Efficient Distributed Signature Analysis

Michael Vogel, Sebastian Schmerl, Hartmut Konig
Brandenburg University of Technology, Cottbus
Computer Science Department
{mv, sbs, koenig}@informatik.tu-cottbus.de

Abstract. Intrusion Detection Systems (IDS) have proven as valuable measure to
cope reactively with attacks in the Internet. The growing complexity of IT-
systems, however, increases rapidly the audit data volumes and the size of the
signature bases. This forces IDS to drop audit data in high load situations thus of-
fering attackers chances to act undetected. To tackle this issue we propose an ef-
ficient and adaptive analysis approach for multi-step signatures that is based on a
dynamic distribution of analyses. We propose different optimization strategies for
an efficient analysis distribution. The strengths and weaknesses of each strategy
are evaluated based on a prototype implementation.

1 Introduction

Intrusion detection systems (IDS) have been proven as an important instrument for the
protection of computer systems and networks. Nowadays, most IDS use a centralized
approach and apply misuse detection (signature analysis). They mainly use single-step
signatures to identify harmful behavior in a stream of audit data or network packets,
respectively. This will change in next years, since multi-step signatures, in contrast to
single step signatures, allow it to model attacks much more precisely, in particular the
specific characteristics of the attack traces, existing dependencies, and the chronologi-
cal order of the attack steps. This will reduce significantly the false alarm rate. Multi-
step signatures can store state information to track the attack through its different stag-
es. This supports in particular the attack detection in application layer protocols as well
as in Web 2.0 applications which are of increasing importance. Many semantic aspects
of today’s attacks cannot be modeled by single-step signatures at all or only insuffi-
ciently. Therefore, we focus our work on multi-step signatures.

A challenge that all intrusion detection systems are facing is the increasing perfor-
mance of networks and end systems. This leads to a rapid growth of audit data volumes
to be analyzed. On the other hand, the growing complexity of IT systems creates novel
vulnerabilities and offers new possibilities for running attacks so that the number of
signatures to be analyzed increases as well. Already now intrusion detection systems
are forced to reject audit data in high load situations or to delay the analysis of security
violations significantly. Thus, counter-measures become impossible or lose their im-
pact. As consequence, systems become unprotected, when they are intensively used.

To cope with this situation several approaches have been proposed, e.g. the detection
of intrusions based on an analysis of more compact, less detailed audit data [2, 3] and
network flows [1] as well as various optimizing analysis methods for signature and
network based single-step intrusion detection systems. For example, [6] describes an

approach for the IDS SNORT that transforms signatures into a decision tree to reduce
the number of redundant comparisons during analysis. Optimized string matching algo-
rithms are proposed in [5]. These approaches aim at optimizing the non-distributed,
single threaded signature analyses. A distributed approach like GNORT [8] utilizes the
massive parallel computing capabilities of graphic processors (GPUs), but it only dou-
bles the analysis throughput compared to the sequential Snort. So far, network-based
IDS only apply primitive means to parallelize analyses by load balancing [10, 11].
There are also almost no approaches to parallelize host-based IDS analyses [9].

On the other hand, free computing resources are available in any network. CPU
technology will provide only slightly more computation power per core in the future. In
this paper we present a distributed signature analysis approach to use free resources in
networks to overcome this issue. In Section 2 we introduce a generic model for multi-
step signatures to discuss distribution strategies. Next, in Section 3 we introduce sever-
al distribution strategies and outline their benefits and constraints for multi-step IDS. In
Section 4 we evaluate the strategies based on measurements of a prototype implementa-
tion and discuss their applicability. Some final remarks conclude the paper.

