
Flow Information Storage Assessment Using
IPFIXcol

Petr Velan and Radek Krejč́ı

CESNET, z.s.p.o.,
Zikova 4, 160 00 Prague, Czech Republic,

petr.velan@cesnet.cz,rkrejci@cesnet.cz

Abstract. Network monitoring has became a significant part of net-
work management. Each environment and type of network have their
specific, different needs. To allow network traffic monitoring in various
environments, a necessity of flexible approach thus grows. The current
generation of flow collectors provides only a limited flexibility, mainly due
to limits of their data storage formats. Moreover, it is quite a challenging
task to compare particular storage formats and their suitability for the
specific environment and usage. In this paper we present IPFIXcol – a
flow collector framework designed for easy data storage formats chang-
ing. This way, we plan to evaluate performance and suitability of various
data storage formats for specific tasks. Results can be used to build the
most appropriate data storage for the specific production environments.

Keywords: collector, flow, IPFIX, NetFlow, network monitoring.

1 Introduction

Flow traffic monitoring becomes widespread and demands for its additional fea-
tures grow. Sometimes, we significantly miss some specific information in the
stored flow records. The currently used flow records relate to IP networks only.
However, flow information can be beneficial in non-IP networks too, like build-
ing automation and control system (BACS) networks or supervisory control and
data acquisition (SCADA) networks. The additional information fields not in-
cluded in standard flow records are needed for applications such as classification
of network traffic based on time characteristics [1]. These needs can be satisfied
by metering and collecting processes supporting the IP Flow Information Export
(IPFIX) protocol [2].

In this paper, we are introducing IPFIXcol – IPFIX protocol collecting frame-
work for receiving, processing and storing various flexible flow information. We
are using this framework in our research to store the same flow information data
in multiple formats. This way, the efficiency and suitability of each format can
be compared. Based on the results, we plan to optimise current formats or to
propose new ones to store network traffic flow information for various scenarios.

The paper is organized as follows. After the Introduction, some of the cur-
rently used IPFIX implementations and related works are summarized in Sec-
tion 2. The IPFIXcol architecture is described in Section 3. Future use of the



framework for comparing and designing flow information storage formats is dis-
cussed in Section 4.

2 Related Work

A list of exporters supporting IPFIX protocol includes, for example, the Flow-
Mon probe1, nProbe2, Vermont (VERsatile MONitoring Toolkit)3 or YAF (Yet
Another Flowmeter)4. IPFIX collector implementations are provided by nTop5

toolkit, which comes from the same authors as nProbe, and the above-mentioned
Vermont toolkit. There is also the python library called ripfix6 that provides
support for building IPFIX collecting and exporting applications. Results of the
IPFIX implementations interoperability testing can be found in [3].

Our research is inspired by the comparison of nfdump7 flat file format and
MySQL database [4]. We will take the next step and provide a general compar-
ison of more types of data storage formats along with complex benchmarks.

The research of some new possibilities in storing of streamed network data,
such as network traffic flow information, is done by Fusco [5]. IPFIXcol provides
framework for testing and results deployment of such a research while using the
real network traffic data.

3 IPFIXcol System Architecture

The IPFIXcol is composed of a core program which is further extended by plugins
(see Figure 1). Incoming flow data pass through an input plugin associated with
a transport protocol. The output of the input plugin is parsed by the core to get
some general information for further use by storage plugins. If specified, data
can be modified by internal plugins. Storage plugins then store flow records in
a specific data format. A more detailed description of each plugin type follows.

Input Plugins get the data from different flow information sources such as
local files or network flow record streams from routers or standalone probes. The
currently implemented input plugins provide support for an IPFIX file format [6]
and IPFIX data transferred over SCTP, UDP, TCP or TLS over TCP protocols.

Internal Plugins extend functionality of the IPFIXcol core. With internal
plugins, the IPFIXcol is able to serve as an IPFIX mediator [7] that can modify
incoming data. Internal plugins can be used i.e. for data anonymization or flow-
based sampling.

1 http://www.invea-tech.com/products-and-services/flowmon/flowmon-probes
2 http://www.ntop.org/nprobe/nprobe-complies-with-ipfix-specification/
3 http://vermont.berlios.de/
4 http://tools.netsa.cert.org/yaf/
5 http://www.ntop.org/
6 http://ripfix.rubyforge.org/
7 http://nfdump.sourceforge.net/

http://www.invea-tech.com/products-and-services/flowmon/flowmon-probes
http://www.ntop.org/nprobe/nprobe-complies-with-ipfix-specification/
http://vermont.berlios.de/
http://tools.netsa.cert.org/yaf/
http://www.ntop.org/
http://ripfix.rubyforge.org/
http://nfdump.sourceforge.net/


Storage plugins

API

IPFIX 
packet

Parsed
data

Arbitrary 
format

Arbitrary 
format

CoreInput plugins

PostgreSQL

IPFIX
File Format FastBit

... ...

