will show a peak at j = i + 1 because the biased
transition from biased state to random state occurs in a multiplier during SQR.

3.4 Simulation Result

We performed a net-list timing simulation of Montgomery modular multiplica-
tion circuits in our ECC co-processor, reported in [1]. We used a 90-nm CMOS
standard cell library and then made estimated power consumption traces by
counting the number of gate switching times in every 200ps. In Fig.3, the dotted
line shows the difference of average switching times between SQR and MUL for
random 10000 inputs at i = 2 in step 2.2; the solid line shows the difference
between both MUL for random 10000 inputs. The dotted line shows sharp peaks
at the 3rd and 4th cycles, namely at j = 2 and 3.

Remark 2. The power consumption is biased between modular multiplication
and modular squaring for any modular multiplication algorithm because the
multiplication of inputs X and Y is required.

4 Application to Elliptic Curve Cryptosystems

We apply the difference of power consumption between multiplication and squar-
ing to the above-mentioned two DPA countermeasures, namely unified addition
formulae and Montgomery ladder on a Montgomery-form curve.



4.1 Attack to Unified Addition Formulae

The distinguishability between modular multiplication and modular squaring is
applicable to an attack to a scalar multiplication dP for a secret scalar d and a
point P using unified addition formulae. We notice the modular multiplication
x1x0, denoted by MUL1, in the affine coordinate version of unified addition
formulae in section 2.3. The formulae work as ECADD when x1 6= x0 and as
ECDBL when x1 = x0. Hence, if an attacker can distinguish whether MUL1
is a modular multiplication or a modular squaring, she knows whether the cor-
responding operation is ECADD or ECDBL and detects bit information of the
secret scalar d.

Assume that randomized curve isomorphism is used as a DPA countermea-
sure. P0 = (x0, y0) and P1 = (x1, y1) is transformed to its isomorphic class like
P ′0 = (λ2x0, λ

3y0) and P ′1 = (λ2x1, λ
3y1) for a random value λ ∈ IF∗p. In the case,

the modular multiplication (λ2x1)(λ2x0) is computed as MUL1. Thus MUL1
remains a modular multiplication when P ′0 6= P ′1 and a modular squaring when
P ′0 = P ′1

In the following, we present the precise algorithm to search the bit of d for
a scalar multiplication dP using unified addition formulae. We assume that the
scalar multiplication is computed by the binary method. The unified addition
formulae is computed m = l(d) + h(d)− 1 times during a single scalar multipli-
cation, where l(d) is the bit length of d and h(d) is the hamming weight of d;
precisely h(d)− 1 times as “A” (ECADD) and l(d) times as “D” (ECDBL).

[Bit search algorithm for unified addition formulae]
1. Measure power consumption traces of dP L times and average them.
2. Extract the average traces Ci (1 ≤ i ≤ m) when computing MUL1 during

the i-th execution of the formulae.
3. Assume “A” if ∆Ci = Ci − C1 (2 ≤ i ≤ m) shows a peak and “D” if not.
4. Regard “DA” as a bit “1” and the remaining “D” as a bit “0”.

The first execution of MUL1 corresponds to a modular squaring because the
scalar multiplication always computes ECDBL in the beginning. Therefore, if
∆Ci shows a peak, x1x0 is a modular multiplication and the execution corre-
sponds to ECADD.

Remark 3. The proposed attack is also applicable to the projective coordinate
version of unified addition formulae [4].

4.2 Attack to Elliptic Curve with Montgomery-Form

As described in section 2.4, there is no “special” point of small order for RPA
and ZPA in Montgomery doubling formulae (mECDBL). Therefore, Montgomery
ladder on a Montgomery-form curve together with randomized projective repre-
sentation is secure against SPA/DPA/RPA/ZPA. P0 = (X0 : Z0) is transformed
to its random projective representation like P0 = (λX0 : λZ0) for a random
value λ ∈ IF∗p. Here we propose another “special” point that equalizes both in-
puts of a certain modular multiplication in mECDBL. We notice the modular



multiplication (4X0Z0)((X0 −Z0)2 + ((A + 2)/4)(4X0Z0)), denoted by MUL2,
in mECDBL.