2 Modeling Multi-Step Signatures

We first introduce a generic model for multi-step signatures which covers all existing
multi-step-signature languages and related intrusion detection systems. The model
confines to typical characteristics of multi-step signatures and their analysis. The core
concept of a multi-step signature language is its ability to store information about at-
tacks, system states, and related changes. Accordingly, a multi-step signature can be
defined as a directed, labeled graph MS = {V, E, EVT, SI, f, state, sens, cond, mark,
trans} with:

e V —set of state nodes, representing the stages of an attack,

e E <V xV-—setof edges representing valid state transitions,

e EVT — finite set of types of security relevant events (audit events), e.g. different
types of system calls or network events,

S| — set of state information representing the state and the stage of a certain attack,
state: V — 4(Sl) — a function which labels state nodes with a set si < S| of state
information,

f € V —a final node indicating a detected attack as soon as labeled by state(f),

sens: E — EvT — a function which labels each graph edge with an event type,
whereby the occurrence of an event of the specified type can trigger a state transi-
tion represented by the edge,

e cond: E —» B — a function labeling each edge (a, b) € E with a Boolean condition
B: SI x Ev— {0, 1} which specifies arbitrary expressions (arithmetic, string mat-
ching, ...) between features of state information Si € state(a) of node a and the oc-
curring event eV € Ev, whereby a state transition requires a fulfilled condition,

e mark: V xSl - V — a labeling function which adds state information Si to node Vv,
whereby mark(v, si) = Vv’, with state(v’) = state(v) U si,

e trans: E x Ev— V — transition function that evaluates for each occurring event ev
of type evType € EVT whether edge e =(a, b) € E is sensitive to this event type
(sens(e) = evType) and whether its condition cond(e) is fulfilled. In this case, the

transition (a, b) is executed by reading state information si of node a by state(a),
modifying si (its features) to si’, and moving si’ to node b by applying mark(b, si’).
The detection of a multi-step attack can be outlined as follows. For each occurring
audit event ev and for each edge e=(a,b) € E of the signature, the function
trans(e, ev) is executed. This function evaluates by sens(e) whether edge e is sensitive
to the type of event ev which may triggers a state transition. In this case, the edge con-
dition cond(e) is evaluated by correlating features of event ev with state information
si e state(a) of node a which represents the stage of the attack and contains aggregated
information of former state transitions. If the edge condition cond(e) is fulfilled the
state transition (a, b) is executed in two steps: (1) State information si € state(a) is read
and updated or modified with information from the current event ev. (2) Next, the suc-
cessor node b is labeled with the modified state information Si” by mark(b, si’). This
evaluation process is executed for each edge of the signature and all signatures. It must
be repeated for each occurring audit event. An attack is detected if the final node f of a
signature is reached and labeled with state information.
Now we extend the model for the needs of a distributed analysis by defining func-
tions for statistical data collection to derive optimal distribution decisions.

e C — a cluster representing a virtual analysis unit with limited computation capaci-
ties to assign signature fragments (state nodes) to,

e cl: V— C - a function which assigns each state node to a cluster, whereby initially
each node is assigned to a unique cluster,

e compC: E — N — a function labeling each edge e € E with the value of the compu-
tation effort (e.g. #cpu cycles), which was consumed in the previous time frame to
evaluate the edge condition of e.

e commC: E — N — a function labeling each edge (a, b) € E with the value of the
communication effort (e.g. #bytes) which was consumed in the previous time
frame to transmit state information from a to b.

e ¢evC: E — N — a function labeling each edge (a, b) € E with the value of the com-
munication effort which was consumed in the previous time frame to transmit audit
events of type sens(a, b) from a sensor to node a.

3 Distributed Audit Data Analysis Strategies

In signature based intrusion detection systems the analysis of audit data requires con-
siderable computation efforts. Signature bases that cover all currently known vulnera-
bilities of the protected systems may easily consist of thousands of signatures. In high
load situations, when large amounts of audit data are recorded, the resource consump-
tion of the analysis system grows rapidly and exceeds frequently the available re-
sources. For very short time periods (seconds), buffering can be an appropriate meas-
ure, but as soon as the buffer capacities are exhausted the analysis system has to drop
audit data and becomes useless and blind for attacks.

