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Abstract. SSH attacks are a main area of concern for network man-
agers, due to the danger associated with a successful compromise. De-
tecting these attacks, and possibly compromised victims, is therefore a
crucial activity. Most existing network intrusion detection systems de-
signed for this purpose rely on the inspection of individual packets and,
hence, do not scale to today’s high-speed networks. To overcome this is-
sue, this paper proposes SSHCure, a flow-based intrusion detection sys-
tem for SSH attacks. It employs an efficient algorithm for the real-time
detection of ongoing attacks and allows identification of compromised
attack targets. A prototype implementation of the algorithm, including
a graphical user interface, is implemented as a plugin for the popular
NfSen monitoring tool. Finally, the detection performance of the system
is validated with empirical traffic data.

1 Introduction

One third of the world population was connected to the Internet in 2011 [1]. The
fact that the number of people using and relying on the Internet is increasing
rapidly makes breaking into and compromising systems an ever more lucrative
activity for hackers. One popular class of attack targets is that of Secure SHell
(SSH) daemons. By means of SSH, a hacker can gain access to and potentially
full control over remote hosts. Once compromised, a hacker can sabotage not
only the host itself, but also use it for attacking other systems. The detection
of intrusions, especially in the case of SSH, is therefore crucial for preventing
damage to hosts and networks.

Most intrusion detection systems (IDSs) are packet-based, relying on the in-
spection of packet payloads [2]. In high-speed networks, specifically those with
average throughputs in excess of 1 Gbit/s, such an approach is no longer feasible.
Additionally, the encryption of traffic, as is the case for SSH, makes packet pay-
load inspection problematic [3]. Flow monitoring technologies, such as Cisco’s



NetFlow [4] or the newer IPFIX [5] protocol, provide aggregated network data
by means of flows. A flow is considered to be a set of packets passing by an
observation point in a network during a certain time interval and having a set
of common properties. Typically, these are the source/destination IP addresses
and port numbers, and the transport-layer protocol [6]. Although flow data only
provides an aggregated view of the network activity, it can be used in vari-
ous application areas, including network security (see [7] for an overview). As a
consequence, flow-based technologies are inevitable when it comes to designing
network-based intrusion detection systems for high-speed networks. In this con-
text, Sperotto et al. have analyzed brute-force SSH attacks and identified their
characteristics at the flow level [8, 9]. It has been shown that brute-force SSH
attacks typically consist of three attack phases that can be identified using those
flow characteristics.

Based on the above findings, we have developed our flow-based IDS called
SSHCure for the real-time detection of brute-force SSH attacks originating from
single attackers. The contribution of our work is two-fold. Firstly, we have de-
signed an efficient and lightweight detection algorithm for SSHCure. The algo-
rithm operates solely on flow data as exported by equipment such as NetFlow
monitoring devices, and is able to both detect brute-force SSH attacks and iden-
tify compromised attack targets. Secondly, we have implemented a prototype
of the IDS, realized as a plugin for the popular NfSen monitoring tool, and
validated its detection performance with empirical traffic data.

The remainder of this paper is structured as follows. In Section 2, we discuss
related work. The detection algorithm is presented in Section 3, followed by
a description of our prototype in Section 4. The validation of the proposed
detection algorithm is presented in Section 5. Finally, we close this paper in
Section 6, where we draw our conclusions.

2 Related Work

Flow-based intrusion detection is a very active research topic [7]. The goal of the
present paper is to design and implement a flow-based intrusion detection system
for brute-force SSH attacks. In [8] it has been shown that such attacks typically
consist of three phases, and a Hidden Markov Model has been proposed to model
their behavior at the flow level. Often, an SSH attack starts with a horizontal
scan of the (sub-)network, which means that a (usually large) set of hosts is
scanned on a specific port number. This is considered the first phase of an SSH
attack. Several publications have discussed flow-based detection methods for
scans, such as [10], which are generally designed to detect various kinds of scans.
In this paper, we use a lightweight method tailored to the specific characteristics
of attacks targeting SSH daemons.

