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Abstract. VoIP infrastructures are exposed to a large variety of security
attacks, but the deployment of security safeguards may deteriorate their
performance. Risk management provides new perspectives for addressing
this issue. Risk models permit to reduce these attacks while maintaining
the quality of such a critical service. These models often suffer from their
complexity due to the high number of parameters to be configured. We
therefore propose in this paper a self-configuration strategy for support-
ing runtime risk management in VoIP architectures. This strategy aims
at automatically adapting these parameters based on an econometric
feedback mechanism. We mathematically describe this self-configuration
strategy, show how it can be integrated into our runtime risk model. We
then evaluate its deployment based on a proof-of-concept prototype, and
quantify its performance through an extensive set of simulation results.

1 Introduction

Voice over IP (VoIP) has become a new paradigm in the area of telephony. It con-
tributes to the convergence of services and permits IP providers to offer telephony
service with a higher flexibility than traditional PSTN (Packet Switch Telephony
Networks). The interoperability amongst VoIP equipments is supported by the
standardization of dedicated protocols, including signaling protocols such as SIP
(Session Initiation Protocol) for establishing phone sessions, and media trans-
port protocols such as RTP (Real-time Transport Protocol) for transporting
communications. The large scale deployment of VoIP infrastructures has intro-
duced new security issues, including security threats inherited from the IP layer,
such as denial of service and IP spoofing, but also security threats specific to
VoIP protocols such as SIP flooding and SPIT (Spam over Internet Telephony)
[1, 2]. A large variety of security mechanisms (firewalls and intrusion prevention
systems) are available for preventing these threats. However, the application of
these security mechanisms on such critical infrastructures may seriously impact
on the performance and usability of telephony service.

Risk management provides new opportunities for addressing this trade-off
between security and performance [3]. It aims at quantifying the potentiality
of threats and selecting suitable security safeguards in order to minimize the
impact the VoIP infrastructure. In that context, we have already argued in favor
of the application of risk management at runtime, by extending and applying
the Rheostat model to VoIP architectures [4]. The parameterization of a risk



model is a key challenge.We therefore propose in this paper a self-configuration
strategy for supporting runtime risk management in VoIP infrastructures. This
approach permits to simplify the configuration of such risk models, by refining
at runtime the model parameters based on an econometric feedback mechanism.
We define this strategy in a theoretical manner and then describe how it can be
integrated into our runtime risk model for VoIP architectures. We consider the
model parameter which characterizes the cost of a safeguard as the case study of
this work. This parameter is crucial because risk management aims at minimizing
this cost while maintaining a low risk level. Our approach is generic and can
easily be applied to the other risk model parameters. The main contributions
of this paper are: (a) the design of a self-configuration strategy for VoIP risk
models, (b) its specification based on an econometric feedback mechanism, (c)
its integration into our runtime risk model, (d) its implementation into our
Asterisk-based prototype (e) its evaluation based a set of simulation results.

The paper is consequently organized as follows. Section 2 describes the key
concepts of runtime risk management in VoIP networks. Section 3 describes our
self-configuration strategy and the considered parameters. Section 4 details the
econometric feedback mechanism supporting our strategy. Section 5 presents
the integration of this mechanism into our proof-of-concept prototype. Section 6
evaluates the performance of our solution through a set of experimental results.
Related work are described in Section 7, and Section 8 concludes the paper and
points out future research efforts.

2 Runtime risk management

Risk management is typically defined as the management process which consists
in assessing risks and treating them i.e. taking the steps required for minimizing
them to an acceptable level in the infrastructure. When we analyze existing work
in the area of VoIP networks, we can observe that the first phase is covered by
approaches for assessing threats (such as honeypot architectures and intrusion
detection systems based on signatures, or based on anomalies [5]), and also by ap-
proaches for assessing vulnerabilities (such as auditing/benchmarking tools [6]).
The second phase is covered by different types of treatments, in order to elim-
inate risks (risk avoidance) by applying best practices, to reduce and mitigate
them (risk optimization) by deploying protection and prevention systems [7], to
ensure against them (risk transfert) by subscribing an insurance contract or to
accept them (risk retention) [3].

