Evaluation of the Resource Requirements of
SNMP Agents on Constrained Devices

Siarhei Kuryla, Jiirgen Schonwélder

Computer Science, Jacobs University Bremen, Germany
{s.kuryla, j.schoenwaelder}@jacobs-university.de

Abstract. Constrained devices equipped with a microcontroller and a
low-power low-bitrate wireless interface are becoming part of the Inter-
net. We investigate whether the monitoring and configuration of such
constrained devices can be performed by adapting the Simple Network
Management Protocol (SNMP) to the capabilities of these devices. To
this end, we have implemented an SNMP agent under the Contiki op-
erating system. We provide an analysis of its resource requirements and
its runtime behaviour on an 8-bit AVR Raven platform.

Key words: SNMP, 6LoWPAN, Contiki, Internet of Things

1 Introduction

The Simple Network Management Protocol (SNMP) [1] is widely deployed to
monitor, control, and sometimes also configure network elements. Even though
the SNMP technology is well documented and well understood, it remains un-
clear what the exact resource requirements are of running SNMP on constrained
devices, such as an 8-bit microcontroller with 16 kB of RAM connected to the
Internet via an IEEE 802.15.4 transceiver. The origins of SNMP date back to the
late 1980s when computers had much less resources compared to what we are
used to today. In fact, one of the stated goals was that “the impact of adding
network management to managed nodes must be minimal, reflecting a lowest
common denominator” [2]. From this historic perspective, SNMP seems to be
a reasonable fit for managing today’s constrained devices. However, it must
be noted that SNMP did evolve during the 1990s and in particular security
mechanisms present in SNMP version 3 (SNMPv3) add significant complexity,
increasing the code size and impacting runtime performance. Hence, we were
approached with question such as the following;:

What are the resource requirements of a minimal SNMPv3 implementation
running on constrained devices?

— Which parts of an SNMP protocol engine are most expensive?

— What is the cost of adding instrumentation (additional MIB objects)?

— What is the runtime behaviour of SNMP over an IPv6 link using an IEEE
802.15.4 radio and the 6LoWPAN adaptation layer?

2 Siarhei Kuryla, Jiirgen Schénwélder

SNMP SNMP SNMP SNMP Proxy SNMP
Manager SNMPV3 Agent Manager SNMPV3 (6LowPAN Gateway) SNMPV3 Agent

! k ! k ! k
Internet 6LowPAN Network Internet 6LoWPAN Network

(a) End-to-end SNMP communication (b) Communication via an SNMP proxy
with agents on constrained devices with agents on constrained devices

SNMP SNMP Agent SNMP SNMP SNMP Agent WSN
Manager SNMPv3 (6LOWPAN Gateway) Subagent Protocol ~ Subagent Manager SNMPv3 (6LowPAN Gateway) data fusion protocol Peer

Internet ' : 6LowPan Network 1 ! Internet ' : 6LowPan Network
(¢) Communication via an SNMP agent (d) Communication via an SNMP agent
with subagents on constrained devices utilizing a new data fusion protocol

Fig. 1. Architectural options for using SNMP in 6LoWPAN networks

The answers to these questions are crucial in order to understand whether it is
feasible to run multiple protocols concurrently on constrained devices providing
end-to-end interoperability with deployed systems or whether it is necessary to
adopt architectures, where interoperability with deployed systems is achieved via
gateways translating between standard Internet protocols and a single protocol
(e.g., CoAP [3]) interfacing constrained devices.

The rest of the paper is structured as follows. We first discuss some archi-
tectural options for using SNMP in constrained networks in Section 2 before
we review related work in Section 3. The design choices behind our SNMP im-
plementation running on the Contiki [4] operating system are summarized in
Section 4. In Section 5, we describe our experimental setup in. We present an
analysis of the memory requirements in Section 6, which is followed by a discus-
sion of the observed latency in Section 7. We conclude the paper in Section 8.