Let E = 4X0Z0 and F = (X0−Z0)2+((A+2)/4)(4X0Z0). MUL2, of course,
becomes a modular squaring when E = F . The condition satisfying E = F is
that x-coordinate x0 = X0/Z0 of P0 satisfies x0

2 + (A− 4)x0 + 1 = 0 by

E − F = −(X0
2 + (A− 4)X0Z0 + Z0

2)
= −Z0

2(x0
2 + (A− 4)x0 + 1).

Even if projective representation of P0 is randomized as P0 = (λX0 : λZ0), the
condition of E = F still implies x0

2 + (A− 4)x0 + 1 = 0 by −λ2Z0
2(x0

2 + (A−
4)x0 + 1) = 0.

Let R = (xR, yR) of order #R be the point satisfying xR
2 +(A− 4)xR +1 =

0 and exist on the underlying Montgomery-form curve. If the input point of
mECDBL is R, MUL2 becomes a modular squaring despite randomized projec-
tive representation. Suppose that a scalar multiplication dP for a secret scalar
d and a point P is computed by Montgomery ladder (Table 2) and randomized
projective representation, where P can be adaptively chosen by an attacker. Here
we assume that she knows (n− i− 1) most significant bits (dn−1 · · · di+1) of d.
In Table 2, for any given input point P , the points Q[0] and Q[1] obtained at
the beginning of the i-th step of the loop are Q[0] = (

∑n−1
j=i+1 dj2j−i−1) · P and

Q[1] = (
∑n−1

j=i+1 dj2j−i−1 + 1) · P . We then have two cases:

– If di = 0, the input point of mECDBL is (
∑n−1

j=i+1 dj2j−i−1) · P .
– If di = 1, the input point of mECDBL is (

∑n−1
j=i+1 dj2j−i−1 + 1) · P .

Thus, MUL2 becomes a modular squaring at the i-the step of the loop in the
following two cases:

– di = 0 and P = [(
∑n−1

j=i+1 dj2j−i−1)−1 mod #R] ·R,
– di = 1 and P = [(

∑n−1
j=i+1 dj2j−i−1 + 1)−1 mod #R] ·R.

In these cases biased power consumption occurs in MUL2 compared to a mod-
ular multiplication.

We present the algorithm to search the bit of a secret scalar d from the most
significant bit.

[Bit search algorithm for Montgomery-form curve]
1. Measure power consumption traces for L random input points P and average

them by Ct.
2. i← n− 2.
3. Compute P0 = [k−1 mod #R] · R and P1 = [(k + 1)−1 mod #R] · R for

k =
∑n−1

j=i+1 dj2j−i−1.
4. Measure power consumption traces L times for the input point P0 and av-

erage them by C0.
5. Measure power consumption traces L times for the input point P1 and av-

erage them by C1.



6. Compute ∆C0 = C0 − Ct and ∆C1 = C1 − Ct.
7. Assume that di = 0 if ∆C0 during MUL2 at the i-th step of the loop has

larger peaks than ∆C1 and di = 1 otherwise.
8. If i = 0, terminate; else i← i− 1 and go to 3.

The average power trace Ct is used as a standard one where MUL2 is a modular
multiplication at every step of the loop.

5 Conclusion

We presented detailed descriptions of the biased power consumption between
Montgomery modular multiplication and Montgomery modular squaring. How-
ever, it must be emphasized that the bias occurs in any modular multiplication
algorithm. We applied this bias to unified addition formulae and Montgomery
ladder on a Montgomery-form elliptic curve. We should randomize not only a
base point but also a secret scalar for these power analysis countermeasures.
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