In order to reliably prevent such overload situations the analysis efforts of a signa-
ture based IDS should be kept continuously on a reasonable low level. This can be
achieved by distributing and balancing the required analysis efforts among free re-
sources in the protected domain. So it is more appropriate to utilize five analysis units
with a load of 20 % each, instead of only two systems with 50 % load each. This allows

it to keep sufficient, free resources needed for analysis efforts in high load situations.
As known, analysis distribution causes additional communication overhead which
burdens the network and may lead to transmission delays. To ensure that the transmis-
sion of audit data in high load situations does not delay the analysis, sufficient band-
width has to be provided. These demands, however, are conflictive and cannot be
achieved at the same time.

sensor .
audit data
network ﬁ/» filter stream
analysis results
host 1 host2 host m (detected attacks)

AU,

state
infor-
mation A
s) |

security
administrator

Fig. 1. Elements of a distributed signature analysis

Fig. 1 shows the elements of a distributed audit data analysis. A sensor logs audit
events which are forwarded to analysis units, in our example AU, to AUs. Each analysis
unit AU; evaluates a subset of the signatures. The audit events are classified into differ-
ent event types EVT. To reduce the network utilization a configurable filter discards
non-relevant audit events of types which are not needed by the respective analysis unit.
For example, only events of type EVT in U,p < v, Sens(@a, b) are forwarded to AU,, where
V, is the set of state nodes assigned to AU;. The analysis units transmit state infor-
mation Si € Sl between each other if needed. Analysis results are reported to a central
component. Based on this concept we present below five distribution strategies.

A) Distributing Complete Signatures

The first approach simply distributes complete signatures to different analysis units
AU;. Hereby, a simple optimization can be performed balancing the number of assigned
signatures to each analysis unit. Additionally, a finer-grained optimization can be
achieved if statistics on resource consumption are gathered continuously for each sig-
nature. So CPU hardware counters can be used [7] to determine the number of clock
cycles utilized to evaluate audit events and edge conditions for each signature. For this,
the signatures’ edges e are labeled with these values by function compC(e) to estimate
the resource consumption of each signature. An example for a respective signature
distribution is depicted in Fig. 2. Edges are labeled with required computation effort
and examined event types as defined by compC(e) and sens(e), respectively.

This simple strategy causes, however, two major problems. (1) If an overload situa-
tion is mainly caused by a certain signature the performance problem will be solely
moved to another analysis unit (another CPU or host) and the strategy to distribute
whole signatures fails. (2) A typical signature MS usually correlates different types of
audit events. Particularly, MS analyzes all audit events of types in U, v S€NS(a, b),

where V is the set of state nodes of MS. If whole signatures are distributed nearly all
audit events captured by a sensor have to be sent to the related analysis units. This
multiplies the communication effort by n (number of used analysis units). This is unac-
ceptable for most IT-infrastructures. Fig. 2 depicts these problems exemplarily.

AU, AUz
A B C ﬂ
(>_>(71 >_>(35) ‘ a1 C B B t 91 c
17 351 18 24
host 1 CPU load: 5 % host 2 CPU load: 5 % host 3 CPU load: 90 %

Fig. 2. Example of a simple, non-fragmented signature distribution

First, the three signatures MS; to MS; are assigned to AU, to AU;. An optimal distri-
bution would strive for a balanced load on all three systems of 33 % each. But, the
analysis of signature MS; utilizes 90 % of the available resources of the respective
analysis unit, while the analyses of MS; and MS, require only 5 % each. Secondly,
additional communication is caused through event duplication. So the sensor has to
triplicate type A events because they are analyzed by all three signatures. Analogously,
type B and C events have to be duplicated for two analysis units. Therefore, further
distribution options are required to balance the computation load finer-grained and to
reduce the communication overhead.

B) Fragmenting Signatures

A more fine-grained signature distribution can be achieved by distributing signature
fragments. This allows it to minimize audit event duplication. One or many state nodes
(fragments) of a signature can be assigned to various analysis units, as depicted in Fig.
1. Now the distribution strategy can pool nodes having outgoing state transition edges
which are sensitive to the same audit event types (label sens(a, b)) onto the same analy-
sis units. So, audit events only have to be duplicated for few analysis units. Fragmenta-
tion also supports a better balance of the analysis efforts among the units. Signatures
that require the majority of available computation resources of an analysis unit, as
discussed above, can be split up now. An optimization strategy though which only aims
at pooling signature fragments that analyze the same audit event types on the same
analysis unit is not desirable. If two state nodes a, b € V are connected by an edge
(a, b) and a and b have been assigned to different analysis units AU, and AU, (cl(a) #
cl(b)), then state information Si € SI must be transferred from AU, to AU,, whenever
transition condition cond(a, b) is fulfilled. The transfer of state information has to be
minimized as well. To sum up, signature fragmentation allows a better balance of the
computation load among analysis units and reduces audit event duplication. Fragmenta-
tion though may cause additional communication to transfer state information between
analysis units.

