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Abstract. Swarm robotic systems rely heavily on dynamic interactions
to provide interoperability between the different autonomous robots. In
current systems, interactions between robots are programmed into the
applications controlling them. Incorporating service discovery into these
applications allows the robots to dynamically discover other devices.
However, since most of these mechanisms use syntax-based matching,
the robots cannot reason about the offered functionality. Moreover, as
contextual information is often not included in the matching process, it is
impossible for robots to select the most suitable device under the current
context. This paper aims to tackle these issues by proposing a framework
for semantic service discovery in a dynamically changing environment.
A semantic layer was added to an existing discovery protocol, offering a
semantic interface. Using this framework, services can be searched based
on what they offer, with services best suiting the current context yielding
the highest matching scores.
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1 Introduction

Heterogeneous system designers have to cope with the lack of standardisation
that exists between different devices. Programmers are therefore often obliged to
incorporate statically programmed interactions, deteriorating the overall flexi-
bility. Service-Oriented Architectures (SOA) [5] are a popular approach towards
attaining higher versatility and flexibility in networked environments. Devices
offer their services over the network, allowing their functionality to be easily
discovered using a service discovery protocol.

Most discovery mechanisms however, perform service matching solely based
on the syntax resemblance between requested and offered descriptions [15]. This
often leads to poor results, since the requested description can be semantically
similar but syntactically different from the offered descriptions (e.g., go and move



to which are synonyms with different syntax), or syntactically similar but with
a different meaning (e.g., object meaning a goal and object meaning a thing).
Another drawback is of course that syntax matching does not consider rela-
tions between the different concepts in the descriptions. Semantic descriptions
overcome these shortcomings by using ontologies to capture semantics of and
relations between the different concepts.

Applying conventional discovery mechanisms in a robotic setting requires to
overcome some challenges imposed by the specific properties of mobile robots.
Using a central repository like most discovery mechanisms do, is not viable in a
swarm robotics application since there is no guarantee that the repository will
remain available due to the mobility properties. Moreover, since robots only have
limited resources and the matchmaking of semantic services scales exponential
with the number of instances, a robot is not able to process all incoming matching
requests in reasonable time when serving as a central repository [9].

Another shortcoming of existing mechanisms, is the absence of context eva-
luation during the matching process, i.e. current location, consumed resources
and current tasks. A robot requesting help on a certain location, will prefer a
robot which current location is closer to the goal to execute the task. Robots
acting as service providers also need to deal with their limited resources when
offering services. Based on the current status, a robot could decide to no longer
offer a specific service since it would overload the system. Taking into account
the current context of both the requesting robot and the service provider during
the matching process would enable more accurate and resource efficient service
discovery.

This paper suggests a different approach by letting the provider of the services
match the incoming requests to their offered services. In this way, each device
only has to match a limited number of services with low delay. By offering
matching as a service, the number of semantic descriptions exchanged between
devices is considerably smaller than when each device collects all descriptions of
every other device in the swarm. Furthermore, context information, such as the
current location, is easily injected into the matching process, without the need
to disseminate all context information of each service provider.

The outline of this paper is as follows: first, a brief overview of related work is
presented in Section 2. In Section 3, the proposed framework for ontology-driven
discovery and coordination of a robot swarm is discussed. Section 4 describes
the details concerning the implementation of the aforementioned framework. The
evaluation results are presented in Section 5. Section 6 concludes this paper.

2 Related Work

Ontologies are used to incorporate semantics in service descriptions, by mod-
elling the domain knowledge in terms of concepts and relationships between
them [7]. Semantic Web services are often used to overcome the interoperability
issues between different robot platforms. Several frameworks exist for defining,
matching, invoking and monitoring of services [11–13]. However, these platforms



are focussed on Web services offered by Web servers and consumed by desktop
and laptop computers over the Internet. To apply these frameworks in a robotic
setting several issues need to be overcome, such as the local context of both the
service requestor and provider, the limited resources available on mobile devices
and the inherent distributed nature of swarm robotic systems.

To overcome the high delays caused by the computationally intensive seman-
tic matching for central repositories, the use of semantic caches was proposed by
Stollberg et al. [20]. This is a feasible solution when dealing with static environ-
ments where little context information has to be processed during the matching
of services. In a robotic setting however, where rapid context changes are com-
mon, the caching of semantic requests and their respective matching results
would lead to less accurate and even unusable results. VOLARE [18] proposes
a Service-Oriented Architecture for mobile devices, taking into account the cur-
rent context. This solution is mainly focussed on making services located on a
Web server available to mobile devices. EASY [16] tries to reconcile the compu-
tationally expensive semantic matching and the limited resources of robots and
embedded systems by encoding semantic descriptions and organising them into
service caches. This allows faster semantic matching without overloading the de-
vices. As mentioned before, the use of caching causes difficulties to incorporate
the current context into the matching process.

