
SmartDEMAP: A Smart Contract Deployment
and Management Platform

Markus Knecht(B) and Burkhard Stiller

Communication Systems Group CSG, Department of Informatics IfI,
University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland

markus.knecht2@uzh.ch

Abstract. Smart contracts on a blockchain behave exactly as specified
by their code. To be sure that a smart contract behaves as expected, the
end-user has to either analyze its code or trust a potentially anonymous
developer or auditor to do so. This approach proposes a smart contract
deployment and management platform that can execute development
tools and code quality tools in a trusted way and uses this to reduce the
trust required into the smart contract developer or auditor. Additionally,
such a platform can provide new capabilities for developers aiding them
in the creation of smart contracts.

1 Introduction

Smart contracts are programs which run in a trusted execution environment pro-
vided by a blockchain [2]. The code of smart contracts can dictate how valuable
assets, associated with a smart contract, are handled. A flaw in the code can lead
to the loss or theft of the handled assets [10]. Developing bug-free software is
challenging even for skilled professionals [7]. Programming languages and tools
like formal verification or automated tests can support that process. Before a
smart contract is trusted with assets, such as cryptocurrency coins or a owner-
ship certificate, it must be ensured that the code implements the expected and
specified behavior. A end-user can ensure this by analyzing the code, by trust-
ing the developer to have implemented the specified behavior, or by trusting an
auditor to verify that the code implements the specified behavior. Analyzing the
code is not an option for most end-users, because of the complexity of the task
as well as the required time.

This paper proposes SmartDEMAP a smart contract deployment and man-
agement platform which reduces the trust required into smart contract devel-
opers and auditors by imposing restrictions on the smart contracts that can be
deployed on it. The restrictions are enforced by executing formal verifiers [1,4],
compilers, automated bug-finders [8], or other development and code quality
tools on smart contracts. Such restrictions could consist of a formal proof of some
specified properties, enforcing a programming language, or requiring a negative
result from an automatic bug finder. SmartDEMAP can reduce the trust needed
into third parties, without requiring expertise in software auditing.

c© The Author(s) 2017
D. Tuncer et al. (Eds.): AIMS 2017, LNCS 10356, pp. 159–164, 2017.
DOI: 10.1007/978-3-319-60774-0 15



160 M. Knecht and B. Stiller

SmartDEMAP allows to run development and code quality tools in a trusted
way to do deploy-time and run-time checks to increase smart contract quality
and robustness. To accelerate the integration into the development process, we
propose to develop a custom smart contract programming language that is aware
of the existence of SmartDEMAP. Such a language can generate code that facil-
itates the provided functionality and gives a developer easy access to it. Existing
languages can integrate SmartDEMAP by providing libraries to interact with it.

2 Hypotheses

An investigation into the current state of smart contract development has shown
that there currently is a high risk for end-users when interacting with smart
contracts, as shown by the “The DAO” incident [10], where an attacker exploited
a bug to steel 3.6 million in ether. The following hypotheses are premises for
developing and analysing SmartDEMAP. In the project it should be researched
how well these premises can mitigate the respective risks.

Hypothesis 1: A platform on the blockchain, which provides access to trusted
execution of development and code quality tools, enables the development of
smart contracts which can manage, verify, and analyze the code of other smart
contracts in order to increase their robustness as well as reducing the trust
required in developers and auditors.

Sub-hypothesis 1.1: The ability to associate attributes with a smart contract
based on a trusted analysis of its code, where the results can be queried and
analyzed by other smart contract or external sources, enables the detection of
misbehaving smart contracts.

Sub-hypothesis 1.2: A smart contract that controls the compilation and
deployment of other smart contracts by using development and code quality
tools, allows a developer to add new features or bug fixes to a smart contract
after it has been deployed, without the need for end-users to trust the developer.

Sub-hypothesis 1.3: A custom smart contract programming language with the
ability of accessing code analysis at run-time can prevent certain exploits.

3 Related Work

There are two categories of work related to SmartDEMAP. On one hand there are
smart contract specific development and code quality tools including program-
ming languages. On the other hand there is research on how resource intensive
computations can be executed in a trusted way despite the resource limitations
of smart contract enabled blockchains [2,11].