2 Architectural Considerations

Low-Power Wireless Personal Area Networks (LoOWPANS) typically consist of
a (potentially large) number of constrained devices embedded into everyday
objects. Unlike conventional networks, nodes in such networks should need min-
imal configuration, they should preferably work “out of the box”, they should be
easy to bootstrap, and they should be largely self-healing [5]. However, even the
best automated mechanisms may fail and require explicit management once in a
while. As such, a certain amount of explicit management can never be completely
removed. Since the goal of IPv6 over LoWPANs (6LoWPAN) is to reuse exist-
ing protocols as much as possible, it makes sense to look at the question how
SNMP can be used to manage 6LoWPAN networks consisting of constrained
devices. Figure 1 outlines four architectural options for the common scenario
where a network management system residing in the normal Internet manages
constrained devices connected via a 6LoWPAN network.

Figure 1(a) assumes direct end-to-end SNMP communication. This option
provides straight forward access to individual 6LoWPAN nodes. Reuse of existing

Resource Requirements of SNMP Agents on Constrained Devices 3

deployed SNMP-based tools is easy and end-to-end security can be provided. The
downsides of this option are related to message sizes and fragmentation issues,
the requirement to embed a full SNMP engine into constrained devices, and the
trap-directed polling nature of SNMP if energy consumption is a concern.

By utilizing an SNMP proxy (see Figure 1(b)), it is possible to optimize the
transport of SNMP messages on the 6LoWPAN network, e.g., by using an alter-
nate encoding or by using different security mechanisms. Since SNMP proxies are
well defined in the SNMP specifications, management applications supporting
SNMP proxies should need no modifications. Note that this approach still re-
quires an SNMP agent on the constrained devices and that it does not overcome
the trap-directed polling nature of SNMP.

Figure 1(c) outlines the usage of SNMP subagent technology where a single
SNMP agent, typically running on an edge router, provides access to manage-
ment information, utilizing a special purpose subagent protocol to interact with
subagents residing on constrained devices. By tailoring the subagent protocol to
the constraints of the link and the devices, it is possible to improve efficiency in
the 6LoOWPAN network and some amount of caching of data in the SNMP agent
becomes feasible. However, this approach is not transparent to the management
system since management applications need to address management informa-
tion by using specific SNMP contexts. The fact that SNMP security ends at
the SNMP agent residing at the edge router may be considered a feature or a
problem, depending on the deployment scenario. The subagent option only has
a clear advantage if the implementation costs of subagents is significantly lower
than the costs for implementing an SNMP agent.

Finally, Figure 1(d) develops the subagent approach further by introducing
a new protocol enabling data fusion in the 6LoWPAN network, e.g., in-network
data aggregation. This approach requires not only new protocols, but also new
management applications that are able to properly address management infor-
mation and that understand the semantics of aggregated management data. On
the other hand, communication in the 6LoWPAN network can be optimized and
in particular tree-like routing structures can be exploited by aggregating data
as it travels towards the edge router.

3 Related Work

During the past decade, a large number of papers discussing various performance
aspects of SNMP have been published [6]. The majority of these papers assume
high bandwidth network links and PC-like end devices. In this section, we focus
solely on recent work dealing with 6LoWPAN networks and constrained devices.

In 2008, Hamid Mukhtar et al. [7] proposed a LoWPAN Network Manage-
ment Protocol (LNMP). Their approach aims at a reduction of communication
cost in order to increase the network lifetime and to avoid congestion. In the
proposed architecture, SNMP is supported on the native IPv6 network side only
and a 6LoWPAN gateway acts as a subagent proxy, translating between the
SNMP protocol and the protocol used on the 6LoWPAN network. Their work

4 Siarhei Kuryla, Jiirgen Schénwélder

therefore follows the subagent model shown in Figure 1(c). Whenever an SNMP
request arrives at the gateway, it is translated from SNMP to a simplified query
format. The gateway sends a query (via UDP) that contains identifiers of the
objects to be retrieved from the agent residing on the destination device. Simi-
larly, when a reply from the device arrives at the gateway, it is translated back
into the SNMP protocol format and an SNMP response packet is sent back to
the SNMP engine that requested the object. The gateway is also responsible for
responding to requests for objects whose values are constant for the whole net-
work. The proposed LNMP protocol was implemented for the Atmel ATmega
128L microcontroller. Unfortunately, the query protocol between the gateway
is not further detailed and no details are given concerning the code size or the
memory requirements. Furthermore, the proposal appears to be incomplete since
protocol security has not been considered nor has the addressing through SNMP
contexts and the OID mapping been fully worked out.

