
Autonomous Resource-Aware Scheduling of
Large-Scale Media Workflows

Stein Desmet, Bruno Volckaert, and Filip De Turck

Department of Information Technology(INTEC) - IBCN, Ghent University - IBBT,
Gaston Crommenlaan 8 bus 201, B-9050 Gent, Belgium,

stein.desmet@intec.ugent.be

Abstract. The media processing and distribution industry generally re-
quires considerable resources to be able to execute the various tasks and
workflows that constitute their business processes. The latter processes
are often tied to critical constraints such as strict deadlines. A key issue
herein is how to efficiently use the available computational, storage and
network resources to be able to cope with the high work load. Optimizing
resource usage is not only vital to scalability, but also to the level of QoS
(e.g. responsiveness or prioritization) that can be provided. We designed
an autonomous platform for scheduling and workflow-to-resource assign-
ment, taking into account the different requirements and constraints.
This paper presents the workflow scheduling algorithms, which consider
the state and characteristics of the resources (computational, network
and storage). The performance of these algorithms is presented in detail
in the context of a European media processing and distribution use-case.

1 Introduction

In the audiovisual industry, the resources required to perform various tasks such
as editing and processing of video and audio, are generally quite considerable,
not to mention expensive. This is not only true for computational resources
but for storage resource and communication resources as well. Converting video
material from one format to another can easily take several hours, even on today’s
multi-core servers. Raw Standard Definition material used during the editing
process has bitrates of 60Mbps or more, while HD material easily quadruples
these bitrates. This obviously creates high demands on storage and network.
Especially for independent film makers, these resource requirements and their
cost might pose an obstacle.

The Independent Films In Progress (IFIP) [1] project designs a platform
aimed at the media industry, especially the independent film. Its goal is to
provide a framework supporting the development of independent productions.
Amongst others, it provides a platform for users to automate and submit pro-
duction processes. The platform offers the possibility for users to submit a series
of tasks - e.g. video transcoding or CGI rendering - or workflows they want to be
executed within a certain budget and timeframe. The platform autonomously lo-
cates appropriate resources for the execution of these workflows, and determines
the most appropriate start time of the workflows, taking all their constraints

Video Editor

CGI Artist

Editor

IFIP Portal Scheduler Workflow Engine
Transcoder

Transcoder

Storage

Storage

IFIP network

Abstract workflow

description

Specific workflow

description (e.g. BPEL)

Start of a workflow at

the most appropriate

time

Fig. 1. Overview of the IFIP platform. The scheduler locates resources for the work-
flows submitted at the portal, and launches them at an appropriate time.

into account. This is illustrated in Figure 1. A user submits a workflow at the
IFIP portal, which forwards the flow to the scheduler. The scheduler examines
the workflow and the user’s constraints defined in the metadata. For each task
in the workflow, the scheduler locates resources hosting the required services or
applications - taking into account both the user’s demands and the current state
of the infrastructure - and adds the task-to-resource mapping to the workflow
description. Additionally, an optimal starttime for the workflow is determined
as well. At that starttime, the scheduler submits the workflow description to the
workflow engine, which subsequently executes the workflow.

Considering such a multi-client distributed media processing platform, an
efficient allocation of all resources - computational, storage and communication
- is of the utmost importance for being able to meet the users’ requirements and
offer high Quality-of-Service such as responsiveness or budget considerations.
Efficient resource usage also results in the ability to handle higher loads. This
optimal resource selection is not only location-based (which resource to use), but
also time-based (when to use the resource). This scheduling problem is known to
be NP-hard [2]. There is already a substantial amount of research on the topic of
scheduling tasks in grids and other heterogeneous distributed environments [3–5].

However, media-oriented cases, including the one presented here, have spe-
cific, highly data-intensive and time-constrained demands, to which the workflow-
to-resource mapping must be specifically tuned. The network in a media environ-
ment for example requires special consideration. Due to typical network packet
patterns inherent to media transfers, media traffic turns out to behave differ-
ently from regular IT traffic. This makes unreliable throughput, packet loss and
lost connections due to oversubscription far more likely than in normal situa-
tions [6, 7].

The MediaGrid framework (and accompanying MediaNSG simulator) [8] is
aimed at employing grid technology in a media production and distribution en-
vironment. The IFIP project builds further on this framework, and the research
work performed for the GEISHA project [7], the predecessor to the IFIP project.
The GEISHA project focused on the actual implementation of a service oriented
architecture in media grids, and the associated challenges.