For the tools it is important that they work in a reliable way and can not be
fooled by a fine tuned input. If a compiler guarantees a certain semantic which
do not hold in the generated byte code, then a trusted execution of the compiler
will not help either. An earlier Solidity version had such a problem [9]. Formal



SmartDEMAP: A Smart Contract Deployment and Management Platform 161

verification [1,4] and automatic bug-finding [8] are other relevant research topics
for SmartDEMAP. Research into these topics is relatively new and the devel-
oped tools are not in wide use and geared more towards trained professionals.
SmartDEMAP could change that by allowing users not trained in these tools to
still benefit from their results.

Theoretical results already exist concerning the execution of complex com-
putations in a way, such that the results can be trusted [3,5]. Their currently
is a project developing a concrete implementation [6] based on the theoretical
foundations from [3,5], and will allow smart contracts to trigger a trusted com-
putation and access the result.

One part of the current research promises new tools that can be used to
improve the development process and reduce the exploitability of smart con-
tracts. Another part promises ways to run complex computations in a trusted
way, which can be utilized during the execution of smart contracts. There is
no research investigating if and how these two approaches could be combined.
SmartDEMAP will close that research gap.

4 Smart Contract Exploits

In recent years, different exploits have been found which are usable against
some of the existing smart contracts [8]. The most prominent example is the
“The DAO” theft [10]. Contrary to centralized software development, smart con-
tracts operate in an open environment where arbitrary adversaries can exist [8]
and thus attacks can originate from inside the same virtual machine. Addition-
ally, it is substantially harder to correct a bug because smart contract code is
unchangeable after it is deployed on a blockchain [2,11]. Most problems occur
when unknown code is executed, because it may have been deployed by an adver-
sary. Such vulnerabilities can lead to loss or theft of valuable assets and are often
hard or even impossible to fix. Most users of such smart contracts do not have
the expertise and time to ensure that it is safe to trust the smart contract with
their assets.

5 Platform-Based Smart Contract Management

The auditors and developers of smart contracts are often anonymous and their
trustworthiness is unknown. Some smart contracts include code which allows a
privileged entity to exchange parts of the code. This is done to make it possible
to replace code containing a flaw with a fixed version. On the other hand this
could be used to inject code that violates a specified behavior.

SmartDEMAP determines a new mechanism, which allows only code to be
deployed that does not violate an associated behavior specification. The behavior
can be specified as a formal specification and on deployment needs a proof that
it conforms to the specification. Other approaches like defining a test suite and
only allow code to be deployed that passes the test suite will be investigated
in addition to the formal verification approach. This has only a benefit if the



162 M. Knecht and B. Stiller

formal verification tool or test suite can be run in a trusted way. This reduces
the trust required in developers and auditors and replaces it with trust into the
tools and their input (formal specification or test suite).

To achieve this, the approach to be designed will follow a blockchain-based
path, with a platform for management, analysis, and deployment of smart con-
tracts (SmartDEMAP). The platform will manage a set of tools and use them
to enforce that smart contracts deployed on it fulfill as set of specifiable crite-
ria. Such a tool set contains formal verifiers, compilers, automatic test suites,
and automatic bug-finders. These tools are often complex and SmartDEMAP
will provide a way to ensure that these tools fulfill their purpose. This indicates
that each SmartDEMAP instance needs a entity fulfilling this role. This may
be another instance or a known third party (e.g. Microsoft, Amazon, Google) as
well as a consortium of people founded exclusively for that purpose. This system
reduces the trust needed in the code quality tools and replaces it with trust in
the tool verification entity.

6 Improved Smart Contract Programming Language

SmartDEMAP benefits from a custom programming language, which is aware
of it and uses its features during compilation or at run-time. Such a custom pro-
gramming language can incorporate SmartDEMAP to give additional guarantees
by generating the respective run-time checks based on the platforms capabilities.
Further it provides a simple way for developers to access the platforms services.
A new programming language provides the opportunity to analyze existing lan-
guages as well as common exploits of smart contracts programmed in these
languages. A smart contract programming language covering this aspect could
prevent some exploits and common pitfalls by design.