C) Additional Reduction of the Communication Costs
Our next optimization does not primarily aim for an optimal balance of the computa-
tion efforts among the analysis units. Instead it takes the required communication effort

to transmit audit events from the sensor to the analysis units into account as well as the
transfer of state information between the distributed units.

To achieve this, the sensor has to gather a statistics that logs how often audit events
of different types occur. The average data amount of an audit event is almost the same
(evSize = 100 ... 1000 bytes). The communication costs to transmit events of different
types from the sensor to each analysis unit are labeled to the event types by function
evC(evType) = #events * evSize. Additionally, each analysis unit continuously main-
tains a statistics that logs the number and size of transferred state information separate-
ly for each edge of the multi-step signature. The statistical values are labeled at each
edge (a, b) of the signature by function commC(a, b). They allow determining the
communication effort for audit event duplication and state information transfers for
arbitrary signature distributions as an optimization criteria. For a given signature distri-
bution, the event duplication effort can be determined according to equation (1).

% D" evC(evT),where S, = | Jsens(a,b) (1) > commC(a,b) (2)

i=1 evTe§; aeV; ,bev (a,b)eE,cl(a)=cl(b)

Here, S; is the set of event types examined by the subset V; of signature fragments
(Vi c V) that is assigned to AU;. Similarly, the statistics permits to calculate the com-
munication costs for state information transfers among different AUs by eq. (2). We
apply the cluster component of our signature model (cf. Sect. 2). Each state node a is
mapped onto a cluster by function cl(a), virtually representing an analysis unit. Only
state information transfers between nodes a and b assigned to different AUs (clusters)
cause real communication costs. Transfers between nodes on the same AU use shared
memory.

Based on the statistical data, we can determine a communication efficient distribu-
tion of signature fragments by using a Greedy clustering algorithm. For this, we initial-
ly assign each state node of the signatures to an exclusive cluster. This initial state
represents a virtual signature distribution for a maximum number of analysis units. In
this case, all communication costs labeled to clusters and the signature edges are rele-
vant because the audit events have to be duplicated for various analysis units and all
state information has to be transferred between nodes assigned to different analysis
units. Therefore, the initial stage represents the worst case communication scenario.
The communication overhead, as defined in equations (1) and (2), can now be mini-
mized by an iterative merging of clusters. We merge stepwise two clusters C; and C;
that possess the maximum cumulated communication costs (X, pyce COMMC(a, b), with
cl(a) = Cj, cl(b) = C;) on edges leading from nodes of C; to nodes of C; or vice versa.
This merging process is repeated until the desired number of analysis units (e.g. 3) is
reached. Since the clustering algorithm only optimizes the communication costs, it is
necessary to limit the number of assigned state nodes and thus the computation effort
required to evaluate the transition conditions for each cluster. As a result, our clustering
algorithm creates signature distributions with a minimal communication overhead and
an acceptable balance of analysis effort.

D) Detection of Repeated Dependencies between Audit Events
A fine-grained signature distribution, as described above, induces new challenges.
When fragmentation is applied and the nodes of a signature are assigned to different

analysis units, state information may arrive delayed at the successor nodes due to net-
work latencies. An attack, however, can be only detected in the audit event stream if all
preceding attack steps, described by the state information, have been recognized before.
This is not possible, when the state information arrives too late. There is a simple solu-
tion for this problem. Since audit events from the same sensor can be ordered chrono-
logically, state information can be related to the audit events. This can be achieved by
enumerating all emitted audit events consecutively with a unique ID in the sensor. Each
state information Si is labeled with the ID of the related audit event. Thus, the analysis
units can easily identify delayed state information by comparing their IDs. Fig. 3 illus-
trates the problem.