A work that is related to ours is [11], which proposes an algorithm for the
flow-based detection of SSH dictionary attacks. In the three-phase model that
we use in our paper, dictionary attacks correspond to the second phase of the
attack, while we aim to detect attacks earlier, during their scanning phase.



For implementing our IDS, several frameworks and architectures are possi-
ble. One option is a framework called TOPAS (Traffic flOw and Packet Analysis
System), proposed in [12], which analyzes flow data in real-time through user-
defined detection modules. Another modular approach to flow analysis applica-
tions is the plugin framework provided by NfSen (NetFlow Sensor) [13]. This has
been used by SURFmap [14, 15], for example. NfSen supports plugins for raw
data processing, as well as data visualization. It is widely deployed, well known
within the research community and is considered to be among the state-of-the-
art tools for network monitoring. As such, we have decided to develop SSHCure
as a plugin for NfSen.

3 Detection Algorithm

In this section we will provide the background for the types of SSH attacks
we consider, and discuss the metrics used for identification of the three attack
phases (Section 3.1). After that, our algorithm will be presented in Section 3.2.

3.1 SSH Attack Analysis

The work in [8, 9] has analyzed the flow-level characteristics of SSH intrusion
attacks, in particular focusing on SSH dictionary attacks. For this type of attack,
the authors of [8, 9] have found that the analysis of the attacker behavior over
time, based on flows, shows a clear pattern of the evolution of the attack. Such an
analysis is based on the connection pattern between the attacker and its targets,
and on the intensity of the traffic in terms of packets-per-flow (PPF).

Figure 1(a) visualizes such a connection pattern for an attack monitored
at the University of Twente (UT). The UT campus network uses a /16 IPv4
address block. In the figure, we show how the attacker connects to the different
IP addresses of the UT address block over the attack duration of around 2700
seconds. Every point in the plot corresponds to a flow record from the attacker to
the UT network, respectively, from UT hosts back to the attacker. Three phases
can be identified [8, 9]:

1. Scanning phase - The attacker scans an IP address block in order to find
hosts running an SSH daemon (TCP port 22);

2. Brute-force phase - The attacker tries to login to a small subset of the
scanned hosts, using a large number of username/password combinations;

3. Die-off phase - After a successful login, there is still traffic between the at-
tacker and the compromised target. This residual traffic is due to commands
being executed by the attacker on the target host.

For the specific case depicted in Figure 1(a), the scanning phase takes place from
the beginning of the attack until t ≈ 1000s, immediately followed by the brute-
force phase, which terminates at t ≈ 1750s. Finally, residual traffic is present on
the network until t ≈ 2750s after the beginning of the attack.
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Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

(a) Time-series for IP addresses
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A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker to a victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase (first 1000 seconds), the attacker performs a sequential SSH scan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

(b) Time-series for packets-per-flow (PPF)

Fig. 1. Traffic generated by SSH attack, from [8]

Figure 1(b) provides a different view on the attack. It shows how the number
of PPF changes over the attack duration: the scanning phase is characterized
by small flows; the brute-force phase by the exchange of a significant number of
packets in a short amount of time; finally, the die-off phase by sporadic residual
traffic. Since detection of attack phase transitions is essential in SSHCure, the
PPF metric will play a prominent role within our detection algorithm, which
will be presented in the next subsection.

The three phases described above allow for a wide range of attack evolutions.
For example, some attacks stop before passing through all three phases. In ad-
dition, measurements performed on the UT campus network have shown that a
significant portion of recently observed SSH intrusion attacks start directly in
the brute-force phase (i.e. without passing through the scanning phase). The
state machine in Figure 2 describes how attacks can evolve through the different
phases.

3.2 Algorithm

Core to the operation of SSHCure is the SSH intrusion detection algorithm,
based on the attack analysis presented earlier. The algorithm classifies attacks
into one or more subsequent attack phases, according to the state-machine in
Figure 2. The traffic metrics used by the algorithm are calculated with a time
granularity of 1 minute. In the remainder of this section, we present how the
algorithm detects each attack phase.