Haksoo Choi et al. describe two modifications of SNMP in order to optimize
SNMP for resource-constrained low-power and low data-rate wireless networks
[8]. The first change is the introduction of compressed SNMPv1 and SNMPv2c
message headers and the usage of SNMP delta compression [9]. The second mod-
ification is the introduction of new protocol operations to push management in-
formation periodically from an SNMP agent towards an SNMP manager and the
usage of UDP multicasts. In order to interface existing SNMP applications with
their extended version of SNMP, they introduce an SNMP proxy that performs
the necessary translations. From an architectural viewpoint, this work follows
the proxy model shown in Figure 1(b). The work by Haksoo Choi et al. has two
major limitations: (i) The work is limited to SNMPv1 and SNMPv2¢ and does
not consider protocol security. In fact, the elimination of community strings on
the 6LoOWPAN network causes SNMP agents to respond to any request. (ii) The
push mechanism only works for non-dynamic MIB objects since it relies on Get-
operations. Periodic retrieval of data in dynamically changing tables is thus not
optimized. Multicasting has the same limitations and becomes rather complex if
protocol security mechanisms would be considered. The modified SNMP proto-
col was implemented using the TinyOS operating system [10] on the Tmote Sky
platform featuring the 16-bit TI MSP430 microcontroller with 10 kB of RAM
and 48 kB of flash memory.

4 Implementation

Our Contiki SNMP implementation supports the SNMPv1 and SNMPv2 mes-
sage processing models and the Get, GetNext and Set protocol operations. The
USM security model has been implemented. It supports the HMAC-MD5-96 au-
thentication and CFB128-AES-128 symmetric encryption protocols. The stan-
dard specifies that SNMP entities must accept messages up to at least 484 bytes
in size, which is the maximum message size supported by our implementation.
One of the goals of our implementation is memory efficiency. However, when-
ever a choice had to be made between easily readable and maintainable source

Resource Requirements of SNMP Agents on Constrained Devices 5

code and memory efficient but hard to understand programming constructs, we
gave preference to the readable code. Due to the small amount of available RAM
memory, necessary data structures were optimized and designed very carefully.
Since the amount of ROM memory provided by the hardware platform is signif-
icantly larger than the amount of RAM, ROM memory has been preferred for
storing read-only data.

typedef struct { typedef struct varbind_list_item_t {
u8t version; varbind_t varbind;
pdu_t pdu; struct varbind_list_item_t* mnext_ptr;
} message_t; } varbind_list_item_t;
typedef struct { typedef struct varbind_t {
udt request_type; ptr_t* oid_ptr;
u8t response_type; ust value_type;
s32t request_id; varbind_value_t value;
u8t error_status; } varbind_t;
u8t error_index;
varbind_list_item_t *varbind_first_ptr; typedef union {
ul6ét varbind_index; s32t i_value;
} pdu_t; u32t u_value;
ptr_t p_value;

} varbind_value_t;

Fig. 2. Key data structures representing SNMP messages

Some key data structures are shown in Figure 2. In the implementation, OID
values are never decoded but instead natively stored in ASN.1/BER format.
This not only enables a memory efficient representation of OID values, it also
allows to refer to the OID of a varbind by pointing inside the received packet,
thus reducing the need for runtime memory allocations.

MIB objects are internally represented by instances of the mib_object_t
structure shown in Figure 3. The attrs member specifies the attributes of the
object. The varbind member holds the OID of the object and its value. The
get_fnc_ptr and set_fnc_ptr members are pointers to the user-defined getter
and setter functions respectively. In case of enabled tabular objects, two addi-
tional bytes are required for the get next_oid_fnc_ptr pointer for every man-
aged object. Tabular objects are an optional feature and they can be disabled
by changing the value of the ENABLE_MIB_TABLE macro definition.

The OID of a managed object is an array of bytes which does not change
its value over time. By default, such arrays are handled as all other initialized
variables: they occupy RAM and they occupy the same amount of flash ROM
so they can be initialized to the actual value by startup code. This is a waste
of RAM, which is the most critical resource of today’s constrained devices. Of
course, such data can be moved to flash ROM. However, to access the data
stored in the flash ROM special functions have to be used, which results in
additional complexity. The implementation allows to store OIDs either in RAM
or flash ROM. This can be defined at compile time, by switching the value of
the ENABLE_PROGMEM macro definition between 0 and 1.