The research project GridCast [9] is undertaken by the British Broadcasting
Company (BBC) and the Belfast e-Science Center, and also aimed at developing
a media grid. However, it is intended on the specific BBC topology, whereas
we aim to provide a general framework. Furthermore, scheduling in GridCast is
mainly focused on scheduling data transfers only.

Another project aimed at media oriented grids is MediaGrid.org [10], an open
standards group for the development of a grid platform specifically designed for
digital media. Other projects include mmGrid [11], a middleware for supporting
multimedia applications in a grid environment and Parallel-Horus [12], a clus-
ter programming library for applications in multimedia grids. However, these
projects mainly focus on design and implementation of media grids, rather than
the problem of making efficient use of available grid resources.

This paper presents a number of distinct algorithms to schedule workflows
to resources in a media environment. The heuristics presented are an adaption
of the list scheduling technique [13] and use an offline - sometimes also referred
to as static - scheduling approach. This refers to the time at which scheduling
decisions are taken. In the offline approach, information regarding the state of all
resources and every workflow is assumed to be known. This is a valid approach,
as users submit their workflows at the portal, and expect results by a certain
time, allowing the scheduler to periodically perform scheduling of the pending
workflows. For example, each workflow that needs to be executed the next day is
known, so scheduling decisions can be made overnight. Online scheduling on the
other hand schedules workflows ‘on-the-fly’ when they are submitted, based on
the current system load. This increases responsiveness, but leads to less efficient
resource usage, as the global overview of the system is reduced.

This article is organized as follows. Section 2 describes the problem in greater
detail and defines the model used. Section 3 gives an overview of the designed al-
gorithms, while Section 4 thoroughly evaluates these algorithms. Finally, Section
5 presents directions for future research.

2 Problem Model Description

We assume k workflows {w1, w2, . . . , wk} competing for resources, whose submit
time and deadline are known as well as their maximum allowed budget. Each
workflow consists of a set of inter-dependent atomic tasks {t1, t2, . . . , tn} which
are represented in a Directed Acyclic Graph (DAG). The edges between nodes
represent task dependencies, and a node either represents a task or a control
structure such as a decision or a parallel construct. The particular execution
path that will be chosen by a decision construct is not known until runtime, i.e.
workflows are non-deterministic. By nature, a loop construct is not supported
by a DAG. Loops can be handled by for example unfolding or peeling them as
described in [14].

Each task requires a specific service to execute, such as for example a trans-
coder or a CGI renderer. It retrieves its input data from a data repository, and
stores its output data on a data repository. There is no direct data exchange be-
tween tasks, unless through an intermediary data repository. Tasks can retrieve

and store their data either streaming or non-streaming. Each task requires a
predefined processing time on a standard processor.

The network consists of a set of nodes, interconnected by a number of edges.
These edges represent network connections and are considered to be unidirec-
tional. In other words, to create a full duplex link, two edges are needed. Links
offer a certain bandwidth at a certain use cost. A node represents a network
node, to which a Computational Resource (CR) or Data Resource (DR) can be
attached. The routing between two nodes is known in advance and is assumed
to be fixed.

Computational resources offer one or more service types - e.g. transcoding or
CGI rendering - at a certain execution speed, expressed in relation to a standard
processor. Data Resources are the data repositories and can be used for both
data retrieval as for storing output data. Similar to Computational Resources,
Data Resources have a particular read speed and write speed, and an associated
use cost.

Every task must make advance reservations on each resource (computational,
data, network) it uses. In other words, the task reserves exclusive use of the re-
source during a certain period. Note that this reservation system also helps to
avoid the earlier mentioned network oversubscription danger. Rather than re-
serving each resource for the entire duration of a task, we have chosen to reserve
them only when they are actually needed (i.e., a Data Resource used for data re-
trieval is only reserved for the time it takes to actually read the input, not for the
whole input - processing - output cycle). This improves resource usage, but com-
plicates the reservation procedure, as dependencies between various reservations
need to be taken into account. Furthermore, for Data Resources a distinction is
made between reservations for reading and writing. It is assumed that existing
files are never overwritten, so reading and writing from the same Data Resource
can occur simultaneously.

Furthermore, it is required that every resource can throttle its speed. Suppose
a Computational Resource is able to perform a task at a certain speed, but the
Data Resource is not able to supply the input data at that speed. It is then
necessary for the Computational Resource to slow down until both speeds match.