Event type sequence Absolute

sensor & At Iy
evT: .., AABAAB BBBBBCABADABA, . VithinAl frequency
B . 7, 8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, ...
A->B 18
AU, network delay: At AU, B>C 6
—_—
R
A siid|= 11 B C
assignw to

host 1 AU, or AU, ? host 2

Fig. 3. Unfavorable sequence of audit events Table 1. Event type sequences

It shows a fragmented signature consisting of four nodes. The nodes v, X and y are
assigned to the analysis units AU, and AU,, respectively. Which is the optimal assign-
ment of node W? The assumed sequence of audit events emitted by the sensor is indi-
cated above the AUs. Since type B events often occur after type A, while type C events
rarely occur after B, node w should be assigned together with v to AU, to prevent de-
layed state information arrivals at node w. If delayed state information arrives the relat-
ed audit event has to be re-evaluated. This requires that the audit events are buffered in
the analysis units for a short time. When new state information arrives all audit events
that are older than the received one can be removed from the buffer. Therefore, the
required buffer memory is assumed to be constant and is not discussed further here.

The repeated evaluation of audit events though may lead to a significant additional
computation effort. We demonstrate this with the example above and assume now that
node W has been assigned to AU,. If a type A event triggers a transition the respective
state information has to be placed on node w. We assume that the information is de-
layed by At due to network latencies. The absolute frequency of type B and C events
occurring after type A and B events within At is listed in Table 1. When events of type
B occur after A within a time window of At, they have to be buffered in AU, for repeat-
ed evaluation. An event sequence in the audit data stream containing events of type i
and j within At is called critical if it may cause repeated evaluations. This is the case, if
an applied signature contains edges which are sensitive to i and j, respectively, and a
type j event is expected after analyzing a type i event. Now, the sensor and the analysis
units can dynamically update the statistics how often such critical sequences occur in
the audit event stream. Each analysis unit also continuously logs number and types of
repeatedly evaluated audit events. Based on this statistics, the responsible transition
edges of a signature can be assigned to the same unit to avoid repeated analyses.

E) Iterative Adaptation of Sighature Distributions

The characteristics of the audit data stream can change frequently. Therefore, the statis-
tics on critical event sequences has to be updated continuously and the signature distri-
bution has to be adapted accordingly. All optimization strategies described above de-
termine an entirely new signature distribution. This requires high reorganization efforts
because usually many state nodes have to be moved to other analysis units. Therefore,
these strategies should only be applied to get an optimal initial signature distribution.
They may be repeated perhaps 2—6 times per day. For the normal analysis process, an
iterative adaptation strategy should be preferred which adapts the signature distribution
with minimal reorganization continuously. If the resource consumption of the distribut-
ed analysis systems runs out of balance signature fragments from high loaded analysis
units should be reassigned to less occupied ones. The fragments to be moved can be
selected accordingly to one of the following procedures. (a) A fragment from the most
occupied analysis unit is reassigned to the least occupied unit. (b) Like (a), but the most
suitable fragment is selected whose reassignment rebalances the computation load best.
This can be achieved by evaluating the computational loads of the analysis units using
the analysis statistics based on equation (2). (c) That fragment is chosen from the high-
est loaded unit which mostly requires repeated event analysis due to delayed state in-
formation. Again, the analysis statistics have to be evaluated to select the responsible
signature fragment. We consider again nodes v and W of the above example. Let node v
be the source of the delayed information and (v, w) € E, then node w is reassigned to
the same analysis unit as node v. No additional effort for repeated event analysis will
be induced by state information transfers between v and w during further analysis.

After finishing a reorganization step the efficiency gain has to be evaluated. If the
adapted analysis distribution is not better than the previous one the reorganization step
can be easily taken back due to the low reorganization effort required for single frag-
ments. Thereafter an alternative fragment can be chosen for reassignment.

4. Evaluation

The distribution strategies described in the last section have been implemented and
evaluated using the distributed intrusion detection system DSAM (distributed signature
analysis module) that utilizes EDL multi-step signatures [4]. DSAM sensors are config-
urable and forward audit events only to analysis units where they are required. The
DSAM analysis units are configurable as well. A set of signature fragments (state
nodes) is assigned to each of them. The analysis units transfer automatically state in-
formation via the network if needed. For the performance measurements, we applied
three typical signatures and examined all possible partitions (assignments) of the con-
tained signature fragments to three analysis units. We evaluated each of the 965 possi-
ble partitions. These partitions include very efficient distributions as well as completely
inefficient ones which cause an unfavorable computation or network load or both. Be-
cause of limited space we only give a brief overview about two of the applied signature
examples (see Fig. 4).