Scanning phase

During the scanning phase, an attack has some clearly distinguishing character-
istics. Since attacks are assumed to originate from a single attacker, many small
flows from the attacking host to a large number of targets is an indication of an
attack in the scanning phase. The detection algorithm selects suspicious traffic
by means of the following two metrics:
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Fig. 2. Attack phase state-machine

1. Packets-per-flow (PPF): The algorithm uses an upper limit of 2 PPF during
the scanning phase, which is a typical feature of a port scan. Unlike attack
traffic, regular SSH connections will use the same TCP connection once
established, which will result in a higher value for the PPF metric.

2. Minimum number of flow records: If only the PPF metric was used for dis-
tinguishing scanning traffic, regular SSH traffic could still be classified erro-
neously as scanning traffic. This is, for example, the case with SSH sessions
involving sporadic activity, because flow monitoring devices divide long-lived
flows into multiple flow records. This fact is not a limitation of our algorithm,
but of the design of flow monitoring technologies [4]. To overcome this is-
sue, a threshold for the number of flow records per attack in the scanning
phase has been defined. Based on measurements in the campus network of
the UT in 2011, a value of 200 flow records per time interval of 1 minute was
chosen. This threshold corresponds to roughly 200 SSH connection attempts
per minute, which is almost guaranteed not to be regular SSH usage.

As soon as scanning traffic is detected, both the attacker and target IP ad-
dresses are stored for further processing.

Brute-force phase

As shown in the state-machine depicted in Figure 2, attacks can enter the brute-
force phase either after the scanning phase, or by starting the attack directly
from this phase. For identifying the brute-force phase of an attack, the following
metrics are used:

1. Packets-per-flow (PPF): Figure 1(b) shows a sharp increase for the PPF
metric on the transition of the scanning phase (1.5 PPF on average) to the
brute-force phase (11 PPF on average). A PPF value between 11 and 14 is
likely to represent 3 (failed) login attempts on an sshd1, depending on its
configuration. To allow for some margin, our algorithm classifies traffic with
a PPF of 8-14 as brute-force traffic. These bounds were chosen based on
measurements in our campus network.

1 sshd is a commonly used abbreviation for SSH daemons.



2. Minimum number of flow records: Since we allow intrusion attacks to enter
the brute-force phase without passing through the scanning phase, regular
SSH traffic can be classified as brute-force traffic when only the PPF metric is
applied. This is the case for benign failed login attempts, for example. These
false positives can be avoided by including a lower bound for the number of
flow records in the brute-force phase. Measurements on the campus network
of the UT in 2011 have shown that a threshold of 20 flow records per minute
(per attacker) is a reliable metric for distinguishing brute-force traffic.

Attacker and target IP addresses involved in the brute-force phase are stored
for further analysis. For example, to increase our confidence in the presence of an
ongoing attack, SSHCure will try to correlate brute-force traffic with scanning
traffic. It should be noticed that an attacker can only evade detection by per-
forming both the scanning and the brute-force password guessing very slowly,
thanks to the multi-phase detection approach used by SSHCure. Although such
tactics are possible, they are atypical for dictionary attacks.

Die-off phase

Attacks can only progress to the die-off phase after passing through the brute-
force phase. The die-off phase will again be identified using the PPF metric,
which will change significantly on transition from the brute-force phase. We
identify die-off traffic when its characteristics differ from the brute-force phase.
In particular, we concentrate on the values PPF < 8 ∨ PPF > 14. Traffic with
a PPF < 8 can indicate an idle connection between an attacker and a (compro-
mised) attack victim. On the other hand, traffic with a PPF > 14 can be a sign
of a victim being actively used by an attacker.

The intrusion detection algorithm, as has been discussed in this subsection,
will be the core of our intrusion detection system. The next section will discuss
SSHCure’s overall architecture, which includes its other components, such as
data visualization and anonymization components.

4 Prototype

In this section we present the developed prototype. SSHCure has been imple-
mented as a plugin for NfSen, an open-source and highly customizable platform
for flow monitoring [13]. In the following subsections we describe its architecture
and provide an introduction to the user interface and its functionality.