6 Siarhei Kuryla, Jiirgen Schénwalder

struct mib_object_t {

u8t attrs;

varbind_t varbind;

get_value_t get_fnc_ptr;
#if ENABLE_MIB_TABLE

get_next_oid_t get_next_oid_fnc_ptr;
#endif

set_value_t set_fnc_ptr;
#ifndef MIB_SIZE

struct mib_object_t* next_ptr;
#endif
};

Fig. 3. MIB data structures representing MIB objects

Our SNMP implementation supports two ways to organize the storage of
managed objects by using either an array or a linked list. In the first case, the
number of objects has to be predefined at compile time by using the MIB_SIZE
macro definition, otherwise a linked list is used. In the latter case, every managed
object requires two extra bytes for the next_ptr member.

Several objects of the SNMPv2-MIB [11], IF-MIB [12] and ENTITY-SENSOR-MIB
[13] have been implemented. The SNMPv2-MIB defines managed objects describ-
ing the identity and the capabilities of an SNMP entity. The IF-MIB provides
access to information related to network interfaces. It exposes counters of packets
received on and transmitted out an interface. In order to obtain such statistical
data, the Contiki radio driver has been instrumented. The managed objects of
the ENTITY-SENSOR-MIB provide access to physical sensors. The readings of the
temperature sensor can be obtained via the objects of this module.

5 Hardware Platform and Experimental Setup

The AVR Raven board includes two microcontrollers (MCUs), a radio transceiver
chip and an LCD display. The ATmegal284PV MCU runs the communication
while the LCD display is driven by the ATmega3290PV. The wireless commu-
nication is enabled by the AT86RF230 transceiver. Both the ATmegal284PV
and the ATmega3290PV are modified Harvard architecture 8-bit RISC single
chip MCUs. The ATmegal284PV runs at 20 MHz and has 16 kB of SRAM,
128 kB of flash program memory and 4 kB of EEPROM. It embeds two 16-bit
timers, two 8-bit timers and one real time counter. The ATmega3290PV runs at
16 MHz and has 2 kB of SRAM, 32 kB of flash memory and 1 kB of EEPROM.
The AT86RF230 is a 2.4 GHz radio transceiver targeted for IEEE 802.15.4 and
6LoWPAN applications. It supports automatic frame acknowledgement and re-
transmission, automatic CSMA-CA and data transfer speeds of up to 250 kbps.

The network setup used consists of a PC equipped with an 802.15.4 interface
connected via the USB bus. The AVR RZUSBstick, a USB stick with a 2.4 GHz
IEEE 802.15.4 transceiver, is used to provide the PC with an 802.15.4 interface.
The software running on the MCU on the USB stick is doing the 6LoWPAN
adaptation and hence no software changes are needed on the PC.

Resource Requirements of SNMP Agents on Constrained Devices 7

The Contiki SNMP implementation has been tested for interoperability with
the snmpget, snmpgetnext, snmpset and snmpwalk applications from the Net-
SNMP! suite. All measurements reported in this paper were made with Contiki
2.4 using the IPHC header compression mechanism.

6 Memory and Code Footprint

Due to the limited memory resources of constrained devices, the RAM and flash
ROM used by the agent are important parameters that have to be evaluated.
However, RAM usage is hard to measure because of the variable size of the stack
and the heap used for dynamic memory allocation. In this section, we present
memory usage estimations obtained by using three different approaches.

6.1 Flash ROM and Static Memory Usage

In the first step, the avr-size utility was employed to determine the flash ROM
and static memory usage. We are interested in measuring the memory used
only by the agent and not by the whole program that also includes the Contiki
operating system. To achieve this, we first compile the source code of Contiki
with the agent and measure the size of the output object file using the avr-size
utility. Then, the same procedure is repeated for Contiki without the agent. The
total memory used by the agent is obtained by a simple subtraction. The full
implementation uses 31220 bytes of ROM, which is around 24% of the available
ROM on the targeted platform, and 235 bytes of statically allocated RAM. In
case SNMPv1 is only enabled, the agent uses 8860 bytes of ROM (about 7% of
available ROM) and 43 bytes of statically allocated RAM. In a similar way, we
measured the code and memory footprint of each module of the agent. Table 1
shows the detailed breakdown of the measurements.