One currently preferred approach is a language based on a process calculi
as suggested in [4]. This does prevent by design some of the common exploits,
such as the reentrancy exploit that brought “The DAO” to its knees [10]. This
exploit is prevented because no state is shared between different processes and
unlike a function a process cannot be called again if it is still running, and thus,
no unexpected state change can occur. This work evaluates if such a language
efficiently can be compiled to existing smart contract virtual machines and which
exploits could be prevented on the language level.

7 Methodology

This project is of high importance if smart contract should become safe to use
by non-experts. On one hand SmartDEMAP can give them a higher degree
of certainty, that it is safe to interact with a smart contract without the risk
of unexpected behavior. On the other hand SmartDEMAP and the custom pro-
gramming language help the developer to deliver smart contracts that are harder
to exploit.



SmartDEMAP: A Smart Contract Deployment and Management Platform 163

The project is approached by developing a model of SmartDEMAP and the
custom programming language that describes their respective capabilities and
guarantees. Beside the model the platform as well as a compiler for the language
are implemented as a proof of the practical feasibility.

The biggest risk involved in the project is that the currently developed tools
like formal verifiers as well as the trusted execution infrastructure will not be
available in time or do not satisfy the needs of SmartDEMAP. The developed
models are used to prove that certain exploits can be prevented fully or at least
to which degree if the described platform and the custom programming language
is used. The expected proofs are:

1. A proof that it is possible to decide if a unknown smart contract can be called
without the risk of becoming vulnerable to certain exploits.

2. A proof that a developer can only deploy code that result in a behavior that
conforms to a formal specification.

3. A proof that smart contracts programmed in the custom language are not
vulnerable against certain exploits.

The evaluation of which exploits are preventable this way is another expected
result from this project. Beside the theoretical results an implementation of
SmartDEMAP on the EVM [11] is expected.

References

1. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: short paper. In: 2016 ACM
Workshop on Programming Languages and Analysis for Security, PLAS 2016,
Vienna, Austria, pp. 91–96 (2016)

2. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Technical report (2014). Accessed 15 Nov 2016

3. Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation using
multiple servers. In: 18th ACM Conference on Computer and Communications
Security, CCS 2011, Chicago, Illinois, USA, pp. 445–454 (2011)

4. Edstroem, R., Pettersson, J.: Safer smart contracts through type-driven devel-
opment. Master’s thesis, Chalmers University of Technology and University of
Gothenburg (2016)

5. Jain, S., Saxena, P., Stephan, F., Teutsch, J.: How to verify computation with a
rational network, June 2016

6. Teutsch, J., Reitwiessner, C.: A scalable verification solution for blockchains (2017).
http://people.cs.uchicago.edu/%7Eteutsch/papers/truebit.pdf

7. Anand, K., Rai, K., Madan, L.: Software crisis. Int. J. Innov. Res. Technol. 1
(2014)

8. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making Smart Contracts
Smarter. Cryptology ePrint Archive, Report 2016/633 (2016)

http://people.cs.uchicago.edu/%7Eteutsch/papers/truebit.pdf


164 M. Knecht and B. Stiller

9. Reitwiessner, C.: Security alert solidity variables can be overwritten in storage
(2016). https://blog.ethereum.org/2016/11/09/analysis-storage-corruption-bug.
Accessed 03 Dec 2016

10. Vessenes, P.: Deconstructing the DAO Attack: A Brief Code Tour (2016).
http://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour. Accessed 03
Dec 2016

11. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger
(2015). http://gavwood.com/paper.pdf. Accessed 03 Dec 2016

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://blog.ethereum.org/2016/11/09/analysis-storage-corruption-bug
http://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour
http://gavwood.com/paper.pdf
http://creativecommons.org/licenses/by/4.0/

	SmartDEMAP: A Smart Contract Deployment and Management Platform
	1 Introduction
	2 Hypotheses
	3 Related Work
	4 Smart Contract Exploits
	5 Platform-Based Smart Contract Management
	6 Improved Smart Contract Programming Language
	7 Methodology
	References