4.1 Architecture

Due to the fact that SSHCure has been implemented as a plugin for NfSen,
it consists of a front-end and a back-end. The purpose of the front-end is data
visualization, while the back-end is used for flow data processing. Figure 3 depicts
the plugin’s architecture. SSHCure builds upon the NfSen internal architecture,
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Fig. 3. SSHCure architecture

thus being able to access flow data in 5-minute chunks from the NfSen flow
data repository. The NetFlow Data Processor component accesses the data and
applies the detection algorithm discussed in Section 3.2 to it. More precisely,
data chunks of 5 minutes are divided into chunks of 1 minute, to increase the
precision of the algorithm’s metric calculations. To make sure that the original
flow data remains unchanged, SSHCure produces new attack meta-data on SSH
intrusions, which is stored in a database by the Database Handler.

When SSHCure’s front-end is called from a Web browser, attack meta-data
is retrieved from the database by the Database Handler. The Visualization Pro-
cessor is in charge of building a graphical representation of this data, which is
presented to the user by means of SSHCure’s Web interface. The Visualization
Processor requests graphs from the Graph Generator, which is located in the
back-end in order to take advantage of NfSen’s internal graphing functionality.
Although SSHCure’s main information source is the attack meta-data, raw flow
data and several types of statistics can be accessed from the front-end as well,
in order to provide as much information about attacks as possible. Both the raw
flow data and the meta-data can be anonymized before visualization.

4.2 User Interface

The SSHCure Web interface allows a user to browse the detected attacks, to ob-
tain all information needed for analysis or administrative purposes. As described
above, this information includes both attack meta-data, produced by SSHCure’s
detection algorithm, and raw flow data. The Web interface consists of the follow-
ing pages: the Dashboard page, providing an overview of ongoing and completed
attacks; the Attack Details page, providing insights on a specific attack; and the
Host Details page, focusing on a single attacker or target host.

Dashboard Figure 4 shows a screenshot2 of SSHCure’s Dashboard page, which
is the main page of the plugin. The Dashboard page contains the following ele-
ments:
2 Note that all IP addresses in this paper are anonymized.



Fig. 4. Screenshot of SSHCure’s Dashboard page

– Time window selector - A user can select the time period for which attacks
and statistics regarding frequent attackers and targets will be displayed. All
contents of the Dashboard page are subject to this selection;

– Attack history graph - This graph shows a history of the number of ongoing
attacks during the selected time period;

– Attacks listing - This table shows all attacks that occurred during the selected
time period, including the IP address of the attacker, the number of targeted
hosts, the most advanced phase detected, and whether the attack is still
ongoing;

– Top attackers listing - This table contains the most prolific attackers during
the selected time period. For each of these attackers, the number of involved
attacks and targets are shown;

– Top targets listing - This table lists the hosts that were targeted most often
during the selected time window. It shows the number of times each target
was attacked, the number of different attackers that targeted it and the
number of times it was compromised.

Attack details The user is able to obtain detailed information about any at-
tack, attacker or target by clicking on its entry on the Dashboard page. When
an attack is selected in this way, the user is taken to the Attack Details page. A
screenshot of this page, which allows the user to browse through all information
relating to a specific attack, is shown in Figure 5. It consists of the following
elements:



Fig. 5. Screenshot of SSHCure’s Attack Details page

– Basic information table - This shows the general information about the at-
tack: start and end times, attacker IP address, detected attack phases and
the totals of flows, packets and bytes associated with the attack;

– Attack profile graph - This graph shows a plot of all flows coming from the
attacker, laid out by target IP over time. This plot emulates the IP time
series generated by Sperotto et al. (see Figure 1(b)), and is used to analyze
the profile of the attack;

– Target list - This table contains all hosts targeted by the attack, along with
the phases each of them was involved in. Clicking on an entry shows the
flows between that target and the attacker in the Flow listing ;

– Flow listing - This table lists all flows between the attacker and a selected
target captured during the attack, sorted by start time. For each flow, the
start and end times, flags, number of packets and bytes, and the direction
(whether it was initiated by the attacker or by the target). This listing
enables the user to do a detailed investigation and analysis of the events
during the attack.