The first example (Fig. 4 (a)) describes a link shell attack which exploits a vulnera-
bility of a specific shell function and the SUID (set user ID) mechanism of the Solaris
OS. If a link refers to a shell script and the scripts file name starts with a hyphen “-” an

attacker can get an interactive shell with the access rights of the script owner (e.g. root)
by executing the link. The second signature — the SUID script attack (Fig. 4 (b)) — de-
scribes how to gain administrative privileges in Solaris by exploiting a vulnerability of
the extended file access rights.

rename
link

delete link
execute shell cmd. w/o path

no L script
attack initial running
‘ i . start child ex. shell

w. critical script
path env.

w/o path sUID
attack

terminate

execute script

link

(b)

(@ no attack

Fig. 4. (a) Shell link and (b) SUID script attack

To evaluate the analysis efficiency of DSAM in a high load situation we used a ge-
neric set of audit data. This set was created by capturing system calls of a host, while
the described attacks were executed. All logged system calls that did not belong to the
attacks were discarded manually. Thus, the audit data set only contains relevant attack
traces of the applied signatures. Concerning the required analysis effort, this represents
a stress test and a worst scenario. Additionally, the captured attack traces have been
duplicated to create a sufficiently large audit data file of 6,000 events (system calls).
The experiments were conducted on four machines (Intel Xeon “Prestonia”, 2.66 GHz,
512 KB L2 cache, 2 GB RAM) connected by 1 GE links. One machine executed the
sensor; the others run an analysis unit. First we applied the generic audit data set and
evaluated the strategy A of Section 3 by assigning the three example signatures to dif-
ferent AUs without fragmenting them. Then we applied the strategy B to fragment and
to assign fine-grained signature parts to the analysis units. We evaluated all 965 possi-
ble distributions of the signature fragments on the three AUs and measured the runtime
separately for each unit. Table 2 contains the values for some selected distributions.

distributionID 0 96 302 626

sensor real [s] 47.95 29.63 110.64 19.72

AU, real [s] 47.63 37.72 110.66 19.75
user [s] 46.89 28.67 10847 17.95

1,E+06

9,E+05

8,E+05 |

communication effort (byte)

AU, real[s] 2933 11634 2544 § | Seammmmmm—oToocs .
7,E405 |
user [s] 9.83 33.89 18.08
AU; real [s] 32.39 113.72 2345 6,E405
user [s] 7.84 17.97 1797
5,E+05 T T T T T
15 25 35 45 55 65 75 85 95
real runtime (sec)
Table 2. Runtimes of selected distributions Fig. 5. Runtime and communication costs for

different signature distributions

The sensor runtime is related to the slowest AU, as the sensor terminates after
transmitting the last audit event to the slowest AU. The third column (ID 0) represents

the non-distributed case, where only one AU is used that receives all signatures. This is
the benchmark for any optimizations of the described strategies. The fourth column
(ID 96) represents the simple, non-fragmented distribution for three AUs. The runtime
shows a relevant improvement for the distributed case. The other columns represent the
least and most efficient distribution. The diagram in Fig. 5 shows for each of the 965
signature distributions the sensor runtime and the required communication effort
(bytes) for transmitting state information and audit events. Each point in the diagram
represents a signature distribution and is enumerated with a unique ID. The diagram
shows many analysis distributions (at the bottom) that require a low computation effort.
Furthermore, the step-wise increase of the communication effort for audit event dupli-
cation can be seen. The figure indicates that there are many distributions with reasona-
ble computation and communication effort (lower left corner) that should be selected
for efficient analyses.

In order to select a suitable analysis distribution for a given network and CPU utili-
zation a metrics based approach can be used. The metrics shall determine a suitability
degree for each signature distribution and resource utilization. We defined a metrics
that maps features of the audit event characteristics monitored by the sensor as well as
the statistics maintained by the analysis units for a specific signature distribution onto a
metrics value M. Simplified, M is defined by equation (3).

