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Abstract. Current monitoring of IP flow records is challenged by the
required analysis of large volume of flow records. Finding essential in-
formation is equivalent to searching for a needle in a haystack. This
analysis can reach from simple counting of basic flow level statistics to
complex data mining techniques. Some key target objectives are for in-
stance the identification of malicious traffic as well as tracking the cause
of observed flow related events. This paper investigates the usage of link
analysis based methods for ranking IP flow records. We leverage the well
known HITS algorithm in the context of flow level dependency graphs.
We assume a simple dependency model that can be build in the context
of large scale IP flow record data. We apply our approach on several
datasets, ranging from ISP captured flow records up to forensic packet
captures from a real world intrusion.

1 Introduction

The monitoring of large network traffic volumes is limited by the existing tech-
nological solutions. Monitoring high speed 40 Gbps links is challenged by the
already existing work charge on the routing data plane. One of the few activ-
ities that can be done is limited to recording and analyzing flow records. IP
flow records are simple information records capturing the source, destination,
the associated ports, the traffic volume and additional time stamps and flow re-
lated status. The natural question is how should these pieces of information be
processed. On one side, the number of flow records is huge even for small sized
edge routers, and on the other side it’s not obvious what information should be
analyzed. We have considered this research question in this paper. The main
contribution of our paper is twofold: we propose a simple dependency model for
IP flow records and show how link based analysis can reveal interesting flow
events. We will use in this paper the words IP flow records and NetFlow records
interchangeably. We have validated our approach using the proprietary NetFlow
data format, but our method is general and can be applied to any flow record
format. We aimed in this paper at identifying relevant flow records, where by
relevant we understand the records that have generated ulterior network activity.
We don’t consider that a flow matching a specific signature (application level or
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based on the involved IP addresses) is relevant per se, but we do consider that
flows, having triggered an important follow-up network activity, are relevant.
The notion of triggering is linked to a potential dependency relationship among
flow records. The best illustration for this is the case of an attacker breaking in
over an SSH account. While the SSH related flow traffic is in general not rele-
vant, in this case this could be the case if follow-up activities of the compromised
host will be observed: large scale network scanning, rootkit downloading, massive
SMTP traffic or botnet membership. For scoring such relevant IP flow records
and understanding the most active activities on the network, our approach con-
sists of two major steps. Firstly, with a simple yet efficient dependency model, we
discover the causality dependency between NetFlow records. Then, to facilitate
analyzing the overwhelming scale of NetFlow dependency graph, we automati-
cally select the most relevant NetFlow records using the link analysis algorithm
HITS [12]. To the best of our knowledge, this is the first attempt to apply HITS
algorithm from the web search and bibliometrics domain, in the field of network
monitoring. The experiment result shows that HITS algorithm suits well the
task of ranking most relevant flows from the perspective of network anomaly
detection, bandwidth usage, etc.

The remainder of the paper is organized as follows. Section 2 provides an
overview of our NetFlow ranking architecture. Section 3 presents the background
of NetFlow and NetFlow collecting approaches. We explain and discuss our Net-
Flow dependency discovery engine in section 4, and in section 5, we rank flow
records using HITS algorithm and interpret the results. We validate our flow
ranking technique with various data sets in section 6. Section 7 summarizes the
related work and section 8 concludes the paper and talks about future work.

2 High-level Architecture of FlowRank

Before showing the design and implementation details of each component, we
provide a high-level architecture of our NetFlow ranking system. As illustrated
in Figure 1, our ranking architecture consists of three components: NetFlow col-
lector, dependency discovery engine, and rank engine. NetFlow collector collects
NetFlow records either through border routers or dedicated probes. The De-
pendency discovery engine discovers dependencies among NetFlow records. The
intuition of the dependency discovery is that if NetFlow A triggers NetFlow B,
then destination address of NetFlow A matches source address of NetFlow B.
NetFlow dependencies provide a global view of causalities among network traffic,
thus is a valuable tool to detect the root cause of abnormal network traffics. To
select the most dependent NetFlow records among the huge amount of depen-
dencies discovered previously, rank engine ranks the relative importance of each
NetFlow record using link analysis algorithm HITS [12]. Experiment results in
the section 6 show that HITS is indeed appropriate for this task.
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Fig. 1: Flow Rank Architecture

3 NetFlow Collection

3.1 What is NetFlow

NetFlow is a proprietary protocol for collecting IP flow packets information on
networks. Though some variant versions exist, a NetFlow record summarizes a
network traffic flow as its source and destination IP addresses, source and des-
tination ports, transportation protocol as well as the traffic volume transmitted
during this flow session. NetFlow operates by creating new flow cache entries
when a packet is received that belongs to a new flow. Each flow cache keeps
track of the number of bytes and packets of similar traffic during certain period
of time until the cache expires, then this information is exported to a collector.
NetFlow provides a powerful tool to keep track of what kind of traffic is going
on on the network, and are widely used for network monitoring. Most vendors
support different flavors of similar flow monitoring approaches and a common
standardization is done within the IETF IPFIX working group [6].