As can be seen from the table, the cryptographic primitives occupy a sig-
nificant amount of flash ROM. The AES and MD5 implementations constitute
around 31% and 33% respectively of the agent code size. Almost half of the
ROM occupied by the AES implementation is used to store constants. The MD5
implementation intensively uses macro definitions for transformations, which re-
sults in the large code size. Using functions instead of macros could reduce the
code size, but would negatively impact the performance. It is worth to mention
that the cryptographic primitives were ported from the OpenSSL library and
that they are not optimized for the instruction set of the MCU.

The USM security model occupies almost half of the agent’s statically allo-
cated RAM. This RAM is mostly used to store localized keys and OIDs of the
error indication counters.

6.2 Stack Usage

An experimental approach has been taken to estimate the stack size used by the
agent while processing a request. Upon receipt of an incoming SNMP message,

! http://www.net-snmp.org/

8 Siarhei Kuryla, Jiirgen Schénwalder

Table 1. Flash ROM and static RAM memory usage of the agent (bytes)

Module Flash ROM | RAM (static)
snmpd.c 172 2
dispatch.c 1076 26
msg-proc-vl.c 634 6
msg-proc-v3.c 1184 30
cmd-responder.c 302 0
mib.c 1996 6
ber.c 4264 3
usm.c 1160 122
aes_ctb.c 9752 40
md5.c 10264 0
utils.c 416 0

the memory region allocated to the program stack is filled with a specific bit
pattern. When the processing has been finished, the stack is examined to see
how much of it is overwritten.

Table 2. Maximum runtime stack size usage (bytes)

Version| Security level |Max. stack size
vl - 688
v3 |noAuthNoPriv 708
v3 authNoPriv 1140
v3 authPriv 1144

Table 2 presents the maximum stack size observed during experiments for
different versions of SNMP and different selected security levels. Most of the
stack is occupied by the response message buffer of 484 bytes. The SNMPv1 and
SNMPv3 protocol versions with the noAuthNoPriv security level use approxi-
mately the same stack size, which constitutes around 4% of the available RAM.
When authentication and privacy are enabled, the stack grows up to 1144 bytes,
which is about 7% of RAM on the targeted platform.

6.3 Heap Usage

Memory for the data structures used to store the fields of an SNMP message
(see Section 4) is allocated from the heap using the malloc() function. Table
3(a) provides a memory estimation for the message_t structure.

Each variable binding is stored in a linked list using an instance of the
varbind list_item_t structure. In addition to the memory calculation shown
in Table 3(c), a variable binding uses 4 additional bytes for an instance of the
ptr_t structure, which points to the OID stored in the message buffer.

Resource Requirements of SNMP Agents on Constrained Devices 9

Table 3. Memory usage of key data structures

(a) Memory estimation for the (b) Memory estimation for the
message_t structure (13 bytes) mib_object_t structure (16 bytes)
Member Size (bytes) Member Size (bytes)
version 1 attrs 1
pdu.request_type get_fnc_ptr
pdu.response_type set_fnc_ptr
pdu.request_id get_next_oid_fnc_ptr
pdu.error_status next_ptr

varbind.oid_ptr
varbind.value_type
varbind.value

pdu.error_index
pdu.varbind first_ptr
pdu.varbind_index

N DN = = R
NN NN N

(¢) Memory estimation for a vari-
able binding (9 bytes)

Member Size (bytes)
next_ptr 2
varbind.oid_ptr 2
varbind.value_type 1
varbind.value 4

The overall memory utilized to store an SNMPv1 message with N variable
bindings is given by the formula 13+ N(9+4) = 13(N +1). The SNMP message
size is limited in the implementation to 484 bytes. Each variable binding encoded
in the BER format requires at least 7 bytes, therefore, in the worst (albeit
unrealistic) case an SNMPv1 message may carry 484/7 = 69 variable bindings,
which would require 13(69 + 1) = 910 bytes of the heap to store such a message.

6.4 Managed Objects

As discussed in Section 4, each managed object is stored in memory as an in-
stance of the mib_object_t structure. Table 3(b) presents a memory estimation
for the members of this structure. A managed object uses additional 4+ L bytes
for the OID, where L is the length in bytes of the OID encoded in the BER
format. In case a managed object is of a string-based type, S extra bytes are
required to store its value, where S is the length of the value. The total RAM
usage for a managed object is given by the formula 16 + (4 + L) + S. Using flash
ROM to store OIDs allows to save 4+ L bytes of RAM for every managed object.
In this case, the formula changes to 16 4+ S, which would require 1600 bytes of
RAM for 100 managed objects of an integer-based type.