Runtime risk management aims at applying a continuous control of the infras-
tructure exposure to threats through the activation or deactivation of safeguards
( as an instantiation of [3]). Rheostat instantiates such a dynamic schema [8].
We have previously shown how it can be applied to VoIP infrastructures [4].
Let a be a security attack part of A (the set of attacks), Rheostat quantifies
the risk level R based on three parameters P(a), E(a) and C(a), as defined in
Equation 1. P(a) stands for the potentiality of the threat associated to the at-
tack a. E(a) defines the exposure of the infrastructure, which depends on the
vulnerabilities of the system with respect to this attack. Finally, C(a) stands for



the consequences of a successful attack on the infrastructure resources. This last
parameter quantifies the degradation of the assets.

R =
∑

a∈A

P(a) × E(a) × C(a) (1)

Rheostat exploits two algorithms for controlling the exposure of the infrastruc-
ture. These algorithms aim at maintaining the risk level to an acceptable level
(less than a threshold Rthreshold while reducing the costs of safeguards (see
Equation 2, with the ith safeguard being noted sfi).

minimize(
∑

i

cost(sfi)) and R < Rthreshold (2)

The risk restriction algorithm activates security safeguards in order to reduce
the risk level when the potentiality of a threat is high, while the risk relaxation
algorithm deactivates theses safeguards when the potentiality is low in order to
reduce the costs induced by safeguards.

Configuring the parameters of a risk model is an important and difficult activ-
ity, because the number of parameters may be high (parameters P(a), E(a) and
C(a) are themselves dependent on other parameters) and also because parame-
ters may vary with respect to the context. Several parameters are particularly
hard to configure in our scenario. A first one is the impact of a security safeguard.
It quantifies the capability of a security safeguard to protect the VoIP infras-
tructure with respect to a security threat. While this quantification is sometimes
obvious (application of a specific patch), in most cases this parameter is difficult
to quantify, in particular in case of unwanted communications (such as SPIT).
We only focus here on the impact on the attack, not the impact on the threat
itself. It is also interesting to quantify this second parameter, even if this impact
is often low in case of attacks generated by bots. The second one is the cost of
a security safeguard, which specifies how the safeguard deteriorates the perfor-
mance of the service telephony. It is often defined in terms of service availability
or usability. It is also possible to quantify it based on the number of innocent
suspects that have to pass the security safeguard. At the extreme case, the cost
of a safeguard can be considered as infinite when it consists in stopping the
telephony service. This safeguard should only be executed when no alternative
has been found for treating the considered risk. The last one is consequence of
a successful attack, which is typically quantified in terms of confidentiality, in-
tegrity and availability. The objective is to determine if an attack will generate
important damages or not on the VoIP infrastructure. While availability can be
calculated in a dynamic manner in specific scenarios, privacy and integrity are
more challenging and often require to be estimated by experts.

3 Self-configuration strategy

We propose in this paper to define a self-configuration strategy for improving
runtime risk management in VoIP infrastructures (see Figure 1). Risk models



suffer from their complexity due to the high number of parameters. This automa-
tion is a key requirement in order to simplify this task and in order to adapt
and refine risk model parameters with respect to their context. We consider
an economic feedback mechanism to support our self-configuration schema. The
objective is to take into account the experience in order to adapt the parameter-
ization and to build a higher added-value modeling. As depicted in Figure 1, our