IPFIX
File Format

Sample

Anonymize

SCTP

UDP

...

API

with internal plugins

Fig. 1. System Architecture

Storage Plugins are used to process received data. This usually includes stor-
ing the flow records into files or databases. Furthermore, storage plugins can also
resend the data to other destinations or process them to get overall statistics.
Configuration of the plugins allows specifying rather complex cross connections
between the flow information sources and the data stores.

Currently, the IPFIXcol storage plugins allow storing data in the IPFIX flat
file format, PostgreSQL database and FastBit column-based database [8].

4 Conclusion and Future Work

This paper has introduced the IPFIXcol flow collecting framework. The IPFIXcol
is already in a testing phase, including several basic input and output plugins.

The IPFIXcol is not just another IPFIX collector. It provides a framework
for testing various procedures of flow information pre-processing or storage data
formats. The IPFIXcol with an effective storage data format can be used for
monitoring high-speed networks. By changing the storage data format or an
internal processing plugin to support specific information fields, the IPFIXcol
can be effectively used for monitoring research and non-standard environments
such as building management or SCADA networks [9].

4.1 Future Work

To measure and compare characteristics of various flow data storage formats,
we need to establish a set of test scenarios. We will take several queries typical
of flow information data, such as data selection based on specified properties,
data aggregation or combinations of both, so that the stored data are accessed
sequentially or randomly. Then we will transform these queries into a specific
format used by the data storage management tools.

New IPFIXcol storage plugins will be used to store the same data in different
formats, so that our test queries return the same results. This way we can also



measure the throughput of different database solutions, which can be interesting
in high-speed networks.

With these tests, we will be able to determine which type of data storage is
most suitable for a specific environment and an application. We can also compare
widely used nfdump flat file format, which is limited to the NetFlow v9, with
more flexible databases that support IPFIX.

The acquired results will allow us to select and eventually improve the pri-
mary IPFIXcol storage format and its query tool. Currently, the usage of the
FastBit library for storing network traffic flow information is very promising.
The library is being developed at Lawrence Berkeley National Laboratory and
we can contribute to it with specific demands from our use cases. Based on
the test results, we might need to develop our own specific purpose database
dedicated to storing flexible flow data.

Acknowledgement This work is supported by the “CESNET Large Infras-
tructure” project LM2010005 funded by the Ministry of Education, Youth and
Sports of the Czech Republic.

References

1. Piskač P., Novotný J.: Using of Time Characteristics in Data Flow for Traffic Clas-
sification. In: Proceedings of the AIMS 2011. Nancy: Springer, 2011. p. 173–176,
4 pp. ISBN 978-3-642-21483-7.

2. Claise B.: Specification of the IP Flow Information Export (IPFIX) Protocol for the
Exchange of IP Traffic Flow Information. RFC 5101, IETF (2008).

3. Trammell B.: DEMONS IPFIX Interoperability Event -- Final Report (2011). www.
ietf.org/proceedings/80/slides/ipfix-4.pdf.

4. Hofstede R., Sperotto A., Fioreze T., Pras A.: The Network Data Handling War:
MySQL vs. NfDump, In: 16th EUNICE/IFIP WG 6.6 Workshop, 2010, Trondheim,
Norway. p. 167–176, 10 pp. ISBN 978-3-642-13970-3.

5. Fusco, F., Vlachos, M., Stoecklin, M.: Real-time creation of bitmap indexes on
streaming network data, In The VLDB Journal, (2011).

6. Trammell B., Boschi E., Mark L., Zseby T., Wagner A.: Specification of the IP Flow
Information Export (IPFIX) File Format. RFC 5655, IETF (2009).

7. Kobayashi A., Claise B., Muenz G., Ishibashi K.: IP Flow Information Export (IP-
FIX) Mediation: Framework. RFC 6183, IETF (2011).

8. Lawrence Berkeley National Laboratory. FastBit, http://crd-legacy.lbl.gov/

~kewu/fastbit/.
9. Krejč́ı, R., Čeleda, P., Dobrovolný, J.: Traffic Measurement and Analysis of Building

Automation and Control Networks. Paper to appear in AIMS 2012 (2012)

www.ietf.org/proceedings/80/slides/ipfix-4.pdf
www.ietf.org/proceedings/80/slides/ipfix-4.pdf
http://crd-legacy.lbl.gov/~kewu/fastbit/
http://crd-legacy.lbl.gov/~kewu/fastbit/

	Flow Information Storage Assessment Using IPFIXcol
	1 Introduction
	2 Related Work
	3 IPFIXcol System Architecture
	4 Conclusion and Future Work
	4.1 Future Work