7 Response Latency

A simple udp-echo application has been developed for Contiki, which allows to
obtain a round-trip time estimation for a UDP datagram of a certain size. Table 4

10 Siarhei Kuryla, Jiirgen Schénwalder

Table 4. Round-trip time (RTT) measured with udp-echo

Payload (bytes) | 802.15.4 frames | RT'T (ms) | Variance
1 1 30.75 2.07
90 1 38.87 6.58
91 2 49.90 6.54
175 2 58.93 6.63

provides some experimental results obtained using udp-echo. The results reveal
that the transmission time of an 802.15.4 frame depends significantly on the
amount of data being sent. For example, the difference between the round-trip
time for datagrams with a payload of 1 byte and 90 bytes, both of which fit
into one 802.15.4 frame, is around 8 ms. The delay is caused by the low speed
of the radio transceiver. When sending a UDP packet with a 91 byte payload,
6LoWPAN fragmentation is used and, as expected, we observe an abrupt increase
in the round-trip time compared to the 90 byte payload packet.

In order to estimate the SNMP request processing time taken by the agent,
the request-response latency for individual messages was measured at the gate-
way by noting the delay between sending of the message and receiving of the
response. In addition to the actual processing time, the measured delay also
includes the time to transmit messages over the air between the gateway and
the agent. If a message does not fit into a single 802.15.4 frame, the 6LoW-
PAN fragmentation takes place, which causes additional overhead as explained
above. The SNMP request processing time can be found as the difference be-
tween the the SNMP request-response latency and the round-trip time estimated
with udp-echo for datagrams with the same payload length.

Table 5 and Figure 4(a) present latency measurements for SNMPv1 and SN-
MPv3 with three different security levels. All measurements were obtained for
requests with one variable binding referring to the same MIB object. The first ob-
servation is that the time spent in the SNMP request processing is small relative
to that spent in data transfer for SNMPv1 and SNMPv3 in the noAuthNoPriv
security level. The SNMP processing constitutes only around 6-7% of the total
latency. As expected, the usage of the authentication protocol results in a sig-
nificant increase of this metric. The results also reveal that encryption does not
have that much impact on the processing time as the authentication does. It is
important to mention that the measurements for SNMPv3 do not include the
discovery procedure, which would result in an additional message exchange.

Figure 4(b) shows changes in the processing time by varying the number of
variable bindings in a request. These measurements were accomplished for the
SNMPv1 protocol and the Get operation. The processing time varies from 2 to 19
ms, which is not significant when compared to the transfer time. Even though
the object lookup time depends on its position in the MIB, for this targeted
platform, it is unlikely that the MIB will contain that many objects to change
the results considerably.

Resource Requirements of SNMP Agents on Constrained Devices 11

Table 5. Experimental results obtained by measuring the response latency (presented
in the latency and variance columns) for SNMP requests. The round-trip time (RTT) is
estimated using udp-echo. The last column is the processing time taken by the agent.
All time measurements are given in milliseconds

Version | Operation | Security level | Latency | Variance | RTT | A
vl Get - 37.05 5.69 34.70 | 2.35
vl GetNext - 36.98 6.58 34.70 | 2.28
vl Set - 37.14 4.39 34.70 | 2.44
v3 Get noAuthNoPriv | 56.64 4.05 52.62 | 4.02
v3 GetNext |noAuthNoPriv| 56.58 2.72 52.62 | 3.96
v3 Set noAuthNoPriv| 56.78 3.00 52.62 | 4.16
v3 Get authNoPriv 91.41 3.45 53.02 [38.39
v3 GetNext authNoPriv 91.95 3.75 53.02 |38.93
v3 Set authNoPriv 92.41 3.22 53.02 39.39
v3 Get authPriv 105.70 5.38 55.03 [50.67
v3 GetNext authPriv 106.46 2.59 55.03 [51.43
v3 Set authPriv 106.73 3.59 55.03 |51.70

8 Conclusions

An implementation of the Simple Network Management Protocol for resource
constrained devices under the Contiki embedded operating system has been pre-
sented. The implementation is modular and extensible by design. It supports
the Get, GetNext and Set operations, the SNMPv1 and SNMPv3 message pro-
cessing models and the User-based Security Model (with the HMAC-MD5-96
authentication and the CFB128-AES-128 symmetric encryption protocols). The
implementation provides an interface to define and configure accessible managed
objects. A couple of the existing MIB modules have been implemented as part
of the agent.