3.2 NetFlow Collection

One can collect NetFlow records either directly through border routers or us-
ing stand alone probes such as taps. Router based approaches require no extra
hardware installation, but suffer from inaccurate report and degraded routing
performance in case of traffic peaks. On the other hand, stand alone probe ap-
proaches provide reliable NetFlow record reports even in case of large volume of
traffic, but require additional hardware installation in every link that needs to
be observed and cause extra cost for maintenance.
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4 Dependency Discovery

Causalities among netflow records contain valuable information for detecting
the root cause of attacks as well as the most critical services that other services
require to function properly. We assume that a NetFlow record depends on the
other if the former is triggered by the latter. In our current model, we consider
NetFlow record A causes NetFlow records B if after observing flow A arrives at
a host H, within a predefined time window, we observe also flow B going out
of the same host H. Figure 2 illustrates an example of dependencies between
two flows. Figure 2a shows a message sequence chart in which there are three
Hosts A, B, and C. After observing FlowAB coming from HostA to HostB, we
observe FlowBC coming from HostB to HostC.

Flow AB

Flow BC

Host A Host CHost B

(a) NetFlow sequence chart

FlowBC src:B dst:C

FlowAB src:A dst:B

(b) NetFlow dependency graph

Fig. 2: Flow dependency example

Two nodes in the dependency graph as shown in Figure 2b represent two Net-
Flow records. Each node is labeled with NetFlow record ID (labeled as rcdID),
source IP and source port (labeled as src) and destination IP and destination
port (labeled after dst). Record IDs suggest the time order in which the NetFlow
records are observed. Small ID is observed earlier. That is, NetFlow 1 is observed
before NetFlow 2. In addition, the destination IP address of NetFlow 1 matches
the source IP address of NetFlow 2, according to our dependency model, we
assume flow 1 triggers flow 2, in other words, flow 2 depends on flow1. We use
a directed edge pointing from flow 2 to flow 1 to denote a dependency of flow 2
on flow 1.

After aggregating all the NetFlow causalities within a time window, our de-
pendency model is able to discover causalities of a flow which depends on the
arrival of many other incoming flows. The same holds for discovering all the
successive NetFlow records of a NetFlow record which triggers many outgoing
NetFlow records. This model fits our objective in terms that it reveals the in-
depth causal connections among NetFlows on a network level.
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While the simplicity and efficiency of this model suits well for analyzing net-
work traffic online, the accuracy of discovered dependencies can be improved us-
ing more advanced techniques. Previous studies such as Barham [2] and Reynolds
[15] have applied probability approaches to improve the accuracy of dependen-
cies discovery, but computation overheads made online approach infeasible. Our
experiments show that our model can achieve adequately acceptable results in
identifying the most critical NetFlow records

5 Relative Importance Rank Engine

Rank Engine ranks the relative importance of NetFlow records based on the
dependencies discovered by dependency discover engine using link analysis algo-
rithm HITS [12].

5.1 HITS algorithm

Given a dependency graph, HITS ranks the relative importance of each node
with two values: authority value and hub values. Authority value indicates the
importance of a node in terms of how many other nodes are dependent on it.
Hub value indicates how many important nodes a node points at, that is how
many other nodes it depends on. Authority value and hub value are computed in
a recursive manner. More precisely, given an n*n adjacency matrix A generated
from a dependency graph of n nodes, where entry (i, j) is 1 if node i depends
on node j, and 0 otherwise. With an all one vector as the initial value, HITS
computes authority value ai and hub value hi for node i using the following
equations iteratively.

a
(t+1)
i =

∑
j:j−>i

h
(t)
j (1)

h
(t+1)
i =

∑
j:i−>j

a
(t+1)
j (2)

where j− > i indicates node j depends on node i. In other words, in round
(t + 1), authority value of node i is the sum of round t hub values of the nodes
that pointing to node i and hub value of node i is the sum of round t+1 authority
values of the nodes that node i points at. Rewriting the above equations in the
form of authority vector av and hub vector hv, we can get:

av(t+1) = AThv(t) = (ATA)av(t) (3)

hv(t+1) = Aav(t+1) = (AAT )hv(t) (4)

With normalization to unit length at the end of each iteration, authority and
hub vectors converge at the principle eigenvector for matrix ATA and AAT [13].
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5.2 Rank NetFlow records with HITS

Fed with the adjacency matrix of NetFlow dependency graph, HITS algorithm
ranks each NetFlow record with an authority value and hub value. According to
the ranks, we can classify NetFlow records into four categories: low authority and
low hub value records, high authority and low hub value records, low authority
and high hub value records, and high authority and high hub value records.