Fig. 1. Self-configuration strategy for VoIP runtime risk management

VoIP architecture is composed of three components: (1) a detection system re-
sponsible for quantifying the potentiality of security threats, (2) a risk manager
responsible for selecting safeguards based on the runtime risk model and based
on the management algorithms, and (3) a configuration system which executes
the safeguards on the VoIP infrastructure. The self-configuration strategy per-
mits to establish a feedback loop based on the reporting performed by agents
deployed on VoIP equipments. Thanks to this reporting integrated into the risk
model, each application of security safeguards permits to perform additional ob-
servations and to leverage our risk management strategy. We have voluntarily
focused our study on the cost of safeguards, in particular on safeguards based on
audio captcha tests [9]. It has been shown that several hundred million captchas
are filled out every day, and that these captchas could represent a cost of one
billion dollars in terms of productivity loss [10]. Even if this value is probably
over-estimated, it illustrates the importance of well-configured risk models. Af-
ter the application of a safeguard, the agent estimates its cost and reports it to
the configuration server. The server collects and aggregates these statistics that
are forwarded to the risk manager. The risk manager then exploits these data
to refine the cost of the considered safeguard.

We consider a VoIP infrastructure based on the SIP protocol. SIP is an open
standardized protocol for managing sessions in VoIP telephony [11]. It handles



the authentication and location of multiple participants, and supports the nego-
tiation of media types using SDP (Session Description Protocol) messages. Let

Fig. 2. SIP session initiation with security safeguard

consider the case of an agent UA1 establishing a VoIP communication with an-
other agent UA2, as described in figure 2. The agent UA1 first sends an INVITE
message to initiate a session with the second agent. If the potentiality of an
attack is high, the SIP proxy of the second domain may require the application
of a security safeguard in order to protect the VoIP equipments against attacks
that could be generated by the first agent The agent UA1 is then invited to
respond to this safeguard. For instance, in our case, the SIP proxy can apply
an audio captcha test, such as requesting the typing of a specific code If the
second agent UA2 provides a correct answer , the session initiation can continue
normally with a RINGING message and an OK message.The application of the
safeguard has introduced an additional overhead during the session initiation.
In our scenario, we quantify the cost of the captcha safeguard in terms of delay.

4 Econometric feedback mechanism

Our self-configuration strategy is supported by an econometric feedback mech-
anism. The objective is to exploit the results of previous safeguard applications
in order to refine the risk management model and determine the cost of next ap-
plications in a more efficient manner. A large variety of methods and techniques
are available for performing such a forecasting with different performances, in
particular in the area of econometry. We considered the commonly used ARMA
analysis technique. While it presents some limitations, this technique is fully ad-
equate with our runtime constraints, and our observations can easily be mapped
to time series [12].

4.1 Refinement modeling

An ARMA model is typically defined as the combination of two models: the
first one is an autoregressive model of order p and the second one is a moving



average model of order q. It can therefore be mathematically defined as given
by Equation 4.

yt =

p∑

i=0

φiyt−i −

q∑

j=0

θjεt−j + εt (3)

In this equation, the variable yt stands for the forecasted value, while the {yt−i}
variables represent the previous forecasted values. εt provides the error of the
prediction method following the law BB(0, σt). The {φi} and {θi} variables are
the coefficients (positive or negative) to be determined. These coefficients can
be estimated with the maximum likelihood method.

We apply the ARMA analysis technique in order to refine the cost of the
security safeguards. We note fcCost as the forecasted cost and efCost as the
effective cost of the security safeguard. In that case, the forecasted cost fcCostt
at an instant time t is given by Equation 4 with εt−j standing for the difference
between the effective safeguard cost fcCostt−j and the forecasted safeguard cost
efCostt−j at time t and εt−j standing for the cost error.

fcCostt =

p∑

i=0

φifcCostt−i −

q∑

j=0

θjεt−j + εt (4)

As a consequence, the management algorithms (risk restriction algorithm and
risk relaxation algorithm) permit to minimize the refined values corresponding
the cost of security safeguards, while maintaining the risk level to an acceptable
value, as described by Equation 2.

4.2 Analysis and validation

This analysis technique is typically specified into five phases, and includes a
validation test [13]. We briefly describe below its application in our scenario of
runtime risk management. The first phase consists in identifying and filtering
periodicity; this task can be performed by analyzing simple and partial correlo-
grams or by applying a dedicated test such as the augmented Dickey-Fuller test
or the Philips-Perron test. The second phase permits to determine the orders
p and q of the ARMA model ; this task is typically done again based on the
analysis of simple and partial correlograms. The autocorrelation function mea-
sures the correlation between efCostt and efCostt−k, and the influence of the
other variables (efCostt−i)0<i<k having been withdrawn. The autocorrelation
coefficient of order k is given by Equation 5.

