
Optimizing the Integration of Agent-Based
Cloud Orchestrators and Higher-Level

Workloads

Merlijn Sebrechts(B), Gregory Van Seghbroeck, and Filip De Turck

IDLab, Department of Information Technology, Ghent University - imec,
Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

merlijn.sebrechts@ugent.be

Abstract. The flexibility of cloud computing has put significant strain
on operations teams. Manually installing and configuring applications in
the cloud simply isn’t an option anymore. Configuration management
automation solves the issue of getting a single application into a certain
state automatically and reliably. However, the issue of automatic depen-
dency management between multiple applications is still an “open, hard
problem” according to researchers at Google. Agent-based modeling and
orchestration tools like Juju solve the issue of getting from zero to a
working set of correctly clustered and connected frameworks. The short-
comings of these state-of-the-art tools are that they don’t provide effi-
cient ways to model and orchestrate workloads running on top of these
frameworks. This paper presents a number of ways to deploy and orches-
trate workloads with Juju, compares their performance and overhead,
and suggests how this overhead can be minimized.

Keywords: Cloud modeling languages · Service orchestration · Juju

1 Introduction

There is a big need to make IT operations easier. Take the field of data science for
example. There is an ever-growing set of tools and platforms that support data
scientists. The prevalence of open-source software in that field has shifted the
barrier of entry from licensing costs to operations costs. The tools are available
and free to use, but actually running them in production requires a team of
system administrators that have expert knowledge on both the tools themselves
and IT operations in general. Even industry-standard companies such as Google
state that the issue of automatic dependency management between multiple
services is still an “open, hard problem” [1].

The devops world has spawned a number of useful tools that help operations
teams. Configuration management systems help automate the task of installing,
configuring and managing applications. Automating these tasks reduces errors
and saves a lot of time when scaling an application. This process, called

c© The Author(s) 2017
D. Tuncer et al. (Eds.): AIMS 2017, LNCS 10356, pp. 165–170, 2017.
DOI: 10.1007/978-3-319-60774-0 16



166 M. Sebrechts et al.

infrastructure as code, allows businesses to quickly react to changes in usage
of their application. These languages are less suited to lower the time to market
because each new application requires new management code. Moreover, these
tools don’t really abstract away the complexity of operations. This means that
operators using these tools now have to be experts in three fields: Configuration
management, IT operations and the applications they’re maintaining.

Cloud modeling languages aim to reduce complexity and time to market
by providing an abstraction layer on top of IT operations. Instead of changing
the applications themselves, the operator changes a model that represents the
application. The orchestrator then translates actions on the model into actions
on the application. This is a great step forward to manage the complexity of IT
operations. The current generation of cloud modeling languages such as OASIS
TOSCA [2] also improve flexibility and re-usability of operations code by dividing
the operations code of an entire cloud application into a number of reusable
isolated pieces connected to each other using dependencies.

Monolithic cloud orchestrators have a tendency to become very complex [3].
This results hard-to-maintain and hard-to-scale bottlenecks. Agent-based orches-
trators such as Juju [6] are the solution to this problem. All the dependency
resolution and operations logic is put into a series of agents that communicate
with each other over predefined interfaces. The only responsibility of the orches-
trator is to install the agents and set up communication channels between them
[5]. The actual dependency resolution happens in the agents. This has the added
benefit that the implementation of the agent is hidden. This makes it possible
for two agents that manage services using two different configuration manage-
ment tools to communicate with each other, exchange information, and feed that
information into the config management tools.

The combination of agent-based cloud orchestrators and cloud modeling lan-
guages makes IT operations a lot easier but there is still a lot of work to be done.
All the aforementioned tools have a strong focus on the operations of an appli-
cation as a combination of services. What is left out are the actual workloads
running on top of these services. It’s great that orchestrators allow an operator
to setup a MySQL database, but what about the tables in the database? It’s
easy to model and orchestrate an Apache Hadoop cluster, but what about the
jobs running on top of that Hadoop cluster? This isn’t only about creating the
table and submitting the job. The MySQL table will be used by some software
or algorithm and the Hadoop job will get data from somewhere and put the
extracted information somewhere else. Configuring all these workloads by hand
isn’t a viable option due to the same reason that running the operations of an
entire application isn’t a viable option: it’s error-prone, it slows innovation down
to a crawl, and requires a very competent team with highly specialized skills.