A low authority and a low hub value indicates that the NetFlow record
is not well connected with other flows in the dependency graph, thus of little
significance in terms of causal evidence. This does not necessarily mean that
such a record is benign. It might be highly nefarious, but at least it does not
trigger successive network activities.

A high authority value and low hub value characterize a flow that many other
flows are dependent on, but which on its turn have no many dependencies on
other flows. Such flows are prime candidates for representing the root cause and
primordial events in case of malicious or suspicious usage.

A low authority value and a high hub value for a flow record will indicate
a flow that did not trigger important follow up network activity, but has many
dependencies on other flows. Such flow records might indicate either a flow that
ended a set of activities or a potential false positive.

Finally, we might have flow records having both high authority value and a
high hub value. The associated flows correspond to network traffic having had
both important follow up network activities and depending on many previous
flows. These flows should in principle correspond to important traffic.

6 Experiment and Evaluation

The key experiments that we did perform address the following questions:

– Can we use our method as a forensic tool? That is, given a packet capture
for which we know the real evidence (using a manual annotation) can we
reveal the important flows using our method?

– How many flows are ranked in the four categories (low and high authority
value, low and high hub value) for real network traffic?

We have validated our approach on several scenarios, among which we will
highlight one whose network traffic are publicly available [14]. These traces were
captured on compromised honeypot, deployed by the honeypot project 3.

6.1 Attack description

The network schema of this attack scenario is shown in Figure 3. The compro-
mised machine is located on a local area network, with IP addresses ranging
from 172.16.1.1 to 172.16.1.250. An attacker (IP address 211.180.209.190) per-
forms a simple operating system fingerprinting in order to learn the operating

3 www.honeynet.org
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system of 172.16.1.103. This is is done using a telnet: no user name, nor pass-
words are provided, the attacker aims just at getting the welcome banner of the
remote host. Next, the attacker scans several machines for the portmap service.
Several hosts run this service, among which the attacker can find the honeypot
(172.16.1.108). These reply to the attacker. The attacker requests the port num-
ber of the RPC service stat. Her main objective is to launch an exploit against a
vulnerable version of the [7] service. The honeypot is vulnerable to this exploit
4 and the attacker is able to compromise it. The result consists in a remote shell
being opened on the TCP port 39168. Using this shell, the attacker can inter-
act with the compromised machine. She will download a rootkit using the file
transfer protocol. The server is 193.231.236.41 and is located in Romania. Addi-
tionally, the attacker sends two emails. These are the connections going to the
SMTP servers (216.136.129.14 and 209.61.188.3). To summarize this attack: An
attacker uses at least two different step stones to scan and attack the network.
Once the attack is successful, the attacker will download additional malware
(from another location repository) in order to maintain her privileges and access
rights.

6.2 Experimental result

We extracted 48 NetFlow records from the packet capture. Table 2 summarizes
the associated NetFlow records. Figure 4 illustrates dependencies among the
NetFlows. Each node stands for a NetFlow record labeled with the associated
NetFlow ID. Due to the page space limitation, we labeled each node with a
NetFlow record ID number instead of the detailed NetFlow record tuples. Details
of selected high ranking NetFlow records can be found in Table 1. It also lists
the ranking results after running HITS based on the dependencies graph. The
cumulative histogram shown in Figure 5a displays the ranking score distributions
of the NetFlow records collected from honey pot attack scenario.

6.3 Rank distributions on backbone traffic

We have looked at the statistical distribution for both authority value and hub
value over several datasets obtained from a large European Internet Service
Provider. The table 1 summarizes the properties of the underlying flows. We did
not consider larger datasets; because we aimed at comparing the distribution
with respect to the honeypot scenario. Figures 5 and 6 address this comparison.
Note that in order to expose the most important flows, we scale the authority
and hub values of each dataset up so that the top ranked authority and hub
values ranked as ones. We don’t have full packet captures for the ISP originated
datasets, so we don’t really know to what extent the traffic was malicious, but
the ranks are distributed similarly. This is not the case for the honeypot case,
where a larger quantity of flows do have significant hub values when compared
to the authority values.