Finally, we aim at extending the user interface with a Host Details page,
which would present detailed information about an attacker or target, such as
reverse DNS and geolocation data, together with an overview of the attacks in
which the selected host has played a role. Such an extension is currently under
development.



5 Validation

To validate the proposed detection algorithm, we utilized two data sets. The first
set, which was also used in [8], was captured at the UT in 2008 and consists of one
week of flow data. The second data set is comparable to the fist one (one week of
data captured in the UT network), but it has been captured in February 2012.
The aim of our validation was to investigate whether the proposed algorithm
is able to identify attacks and classify them according to the attack phases
discussed before. Both data sets were analyzed manually to establish a ground
truth for validation, with each incident being classified according to the phases
found to have occurred. The detection algorithm was then run on the data sets
and the reported incidents were cross-referenced with the manual analysis.

The results are listed in Table 1. This table lists, most importantly, the num-
ber of true positives (incidents from the ground truth classified correctly by the
algorithm), false negatives (incidents not classified correctly) and false positives
(non-incidents classified as attacks by the algorithm). By manual inspection, we
identified 29 attacks in the data set of 2008 and 101 incidents in the data set
of 2012. According to our algorithm, 17 attacks progressed to the brute-force
phase, and only 16 to the die-off phase. Similarly, we have 58 incidents labeled
as brute-force attacks in 2012, of which 25 reached the die-off phase.

Several remarks can be made regarding these results. Firstly, there were no
false positives at all, so all the reported incidents were actual attacks. Secondly,
only two false negatives were identified. Closer inspection of both of these cases
revealed that this was due to the the chosen threshold values in the algorithm.
Since the algorithm averages PPF values of flow records over a time interval of
one minute, the scanning phase detection was distorted by unexpected interme-
diate traffic, which resulted in an artificially high PPF value. When the scanning
phase’s PPF value was then finally measured, the threshold for the minimum
number of flow records was no longer satisfied. These issues are therefore both
due to the choice of limits and thresholds, not the nature of the algorithm itself.

Our validation confirms that the algorithm conforms to the analysis presented
in Section 3.1 and that it is still valid for use in today’s networks. It is important
to note that attacks measured to have reached the die-off phase indicate that
hosts were most likely compromised. The number of attacks measured during
the comparatively brief measuring periods that were classified as such, serves as
an affirmation of the need for a network-wide intrusion detection system.

Table 1. Validation results

Data set 2008 2012

Incidents (scanning phase) 29 101
Incidents (brute-force phase) 17 58
Incidents (die-off phase) 16 25
True positives 28 100
False negatives 1 1
False positives 0 0



6 Conclusions

In this paper, we presented an intrusion detection system (IDS) plugin for NfSen,
named SSHCure, which is able to detect SSH intrusion attempts and compro-
mised hosts using flow data. These attacks consist of three phases: a scanning
phase, a brute-force phase and a die-off phase, based on the analysis in [8]. Our
algorithm utilizes a set of rules for identifying attacks and profiling them ac-
cording to these phases, based on metrics such as packets-per-flow (PPF) and
the number of flow records per minute. The upper/lower limit values for these
metrics were established based on measurements on the UT campus network in
2011.

Validation of the proposed detection algorithm has shown that SSH intrusion
attacks and compromised hosts are identified accurately and that the number of
false positives and false negatives is low. This can be concluded from a ground
truth validation using the data set used in an earlier work, and from manual
ground truth validation using data collected in 2012 on the UT campus network.

As future work we plan to investigate the effects of packet sampling on the
accuracy of our algorithm. Depending on the sizes of SSH attacks, the used met-
rics for detecting the various attack phases may need adaption to the applied
sampling ratio. In addition, we plan to extend the algorithm to explicitly tar-
get distributed SSH dictionary attacks. In its current state, distributed attacks
appear as a set of individual attacks in the algorithm’s results, without further
aggregation.
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