Since agent-based cloud orchestrators solve these challenges for the operation
of services and applications, they form a great start to explore solutions for the
operation of high-level workloads.



Optimizing the Integration of Agent-based Cloud Orchestrators 167

2 Modeling High-Level Workloads in Juju

The authors’ previous work proposed the workflow component as a way to
model and manage high-level workloads with Cloud Modeling Languages [4].
Each workflow component is a Charm that contains both the workload itself
and a workflow agent that manages the workload. This approach provides a lot
of flexibility without adding any additional logic to the Juju orchestrator itself.
The tricky part of this approach is that each workload requires at least one
agent, and this agent needs to run somewhere. Juju provides two ways to run
additional agents: co-locate the workflow agent and the framework agent with-
out any isolation and isolate the workflow agent from the framework agent by
running it inside an LXD container.

Both methods aren’t ideal. It clearly shows that Juju is not built with such
use in mind. The issue with co-location is that Juju doesn’t allow two co-located
agents to run in parallel. This is to avoid conflicts when two agents try to man-
age the same machine at the same time. This significantly slows down the agents
because each agents needs to wait for the other agents to finish executing. Iso-
lating the agents using LXD containers solves this issue but introduces a new
one: the overhead of the LXD container. In many cases the overhead of the LXD
container is larger than the resources used by the actual workload.

3 LimeDS Big Data Model

This paper evaluates both methods for running additional agents in order to
get a better grasp on what the actual overhead is and how it compares to the
resources used by the workload. The evaluation is done using the LimeDS Big
Data model1. This model and its components is further explained in this section.

LimeDS is a modular platform to create and run data-driven services2. The
LimeDS Big Data model is perfect for validating the flexibility of modeling work-
loads for a number of reasons. First of all, LimeDS is both a workload and
a platform. The LimeDS Docker container is a workload running on top of
the Docker host, but it is also a host to services and modules running on top
of LimeDS. It is important to support such flexibility. Having LimeDS and the
Docker runtime be two different Charms also has the advantage that you can
swap out the single Docker host and plug in for example a Kubernetes clus-
ter. Secondly, workloads running on LimeDS need to connect to other
services, for example external datastores or load balancers. These connections
require a workload agent communicating with other services to exchange the cor-
rect information and to resolve possible dependencies such as the workload hav-
ing to wait for MongoDB to start. Lastly, LimeDS needs to run in a scaled-
out setup to handle Big Data workloads. The agents make this incredibly easy.
An operator specifies how many instances of LimeDS are needed. The Orches-
trator installs an agent for each LimeDS instance, and the agents communicate
1 https://jujucharms.com/u/tengu-team/limeds-bigdata/.
2 http://limeds.be/.

https://jujucharms.com/u/tengu-team/limeds-bigdata/
http://limeds.be/


168 M. Sebrechts et al.

with the Docker host agent to deploy LimeDS correctly. Since each LimeDS agent
implements the http interface, the agents don’t need any additional clustering
logic. Each agent connects to the agent managing the HAProxy load balancer,
and that agent configures the proxy correctly to loadbalance requests over the
LimeDS cluster.

4 Evaluation

The deploy-time overhead is measured as the time it takes from the model to
scale. The tests start with a running LimeDS Big Data cluster with two units.
This cluster is then scaled to n units, and the time until the scaling action is
complete is measured and compared.

The results in Fig. 1 show that the deploy-time overhead is initially greater
for the isolated setup than for the co-located setup. This is due to the overhead
of spinning up an LXD container for the new agent. However, when more units
are requested, the isolated setup scales faster than the co-located setup due to
the sequential nature the co-located setup. Only one co-located agent is allowed
to execute actions at any given moment.