ρk =
cov(efCostt, efCostt−k)

σefCostt
σefCostt−k

(5)

The third phase estimates the coefficients {φi} and {θi} of the ARMA model.
The coefficients weight respectively the variables fcCostt−i and εt−j (see Equa-
tion 4). Their estimation is obtained by exploiting the maximum likelihood
method. The fourth phase represents the validation of the ARMA method. This



first consists in analyzing the coefficients and the residuals and then to apply
the autocorrelation test of Box and Pierce using a static quantity Q which is

given by this equation: Q = n
K∑

k=0

ρ2

k. In this equation, n stands for the number

of observations and ρk represents the autocorrelation coefficient of order k of the
estimated residuals. This validation permits to determine the error term with
respect to the sample size.The last phase consists in quantifying the predicted
cost of the safeguard based on the established modelling, using Equation 4.

5 Prototype integration

We have integrated our self-configuration strategy into an Asterisk-based VoIP
environment. We have exploited built-in Asterisk drivers, and implemented the
self-configuration module based on AGI (Asterisk Gateway Interface) scripts
using the AGI python toolkit. This prototype detects suspicious actors based
on an anomaly detection algorithm detailed in [4]. This algorithm (monitoring
package) identifies the presence of SPIT or other abnormalities based on Call
Detail Records (CDRs). The identity of the suspicious actors is represented by
the user account for a registered user and by the IP address for external calls.
The monitoring package forwards the results to the risk management module.
This one stores and manages the list of suspicious actors and assigns safeguards
for each actor based on our runtime risk model. The AGI script takes the Aster-

Fig. 3. Integration of the self-configuration strategy into our Asterisk-based prototype

isk channel parameters as arguments and determines if any safeguard has to be
applied before calling the extension. Our prototype currently supports several



safeguards, such as responding with a busy message for the first call tentative,
asking to dial a specific DTMF tone in order to establish the call, and redirecting
the call to another destination. After each application of a safeguard, the proto-
type stores the effective cost of the activated safeguards into the database. The
self-configuration module analyses the series of cost values, and quantifies a re-
fined value for the safeguard by applying our econometric feedback mechanism. It
directly calls the ARMA (p,q) functions of the fArma package [14] and forwards
the refined value to the risk management module. We have experimented this
feedback mechanism with the audio captcha safeguard (5 x 30 samples) and have
determined an error term which serves as a basis for simulation experiments.

6 Experimental results

We have considered the scenario of SPIT attacks, as SPIT is a very common
threat in VoIP infrastructures. Our purpose is to evaluate the impact of our
econometric feedback mechanism on the runtime risk management schema. The
call arrival is represented by a Poisson law and a mean of 100 calls per unit of
time. The call duration is represented by an exponential law and a mean of 10
seconds. The attacks are represented by 4 different types with increasing SPIT
intensity (from 10 to 1000 SPIT calls per unit of time). We define from 5 to
20 different safeguards where each safeguard is characterized by three variables:
the cost (representing the additional delay introduced by the safeguard, with an
error term between 1% and 10%), the probability that a malicious call bypasses
the safeguard (following a uniform distribution in the [0.8; 1] interval), and the
probability that an honest call bypasses the safeguard (following a uniform dis-
tribution in intervals between [0.8; 1] (best cases) and [0; 0.2] (worst cases). We
have conducted 10,000 Monte Carlo simulations per scenario, which permits to
reduce sufficiently the simulator error term. We use the same seed number for
the pseudo-random number generation of all scenarios. Next, we expose a sub-
set of our experimental results. We are in particular interested in evaluating
the benefits and limits of the econometric feedback mechanism our runtime risk
management performance. In a first series of experiments, we have investigated
the impact of the feedback mechanism on the risk amplitude. Figure 4 represents
the risk distribution for three different cases: a cost with an error term of 0%
(scenario A), a cost with an error term of less than or equal to 5% (scenarios B1a