Other projects focus more on the semantic discovery aspect in swarm robotic
applications. In Geminga [1], a robot periodically announces its available services
which are stored in a local repository located on each robot. Every robot has
to match his service request locally with the services in the repository. When
context information needs to be included in the matching process, the current
context of each robot has to be obtained, causing delays proportional to the num-
ber of robots in the swarm in both the service matching and the context retrieval
process. ROBOSWARM [23] makes use of a central mediator [8], responsible for
maintaining the service repository and serving matching requests. S-Ariadne [16]
uses a set of repositories located in a P2P overlay network. This speeds up the
matching process, but still requires context dissemination throughout the swarm.

Other technologies focus more on semantic service composition [6, 22], com-
posing new complex services out of existing services. In most of these projects,
the emphasis lies on the generation of the semantic descriptions for these ser-
vices by matching the outputs of a service to the offered inputs of the services.
In this paper, existing composite service descriptions are used, but the binding
of a service type to a specific service is done dynamically, taking into account
the current context.

3 Framework Design Details

The proposed framework, presented in Figure 1, consists out of a Service Man-
ager, a Context Manager and a Robot Control component. The services offered
by the robot are accessible through the Service Manager, which is responsible
for matching incoming requests with the local repository and monitoring service



invocations. The Robot Control component executes the invoked services and is
able to find, match and execute remote services through the Service Manager.
The Robot Control component periodically reports contextual information to
the Context Manager. This component keeps track of the current context and
semantically annotates the received data, which can then be used by the Service
Manager to evaluate matching results under the current context.
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Fig. 1. Framework overview presenting the mechanism for offering the robot function-
ality (Robot Control) as services to the other robots in the swarm through the Service
Manager and the monitoring of the current environment state by the Context Manger.

In order to attain the required degree of flexibility and interoperability, each
robot offers its functionality as a set of services which are discoverable by its
peers. Each of these services is stored in a local repository, accompanied by
its corresponding semantic description containing the semantic representation
of the services’ Inputs, Outputs, Preconditions and Effects. Figure 2 gives an
overview of the interactions between the different components of the Service
Manager. The Service Repository, keeps track of the availability of each atomic
service as well as the composite services. Additionally to these robot-specific
services, each of the devices also needs to offer a common MatchMaker service,
which is responsible for matching incoming service requests and local context
injection (2). A conventional Service Discovery mechanism is used to discover
the MatchMaker services of other devices, which can then be invoked to perform
semantic matching with the services in the local repository of that device (3).
Each of the discovered robots will match the requested description with the
semantic descriptions available in the local repository taking into account the
current context (4) and return the results, if any (5). The matching algorithm
is explained in more detail in Section 4.3. The requesting robot can then choose
the best suited service based on the returned matching results. The inputs are
then transformed in order to match the ones stated in the semantic description
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Fig. 2. Interactions during the semantic service discovery process

of the offered service (6). After this, the service is invoked (7) and monitored (9)
by the Execution Manager.

4 Implementation Details

4.1 Robot Ontology

Since the proof of concept scenario, discussed in more detail in Section 5.1, takes
place in an environment with a heterogeneous robot swarm and a multiplicity
of networked devices, a specialised ontology is constructed. Bearing in mind the
rapid innovation in the field of robotic devices, the ontology is designed to be
easily expandable while taking into account the limited resources robots have
to reason about semantics. Figure 3 shows how a distinction is made between
physical entities and general properties. The physical entities are then split up
into Components and Devices. This classification is based on the fact that Devices
can execute certain tasks, while Components can not do this without being
part of a Device. The class Component has two subclasses: Actuators grouping
components able to make changes to the environment and Sensors who are able
to measure changes or properties of the environment. The Properties describe
physical attributes such as Location and Memory. In order to model the current
context, each individual will have some properties containing information about
its state, such as a MobileRobot having a Location-property.

4.2 Service Description, Discovery and Invocation

UPnP [21] is chosen as the service discovery protocol, specifically the Cling pro-
tocol stack [2] is used. UPnP offers automatic service discovery, allowing for
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Fig. 3. Fragment of the robot ontology displaying a MobileRobot containing a Loco-
motionSystem modelled by a ObjectProperty-relation and the instantiation of a X-
Coordinate of the Location-Property by a DataProperty-relation.

devices to dynamically join and leave the swarm. Moreover it supports monitor-
ing of the execution process of a service via an eventing mechanism. A common
way to describe semantic information is by using an ontology, representing ob-
jects and their relations. For the construction of the swarm ontology, OWL [17]
is chosen as semantic language. This decision is made after reviewing the offered
functionality of OWL-S [14], a service ontology based on OWL. OWL-S can be
used to semantically describe the inputs, outputs, preconditions and effects of
services and reason about them. Originally OWL-S is aimed at Web Services
only, but little effort is necessary to extend the grounding (the link between the
semantic description and the WSDL description) to be interoperable with UPnP
and other discovery protocols.