4 http://packetstormsecurity.nl/0008-exploits/statdx.c
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172.16.1.103

Victim
172.16.1.108

Attacker
211.180.209.190

Attacker
211.185.125.124

Mail Server
216.136.129.14

Mail Server
209.61.188.33

FTP Server 
193.231.236.41

2. Portmap
3. Stat Call

4. Buffer overflow attack

5. Rootkit download

6. Send email

7. Send email

1. Telnet

Fig. 3: Attack scenario
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Fig. 4: NetFlow dependencies

Table 1: Attack activities
step flowID attack name src IP: port dst IP: port packet# bytes# authority

score
hub
score

1 42 Telnet 211.180.229.190:3329 172.16.1.103:23 40 2856 0 0

2 12 Portmap 211.185.125.124:790 172.16.1.108:111 4 336 1 0

3 13 Stat call 211.185.125.124:791 172.16.1.108:931 6 6708 1 0

4 15 Buffer overflow 211.185.125.124:4450 172.16.1.108:39168 168 15642 1 0

5 16 Rootkit download 172.16.1.108:1026 193.231.236.41:21 74 6318 0 0.48

6 21 Send email 172.16.1.108:1028 216.136.129.14:25 48 5562 0 0.89

7 22 Send email 172.16.1.108:1029 209.61.188.33:25 40 3680 0 0.89
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(a) honey pot attack scenario

authority value distribution

(b) ISP dataset

Fig. 5: NetFlow ranks cumulative histogram

In order to investigate the distribution of HITS ranking scores, we collected
6 data sets, each of which spans a time window of 1 minute. Figure 7 illustrates
the proportion of zero ranked flow records, we refer zero ranked flow as flows
with both zero authority value and hub value. The experiment shows that as
the number of NetFlow records increases, the proportion of zero ranked flow
records also increases, thus the number of non-zero ranked flow records stays
within a manageable size for human interpretation. This shed a light on using
our technique as a forensic tool for mining essential activities out of large scale
of raw data.

Table 2: Flow Statistics
attack scenario ISP ds 0 ISP ds 1 ISP ds 2 ISP ds 3 ISP ds 4 ISP ds 5 ISP ds 6

Total Flows 48 658.1k 26 91 141 229 410 11.3k

Total bytes 1.2M 898.8M 141M 378.6M 369.6M 145.3M 3924M 124.3M

Total packets 2.3k 2.0 M 162k 468k 477.3k 216.3k 5.29M 214.8k

avg bytes/sec 19.0k 3.0M 2.35M 6.3M 6.15M 2.4M 65.4M 2.1M

avg packet/sec 0.036 6.8k 2.7k 7.8k 8.0k 3.6k 88.1k 3.6k

Destination Ports # 14 63879 21 72 106 140 313 8.9k

Distinct Source IP # 14 69310 16 58 91 154 243 1.6k

Distinct Destination IP # 14 70946 15 57 94 136 232 3.1k

Average Packets/Flow 48.3 3.04 5.8k 5.0k 3.3k 948.7 12.9k 19.0

Average Bytes/Flow 25.6k 1.37k 5.0M 4.0m 2.6m 637.4k 9.60M 11.0m
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Fig. 6: Rank score distributions

Fig. 7: Proportion of zero rank NetFlow records distributions
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7 Related Work

Discovering dependencies among network traffic has been extensively studied
previously in the network management community [10, 15, 11, 1, 4, 8, 9, 2, 5]. Our
approach differs from the previous study mainly in that previous study focuses
on discovering host level and application level dependencies in order to facili-
tate fault allocation, reconfiguration planning, and anomaly detection, while our
objective is to reveal causal dependencies among NetFlows to detect abnormal
intense activities online as well as the critical hosts that most other hosts require
to function properly.

Previous works [9] [2] [5] [15] on dependencies discovery applied various statis-
tics and probability techniques to reduce the false dependencies. These works are
complementary to our model. In our current model, we have chosen a simple yet
efficient model due to its better online performance to deal with the large amount
of NetFlow records.

Sawilla [16] ranked attack graphs using pagerank [3], S Wang [17] ranked Net-
Flow record with pagerank. While both are link analysis algorithms, pagerank
ranks nodes on a dependency graph based on their in-degree and HITS ranking
also reflect out-degree as hub values. Considering out-degree of NetFlow records
helps to reveal flows with destination address that are targets of large amount
of network traffic, the ultimate goal of a series of attack activities for example.

8 Conclusion and Future Work

We have addressed in this paper a new method to detect relevant IP flow records.
Our approach leverages the HITS algorithm to search for relevant nodes in de-
pendency graphs. The dependency graphs are build by taking into account the
potential causality among several flow records. Albeit simple, such a model can
capture causal dependencies, where for instance one flow is the trigger for a
large set of follow up network activity. We have applied our method on several
datasets. The first dataset concerned a publicly available network capture from
a forensic challenge and our method correctly identified the relevant malicious
IP flows. We have also validated our method on a large IP flow capture from an
ISP border router in order to assess its limits in terms of data volume.

We plan to extend our quantitative analysis for a larger set of different traffic
scenarios, like for instance botnet detection. The current problem that we face
is related to the baseline of an analysis method. Since our approach works on
captured netflow records, we have no real evidence (complete packet captur) to
compare with. The usage of full packet capturing is for legal reasons impossible.
We are also investigating the potential application to a larger class of security
events that include firewall logs, IPS data and syslog events within a larger
context of event correlation and root cause analysis.
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