For the runtime overhead of the agents, the memory and disk usage of
the agent are recorded as shown in Fig. 2. Here the disadvantage of the isolated
setup is clearly visible, it has a much bigger runtime overhead. The +200 MB of
RAM usage per agent is especially worrisome since the LimeDS container itself
uses about 300 MB of RAM.

Fig. 1. The deploy-time overhead of
the agents; LXD vs co-located.

Fig. 2. The runtime overhead of the
agents; LXD vs co-located.

5 Conclusion and the Road Forward

Neither of the solutions has satisfactory performance. The co-located setup com-
promises heavily on deploy-time overhead and both setups compromise on run-
time overhead. There are a few advantages to these solutions. Having the abil-
ity to write arbitrary logic in the agent enables complex dependency resolution
without adding complexity to the orchestrator itself. Containers successfully stop



Optimizing the Integration of Agent-based Cloud Orchestrators 169

the workload agents from accessing or changing the machine where the frame-
work is running. This forces agents to communicate using the relationships. This
enables other frameworks to implement the same relationship, making the solu-
tion pluggable. The ability to model higher-level workloads as a combination of
components related to each other gives operators a clear view of what is actu-
ally running, and allows the workloads themselves to be pluggable. The challenge
will be to find a solution that addresses the performance issues described here
without compromising on the stated advantages. Future research will explore
the road forward in a few directions.

Agentless Agents: The advantage of the agents is that they allow run-
ning arbitrary dependency handling code, thus keeping the orchestrator simple.
A possible solution might be to have a way for giving snippets of dependency
handling code to other agents instead of spinning up new agents.

Slim Agents: Instead of reducing the amount of agents, another path forward
is to investigate if the overhead of the agent itself can be reduced. This approach
requires thorough investigation into where the overhead comes from. There is
also potential to use more lightweight process containers such as Docker instead
of the full-blown operating system containers that LXD provides.

Parallel co-located Agents: Enabling co-located containers to run in parallel
is a possible solution to the deploy-time overhead of co-located agents. This
would need each agent to specify what kind of operations the agent will execute.
The orchestrator can then use that information to determine whether or not two
agents are allowed to run at the same time.

Acknowledgment. Part of this work has been funded by the iFest project, cofunded
by imec and VLAIO.

References

1. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, Omega, and
Kubernetes. Queue 14(1), 70–93. http://dl.acm.org/citation.cfm?doid=2898442.
2898444

2. OASIS: TOSCA Simple Profile in YAML Version 1.0, August 2016.
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/
TOSCA-Simple-Profile-YAML-v1.0.html

3. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys 2013, NY, USA, pp. 351–364
(2013). http://doi.acm.org/10.1145/2465351.2465386

4. Sebrechts, M., Borny, S., Vanhove, T., Seghbroeck, G.V., Wauters, T., Volckaert, B.,
Turck, F.D.: Model-driven deployment and management of workflows on analytics
frameworks. In: 2016 IEEE International Conference on Big Data (Big Data), pp.
2819–2826, December 2016

http://dl.acm.org/citation.cfm?doid=2898442.2898444
http://dl.acm.org/citation.cfm?doid=2898442.2898444
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://doi.acm.org/10.1145/2465351.2465386


170 M. Sebrechts et al.

5. Sebrechts, M., Vanhove, T., Van Seghbroeck, G., Wauters, T., Volckaert, B., De
Turck, F.: Distributed service orchestration: eventually consistent cloud operation
and integration. In: Proceedings of the 2016 IEEE International Conference on
Mobile Services (MS 2016). IEEE (2016)

6. Tsakalozos, K., Johns, C., Monroe, K., VanderGiessen, P., Mcleod, A., Rosales, A.:
Open big data infrastructures to everyone. In: 2016 IEEE International Conference
on Big Data (Big Data), pp. 2127–2129, December 2016

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Optimizing the Integration of Agent-Based Cloud Orchestrators and Higher-Level Workloads
	1 Introduction
	2 Modeling High-Level Workloads in Juju
	3 LimeDS Big Data Model
	4 Evaluation
	5 Conclusion and the Road Forward
	References