4.3 Service Matchmaking Algorithm

The matchmaking algorithm is used to link a semantic service request to the each
service in the Repository, by mapping their respective Inputs, Outputs, Precon-
ditions and Effects (IOPE’s) and calculating a score representing their degree of
resemblance. The implemented matching algorithm uses bipartite graph match-
ing [3] to determine the degree of interoperability between the service request
and the offered services in the local repository. Some modifications had to be
made to the original algorithm to include the current context into the matchmak-
ing process. Preconditions and effects are split up into context-dependent (i.e.
when the evaluation of the precondition is affected by the current context) and
context-independent preconditions, this is done by the creator of a service. The
parameters of context-dependent preconditions and effects are matched to the



semantic representations of the current context using the same bipartite graph
matching algorithm as for inputs and outputs. Those matched parameters are
then substituted by their respective current context-values and the obtained ex-
pression is evaluated. Depending on the condition, this leads either to a boolean
or a numeric value, which is included in the final matching report of the service.
For example the evaluation of the distance to a given target (i.e. expressed as a
Location) returns a numeric value, while the condition that a certain locomotion
system (e.g., a LocomotionSystem) has to be present returns a boolean value.

The bipartite graph matching algorithm matches each concept of the IOPE’s
of the requested description to those of the most suited concept of the offered ser-
vice description. For example, for the output matching, this is done by creating
a bipartite graph G = (R,O,E), where R is the set of requested outputs, O the
set of offered outputs and E the set of edges such that each e ∈ E has one vertex
in R and one in O. A matching of a graph G is a subgraph G′ = (R,O,E′) such
that no two edges e1, e2 ∈ E′ share the same vertex. A matching G′ is complete
if each vertex r ∈ R is adjacent to exactly one o ∈ O. The corresponding edge
e′ connecting r to o is allocated a weight w′ describing their degree of match:

Exact If r is an equivalent concept to o.
Plugin If r is a superclass of o, or r subsumes o.
Subsume If o subsumes r.
Fail If none of the above conditions hold.

Exact matches yield the highest scores, while for Plugin and Subsume matches
the score is dependent on the number of levels between both semantic concepts
by turning the parameter levelscoring on. Each graph G′ = (R,O,E′) can then
be evaluated based on the weights of the different edges. The edge with the min-
imum weight min(w′) : e′ ∈ E′ determines the overall degree of match x for each
graph G′. The graph having the highest value for x is the best match, which is
returned. Each of the matching scores for the IOPE’s, along with the scores for
the context evaluation are returned to the requesting application.

5 Experimental Results

5.1 Application of Swarm Robotics for Search and Rescue

A search and rescue scenario is adopted during the functional testing where a
swarm of robots is responsible for searching survivors in a burning building.
The robots differ in functionality: some are able to detect human beings, others
are capable of shooting a video on a specific location. Additionally to the robot
swarm, a collection of networked devices such as cameras, TV’s and laptops
are at hand. The goal of the swarm is to cooperatively locate the survivors
and create an impression of their situation. The scenario is demonstrated using
iRobot Roombas [10] controlled by a ALIX2D3 computer, connected via the
serial interface of the Roombas and equipped with a wireless antenna. A camera
is mounted on top of some of these robots.



The functional tests are then split up into several scenarios. The semantic
context-aware matching and selection is demonstrated by letting three devices
offer somewhat similar services. Two devices offer a service that matches the re-
quest but one of them is closer to the goal location, yielding a higher score for the
context evaluation. The selection algorithm evaluates these matches and chooses
the robot closest to the goal to execute the service. A second scenario tests the
execution monitoring and the selection of a backup service. The robot closest to
the goal location is selected to execute the service, but during execution some
problem occurs, causing the Execution Manager to detect a failed execution. In
reaction to that, the second service is selected and executed, showing the desired
backup behaviour. The third scenario emulates the search and rescue use case
where a swarm of robots is ordered to scan and report a burning building. This
composite service (i.e. consisting out of 3 services: locating the survivors, shoot-
ing a video on these locations and streaming to the firemen outside) is offered by
the respective robots. The selected robot searches for suitable robots or devices
to fulfil each of these subtasks and monitors their executions. For each of the
services, robots and devices are ranked based on their current context and the
best suited robot is chosen (i.e. the camera robot closest to a certain survivor is
selected to go and monitor the situation).
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Fig. 4. Performance comparison of centralised versus distributed matchmaking