#AU

M=a) > evC(evT)+p > commC(a,b)+y > compC(e)+sY_bal(c) 3)
i=1 evTeS; (ab)eE, ecE ceC
cl(a)=cl(b)

The metrics combines and weights four features of a signature distribution by weight
factors (o, B, ...): (a) the communication cost for audit event duplication from equa-
tion (1), (b) the state information transfers between analysis units from equation (2), (c)
the computation effort for transition condition evaluation (IDS core functionality), and
(d) a load balance function bal(c) which determines for each analysis unit (cluster C)
the deviation of the actual load from the average load of all units. Nevertheless, our
experimental evaluation shows that the applied worst case scenario (the events contain
a large number of attack traces) is misleading, as we were not able to find a reasonable
metrics. The problem results from the additional computation effort for repeated event
analysis for delayed state information. This effort changes significantly if the distances
between critical event sequences change only slightly. Therefore, the computation
overhead for repeated event evaluations dominates the overall runtime of unfavorable
signature distributions and cannot be predicted by metrics M. Fig. 6 depicts the logged
runtime (sec) together with the metrics prognosis (normalized to range [0,1]) for all
965 distributions. We tried different weight factors as well as additional distribution
features to find a reasonable metrics, but we could not identify a common relation be-
tween metrics prediction and real runtime (see Fig. 6).

Hence, this kind of metrics cannot be used to predict optimal analysis distributions
for the worst case, since they do not take all important computation dependencies be-
tween the signature fragments into account. Moreover, a further enhancement by addi-
tional statistical information is not desirable because CPU and network consumption
change continuously and even minor changes would lead to entirely different distribu-
tions. Such a metrics can only discover an initial distribution with a satisfying analysis

performance that must be adapted periodically. So, we applied next the iterative opti-
mization strategy E for the worst case. When the dynamically updated sensor statistics
and the analysis units suddenly indicate significant changes in the audit data character-
istics the current distribution has to be iteratively adapted. In typical IT infrastructures
this happens inevitable by changing user and system activities (e.g. daily schedules).

09 S 8,Ft05 | 80
, k] :
i
0,8 =
=
0,7 ‘é
. £ 7,B+05 -
. =
. .. £
gos o 3
0,4 6,E+05
0,3
0,2
5,E+05
0,1
15 35 55 real g 15 25 35 45 55
runtime (sec)
Fig. 6. Metrics prognosis and real runtime Fig. 7. Iterative optimization of distributions

Our iterative optimization strategy minimizes first the effort for repeated event eval-
uations by reassigning the responsible signature fragments. For this, fragments are
iteratively selected and moved according to selection procedure (c) of strategy E until
no computation effort is spent for repeated event evaluations. Then, as a second objec-
tive, the load balance of the analysis units is improved iteratively by selecting signature
fragments according to procedure (b). For this, a suitable fragment is chosen from the
most loaded analysis unit and reassigned to the least loaded unit. If the subsequent
performance evaluation turns out that the new distribution performs worse than the
previous one the previous distribution is restored. This causes only minor reorganiza-
tion effort, as only a single signature fragment is reassigned. Fig. 7 depicts the iterative
adaptation of the signature distributions by an annotated fragment of Fig. 5.

Starting from the simple non-fragmented distribution (ID 96), where each of the
three signatures is assigned to a different analysis unit, the distribution was adapted by
consecutively reassigning single signature fragments generating the distributions with
the IDs 92, 66, 80, 77, 80, 87, and 63. Distribution 77 was found to perform worse
compared to the previous one after some analysis time. Therefore, it was reverted to ID
80 and another suitable fragment was reassigned (ID 87). The iterative adaptation of
the signature distribution stops with distribution 63, when no suitable fragment for a
further reassignment step can be found. This happens, when a pretty good balanced
(and efficient) signature distribution is reached, such that also the “lightest” fragment
from the most loaded analysis unit that requires least computation resources will impair
the overall load balance, even if it will be reassigned.

To sum up, in worst case situations we always can apply the iterative optimization
strategy starting with a sufficiently efficient non-fragmented signature distribution.
Minor changes in the distribution can be easily taken back if they turn out to be mis-
leading. The communication overhead can be estimated in advance. Thus, we can pre-
vent high network utilizations. This strategy may only find semi-optimal distributions,
but even these perform better than the distributed analysis of complete signatures.