and B2a), and a cost with an error term between 5% and 10% (scenarios B1b and
B2b). We can clearly observe on the first subfigure 4(a) corresponding to an error
term with a positive direction that the risk amplitude is higher with the scenario
A than the two other scenarios B2a and B2b. The distinction between scenario
A and the other scenarios starts with a risk amplitude greater than 0.14. The
two curves corresponding to the scenarios B2a and B2b are converging to the
same distribution. We observe the same phenomenon with the second subfigure
4(b). We have plotted the three same scenarios A, B1a and B1b, but in that case
with a negative direction. The risk amplitude is once again higher with scenario
A than with the two other scenarios B1a and B1b, and the distribution of these
two last scenarios are also converging. However, the difference between scenario



A and the scenarios B1a and B1b is less important than in the first subfigure.
These results are in coherence with our runtime risk management strategy. The
objective of the risk management algorithms is to minimize the cost of activated
security safeguards while maintaining the risk amplitude less than a threshold
value, which permits to explain the experimental results observed in the two sub-
figures 4(a) and 4(b). In the first subfigure 4(a), the difference between scenario
A and scenarios B2 (B2a and B2b) is due to the activation of a security safeguard
with an impact higher than effectively required. The error rate with a positive
direction contributes to the selection of such a safeguard at an earlier stage, as
its cost looks less expensive than the effective cost. In that case, the error term
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Fig. 4. Impact of feedback on risk amplitude

leads the runtime risk model to generate a restriction on the infrastructure expo-
sure more important than required. This minimizes the risk amplitude in a more
significant manner, but the cost due to activated safeguards is not optimized.
This means the risk management module will activate security safeguards that
are not necessarily required for protecting the VoIP infrastructure, and will in-
troduce an additional delay in the service functioning. The difference between
the B2a and B2b error terms has not been sufficient to modify the selection of
security safeguards in these two scenarios. We can observe a similar behavior
with the second subfigure 4(b), while we expected the opposite phenomenon: a
risk amplitude less important with scenario A than with scenarios B1. In this
case, the cost of the security safeguard is decreased (negative direction) of up
to 10%. The considered safeguard seems less expensive than its effective cost,
this leads once again the risk management algorithms to select a more impacting
safeguard than effectively required with respect to the potentiality of the threat.
A lower risk amplitude with the two scenarios B1a and B1b does not mean the
performance results are better, but that the risk management solution has un-
derestimated the cost of the safeguard, which may generate a significant impact
on the service performance. Another interesting question is to determine to what
extent the econometric feedback mechanism impacts on the service performance.
We have therefore evaluated in a second series of experiments, both the service
availability and the total cost of security safeguards. We have plotted on figure 5
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Fig. 5. Impact of feedback on service availability

a diagram representing these two metrics in a normalized manner (availability
values and cost values estimated between 0% and 100%), for the three previously
mentioned scenarios A, B1 and B2. We observe on this diagram that scenario A

offers a lower effective cost due to security safeguards in comparison to scenarios
B1 and B2. It also shows the best service performance with a value of up to 86%,
while scenarios B1 and B2 provide respectively a value of up to 77% and up to
65%. Indeed, the VoIP infrastructure is overprotected in these two last scenar-
ios because risk model parameters are not properly configured, which argues in
favour of our refinement mechanism. It is also important to evaluate how the
number of available security safeguards may impact on the service performance
when the economic feedback mechanism is activated. We have quantified the ser-
vice performance while varying the number of safeguards from 5 to 20. The risk
management system behavior depends on the distribution of cost values on the
set of security safeguards. The more the costs of two consecutive safeguards is
important, the more the runtime risk management is sensitive to the error term.
If we consider a distribution of costs sufficiently homogeneous amongst security
safeguards, then a high number of security safeguards reduces the cost difference
between two safeguards. As a consequence, the runtime risk model less tolerate
on average the error term in that case. In the same manner, a low number of
security safeguards increases the interval between the costs of two safeguards,
and then reduces on average the sensitivity with respect to the error term value.