The evaluation of the implementation has been carried out on the AVR Raven
hardware platform. The experimental results reveal that the request processing
time for SNMPv1 and SNMPv3 with the noAuthNoPriv security level is rela-
tively small compared to the transfer time. Using the authentication protocol
results in a significant increase of this metric, while the encryption protocol does
not have that much impact on it. The RAM and flash ROM usage has been
estimated by using three different approaches.

Possible further work would be to implement the GetBulk operation, noti-
fications (Trap and Inform), and the SNMPv2c message processing model. It
is also possible to use this platform to develop and prototype additional MIB
objects for 6LOWPAN networks and related protocols.

References

1. Case, J., Mundy, R., Partain, D., Stewart, B.: Introduction and Applicability
Statements for Internet Standard Management Framework. RFC 3410 (December

12

Time (ms)

Siarhei Kuryla, Jiirgen Schénwélder

transfer mm— T z v
> 160 - request-response delay
120 | processing ——1 a wfnd_t,m e —

1o | ol processing time

120

100

Time (ms)

SNMPv1 SNMPv3 SNMPv3 SNMPv3 0 s 10 15 . 20 ®
noAuthNoPriv - AuthNoPriv AuthPriv Number of variable bindings in a request

(a) Time taken for transferring and pro- (b) Time spent in transferring and pro-
cessing an SNMP request with different cessing SNMPv1 requests and responses
message processing models and security as a function of the number of variable

levels bindings in a request
2002)
2. Rose, M.T.: The Simple Book — An Introduction to Management of TCP/IP based

10.

11.

12.

13.

Internets. Prentice Hall (1991)

Shelby, Z., Hartke, K., Bormann, C., Frank, B.: Constrained Application Protocol
(CoAP). Internet-Draft <draft-ietf-core-coap-05>, (March 2011)

Dunkels, A., Gronvall, B., Voigt, T.: Contiki — A Lightweight and Flexible Op-
erating System for Tiny Networked Sensors. In: Proc. 29th IEEE International
Conference on Local Computer Networks (LCN’04). (2004)

Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANSs): Overview, Assumptions, Problem State-
ment, and Goals. RFC 4919 (August 2007)

Andrey, L., Festor, O., Lahmadi, A., Pras, A., Schonwélder, J.: Survey of SNMP
Performance Analysis Studies. International Journal of Network Management
19(6) (2009) 527-548

Mukhtar, H., Kang-Myo, K., Chaudhry, S.A.,; Akbar, A.H., Ki-Hyung, K., Yoo,
S.W.: LNMP - Management architecture for IPv6 based low-power Wireless Per-
sonal Area Networks (6LoWPAN). In: Proc. 11th IEEE/IFIP Network Operations
and Management Symposium (NOMS 2008), IEEE (April 2008) 417-424

Choi, H., Kim, N., Cha, H.: 6LoWPAN-SNMP: Simple Network Management
Protocol for 6LoWPAN. In: Proc. 11th IEEE International Conference on High
Performance Computing and Communications, IEEE (2009) 305-313
Schonwélder, J.: SNMP Payload Compression. Internet Draft <draft-irtf-nmrg-
snmp-compression-01.txt>, (April 2001)

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The
nesC Language: A Holistic Approach to Networked Embedded Systems. In: Proc.
of the ACM Conference on Programming Language Design and Implementation
(PLDI03), ACM (June 2003)

Presuhn, R.: Version 2 of the Protocol Operations for the Simple Network Man-
agement Protocol (SNMP). RFC 3418 (December 2002)

McCloghrie, K., Kastenholz, F.: The Interfaces Group MIB. RFC 2863 (June
2000)

Bierman, A., Romascanu, D., Norseth, K.C.: Entity Sensor Management Informa-
tion Base. RFC 3433 (December 2002)