5. Summary

The increasing performance of IT systems leads to a rapid growth of audit data vol-
umes. This represents a major challenge for signature based intrusion detection sys-
tems, which already have to cope with growing signature databases. In this paper we
presented various optimization strategies which aim at balancing the analysis load of
complex signature based IDS over distributed analysis units. We focused on the analy-
sis of multi-step signatures because complex attacks, i.e. on application level protocols
(Web 2.0), will be much more important in the future, while simply structured attacks
can be successfully prevented by today’s proactive measures (e.g. address space layout
randomization, stack protection). A prototype implementation was used to evaluate the
achievable performance improvements by the various proposed optimization strategies.
Our results indicate that relevant improvements in the efficiency of audit event analyses
can be only obtained by a fine-grained assignment of fragmented signatures. But, the
results also indicate that poorly chosen distributions require much more computation
effort than the non-distributed baseline. Our results also show that a dynamic approach
which iteratively adapts the signature distribution to the current analysis situation dur-
ing runtime should be favored over a statically determined optimal signature distribu-
tion. As future work, we plan to integrate our prototype into a multi-agent platform to
build up a distributed intrusion detection system responsible for securing an IT infra-
structure (e.g. a company network). The system will analyze audit events from many
widely distributed sensors and adapt dynamically to changes of the audit stream char-
acteristics, analysis load, available free computation resources, and network bandwidth.

References

1. Cisco Systems Inc.: NetFlow Services and Applications. White Paper. (2002)
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp.htm

2. McHugh, J.: Set, Bags and Rock and Roll — Analyzing Large Datasets of Network Data. In: 9™ European
Symposium on Research in Computer Security (ESORICS), LNCS 3193, pp. 407422, Springer, (2004)

3. Sommer, R. and Feldmann, A.: NetFlow: Information Loss or Win? In: 2™ ACM SIGCOMM and USE-
NIX Internet Measurement Workshop (IMW 2002), Marseille, France, 2002

4. Meier, M.: A Model for the Semantics of Attack Signatures in Misuse Detection Systems. In: 7" Infor-
mation Security Conference (ISC), LNCS 3225, pp. 158-169, Springer, (2004)

5. Anagnostakis, K.G., Markatos, E.P., Antonatos, S., Polychronakis, M.: E2xB: A Domain Specific String
Matching Algorithm for Intrusion Detection. In 18" IFIP International Information Security Conference
(SEC 2003), pp. 217-228, Kluwer Academic Publishing, (2003)

6. Yang, L., Karim, R., Ganapathy, V., Smith, R.: Improving NFA-based Signature Matching Using Or-
dered Binary Decision Diagrams. In: 13™ International Symposium on Recent Advances in Intrusion De-
tection (RAID'10), Ottawa, Canada, Sept. 2010. LNCS 6307, pp. 58-78, Springer (2010)

7. Shemitz, J.: Using RDTSC for Pentium Benchmarking. Visual Developer Magazine. Jun./Jul. (1996),
Coriolis Group, Scottsdale, AZ, USA. http://www.midnightbeach.com/jon/pubs/rdtsc.htm

8. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.: Gnort: High Performance
Network Intrusion Detection Using Graphics Processors. In: 11" International Symposium on Recent
Advances in Intrusion Detection (RAID’08), LNCS 5230, pp. 116-134, Springer, (2008)

9. Kruegel, C., Toth, T., Kerer, C.: Decentralized Event Correlation for Intrusion Detection. In: Intl. Con-
ference on Information Security and Cryptology (ICISC), LNCS 2288, pp. 114-131, Springer (2001)

10. Colajanni, M., Marchetti, M.: A Parallel Architecture for Stateful Intrusion Detection in High Trac
Networks. In: IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation, IEEE Press, (2006)

11. Schaelicke, L., Wheeler, K., Freeland, C.: SPANIDS: A Scalable Network Intrusion Detection Load-
balancer. In: 2™ Conference on Computing Frontiers (CCF 2005), pp. 315-322, ACM, (2005)