7 Related work

A few work really address risk management and its runtime instantiation in the
area of VoIP infrastructures. Related work mentioned in section 2 only cover
the risk management process in a partial manner, and do not integrate any risk
model. This can be explained by the complexity to establish and configure risk
models. Risk management is however a key requirement for protecting efficiently
such a critical service. We have proposed in [4] a strategy capable to identify
and treat risks at runtime in a VoIP environment. This solution is based on the
extension of the Rheostat risk modeling and permits to prevent SPIT attacks
based on a set of safeguards. We have observed in that context that the pa-
rameterization and maintenance of a risk model is expensive. We have therefore



design our self-configuration strategy in order to address this issue. The man-
agement of unwanted communications, in particular SPIT, has been extensively
studied because of its importance for the future of VoIP. Quittek et. al. [15]
apply hidden Turing tests on the caller side and compare their results to typi-
cal human communication patterns. For passing these tests, significant resource
consumptions at the SPIT generating side would be required which contradicts
the spammer’s objective of placing as many SPIT calls as possible. VoIP SEAL
[16] implements a two-stage decision process: the first stage contains modules
which analyze a call only by looking at information which is available before
actually answering the call. The second stage consists of modules which actually
interacts with the caller or the callee to refine the detection. Since the second
stage modules introduce some inconvenience, a scoring system is deployed at
the first stage to determine if they will be used or not. Rather than Turing
tests, other modules include white/black list, simultaneous calls, call rate, and
URI’s IP/domain correlation. Finally, the end-user feedback is taken into ac-
count if the SIP-client is instrumented for that. This work is the most similar
to our work but does not explicitly propose a risk model. The end-user feed-
back could be easily integrated into our self-configuration schema. A survey of
protection techniques against SPIT is given in [17]. The authors argue in fa-
vor of combining complementary techniques, which is fully in coherence with
our dynamic solution and its automation. More elaborated econometric tech-
niques [18] could be considered to instantiate our self-configuration approach,
in particular techniques such as FFNN (Feed Forward Neural Network) and
SVR (Support Vector Regression) [19].

8 Conclusions and Future Work

VoIP networks are exposed to multiple security threats, as they are less confined
than traditional PSTN networks. Protection mechanisms are available, but their
activation in such a critical environment may induce a signification deterioration
of the service performance. Applying risk management in VoIP infrastructures
is therefore a key requirement for protecting VoIP communications while main-
taining the service usability. In that context, we have previously shown how
the Rheostat runtime risk model can be extended to support risk management
in VoIP infrastructures. We have also shown how the parameterization of such
risk models can be difficult to maintain. In order to address this issue, we pro-
pose in this paper a self-configuration strategy for supporting risk management
in VoIP networks. The objective is to dynamically adapt and refine the risk
model parameters based on a econometric feedback mechanism. We have first
remained the challenges of runtime risk management for such critical environ-
ments. We have then describe our self-management schema and shown how it
can be deployed into a SIP-based architecture. We have mathematically detailed
the econometric feedback mechanism. We have evaluated to what extent our so-
lution can integrated into our implementation prototype. We have evaluate the
performance of our approach through a set of simulation experiments. In par-
ticular, we have quantified the impact of feedback on risk amplitude and service



performance. The error term due to poorly configured models can limit the ben-
efits of risk management and induce an additional overhead. Our automation
permits to reduce the complexity of risk model parameterization and to perform
a better treatment of risks in VoIP networks. As future work, we are interested
in experimenting and evaluating alternative econometric techniques for adjust-
ing our runtime risk models and improving the selection of security safeguards.
We are also planning to investigate the deployment of our risk management ap-
proach into decentralized environments such as VoIP infrastructures exploiting
the P2PSIP protocol.
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