5.2 Centralised Versus Distributed Matching

Several tests are conducted measuring the corresponding matchmaking time rel-
ative to the number of services in the repository. As shown in Figure 4, the
matchmaking time shows a linear relationship with the repository size. The
graph also displays the difference in matchmaking time between the centralised
and the distributed approach. For the centralised matchmaker, all services of all



robots are stored on one single robot. This leads to a matchmaking delay pro-
portional to the number of robots in the swarm. With 10 robots, each offering 10
services, the matchmaking in the centralised approach takes 10 times as much
time as when each robot does local matchmaking on its own services. These tests
are executed under several assumptions, where in the centralised approach, the
robot already has the complete semantic repository and the context information
of each robot. In a realistic scenario the dissemination of all context information
of each robot to the central robot would cause extra delay, and even increase
the total delay incurred in the centralised approach. These high delays can lead
to inaccurate matching since the context could already have changed when the
matching results become available.

5.3 Impact of Included Features on Matchmaking Performance and
Accuracy

The OWLS TC benchmark [19] is used to measure the influence of the fea-
tures (i.e. levelscoring, profilechecking, precondition and effects checking) of the
Matchmaker on the matchmaking time and the accuracy of the corresponding
results. This benchmark only includes inputs and outputs in the matching pro-
cess. For this reason, only the levelscoring can be evaluated for both the accuracy
and performance measurements. For evaluating the influence of the respective
features on the performance, the average matching time for a set of 27 requests
on a repository of 1000 services is measured.

The accuracy of the Matchmaker is evaluated by counting the number of true
positives (tp) and true negatives (tn), summing up to the number of correctly
classified matches, and the number of false positives (fp) and false negatives (fn),
totalling the number of misclassified matches. The precision and recall values
were then calculated as tp

tp+fp and tp
tp+fn respectively. A high precision value is

desired, since only suited services will be useful to be executed. The Fβ-score,
calculated as in (1), is the harmonic mean of precision and recall. A smaller value
for β puts more emphasis on the precision than on recall. The influence of each
parameter on the performance is displayed in Figure 5, while the effect of scoring
according to the degree of matching on the accuracy is shown in Figure 6.

(1 + β2) ∗ precision ∗ recall
β2 ∗ precision+ recall

(1)

Level scoring By turning this parameter on, not only the fact that the re-
quested parameter type is a sub or super type of the offered parameter type
is taken into account, also the distance between these two types is measured
to calculate the corresponding score. Turning level scoring on reduces the
number of false positive matches from 24% to 8% and the number of false
negative matches from 32% to 12%, increasing recall from 62% to 70% and
precision from 81% to 88%. The F1 and F0.5 values increase from 70% to
78% and from 77% to 84% respectively. This increased accuracy comes at a
cost of a 16% higher matching delay.



Profile checking It is possible to filter services based on their profile definition.
A hierarchy is created to model relations between several profiles. For this
test, a distinction is made between RoboticServices and ComputerServices.
When searching for a mobile robot for the execution of some task, the services
catalogued as ComputerServices are excluded. Turning the profile checking
on reduces the matching time by 30%.

Precondition and effects checking Turning these parameters on, the match-
maker will evaluate preconditions and effects using the current context. This
yields more precise context-based matching in exchange for matching delays
that are 5% higher.
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6 Conclusions and Future Work

In this article, the viability of ontology-driven and context-aware discovery in
a swarm robotics setting is studied in detail. Using semantics to annotate the
service descriptions as well as the current context yields more accurate service
matching, resulting in a more efficient use of the available services. Using ex-
isting technologies, a discovery framework was developed where each robot is
responsible for matching incoming service requests to its local repository. This
distributed approach, where each swarm member performs a part of the match-
ing task, induces considerably lower delays than in the centralised approach.
Considering a robot swarm where each robot offers a similar amount of services,
the matching delay caused by the centralised approach is ten times higher than
in the distributed matching approach. Moreover, since in the distributed ap-
proach, each robot is aware of its local context, no extra delays are incurred by
the context dissemination process as is the case with centralised matching. The
proposed framework also allows to execute composite services in a dynamic way,
where the executor for each atomic service is selected based on the current con-
text. Future work includes the dynamic generation of composed services based
on the available semantic services as well as the current context. A first step was
taken towards offering semantic matching as a service, but some scalability is-
sues remain when the number of robots and offered services increases drastically.
Extending the matchmaker to allow semantic grouping of services based on their
functionality could overcome these issues. Furthermore, since it concerns com-
putationally extensive matching on mobile devices, energy consumption should
be taken into account. During the evaluation, it turned out that there are no
benchmarks available for evaluating the accuracy of precondition and effects
matching, the development of such benchmarks would be beneficial.
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