3 Scheduling Algorithm Details

The scheduling algorithm’s aim is to find suitable resource triplets (i.e., input
Data Resource, Computational Resource and output Data Resource) with suf-
ficient network interconnections for each workflow activity. Resource intercon-
nection characteristics are equally responsible for workflow execution times (and
cost) and must be taken into account, in order to avoid creating network bottle-
necks.

Determining a suitable set of reservations for a resource combination is no
trivial task. Reservation length depends on resource speed and task require-
ments, but also on whether or not the task is streaming its data. Streaming
input requires equal duration of input retrieval and task execution, as we as-
sume input data will be streamed during the full time spent on processing. As

Time

DR 1

CR

DR 2

Link

Link

T1,1

T1,1

T1,1

T1,1

T1,1

(a) No streaming

Time

DR 1

CR

DR 2

Link

Link

T1,1

T1,1

T1,1

T1,1

T1,1

(b) Input and out-
put streaming

Time

DR 1

CR

DR 2

Link

Link

T1,1

T1,1

T1,1

T1,1

T1,1

(c) Input streaming

Time

DR 1

CR

DR 2

Link

Link

T1,1

T1,1

T1,1

T1,1

T1,1

(d) Output stream-
ing

Fig. 2. Resource reservation order according to streaming or non-streaming nature.

mentioned earlier, this may require throttling to match both resources’ speeds,
thus ultimately influencing reservation lengths. This obviously creates depen-
dencies between the reservations of a single task. Furthermore, reservations need
a specific order, depending on the nature of the input and output, as illus-
trated in Figure 2. The figure shows the different reservation orders that must
be respected when dealing with streaming/non-streaming input/output data of
individual workflow activities.

Apart from these task-level reservation restrictions, there are also workflow-
level restrictions on reservations. Tasks can only execute when all parent tasks
have finished. Overlap of reservations on the same resource is not allowed, but
provisions are made to support workflows with alternate execution paths. As
the actual execution path is not known until runtime, reservations of tasks in
alternate paths are allowed to overlap. Only one set of reservations will effectively
be used at runtime.

The algorithms presented here are based on the List Scheduling technique
[13]. The general outline is shown in Listing 3.1. The heuristic is initialized by
adding the root nodes of every workflow to the list Q. Subsequently, a priority is
assigned to each task in Q according to a certain strategy, discussed in Section
3.1. The task with the highest priority is selected for assignment and removed
from Q. The list Q is somewhat similar to a priority queue, but the priorities
of its content need to be re-evaluated in each iteration of the algorithm, as the
priority of an unassigned task is usually based on that task’s properties, the
tasks that have already been assigned, and the associated system loads. The
latter two change after every iteration of the algorithm.

The selected task is then assigned to a triplet of resources and network inter-
connections according to certain criteria. Suitable reservations need to be made
on the selected resources, taking into account existing reservations and inter-
reservation dependencies. Different approaches can be considered to select the
resources and reservations, presented in Section 3.2.

If no acceptable resource combination can be found for the selected task be-
cause each possible combination would violate a constraint, action is undertaken
to handle this situation. As with deploying tasks and assigning scores, multiple
approaches can be considered (Section 3.3).

Algorithm 3.1: Solve(Workflows, Resources)

Q, Processed← []
for each wi ∈Workflows
do Q← Q + root(wi)

while Q 6= []

do



HighestPriority ← 0
CurrentTask ← null
for each tj ∈ Q

do


Priority ← getPriority(tj)
if Priority > HighestPriority

then

{
HighestPriority ← Priority
CurrentTask ← tj

Q← Q− CurrentTask
Result← assign(CurrentTask, Resources)
if Result = Constraint V iolation
then HandleConstraintViolation(CurrentTask, Q, Resources)

else


Processed← Processed + CurrentTask
for each tj ∈ children(CurrentTask)

do

{
if ∀tk ∈ parents(tj) : tj ∈ Processed
then Q← Q + tj

Finally, the children of the selected task are considered for insertion in Q,
but only if all of a child’s parent tasks have already been assigned to resources.
This is necessary to preserve the execution order of the workflow.

This entire process is repeated until there are no more tasks left in Q.
In this discussion, we focus on two optimization objectives, the makespan of

a workflow - its entire execution length - and the execution cost - the total cost
for using the resources. Task deadlines and budget requirements are considered
to be strict i.e. violating them means the workflow cannot be executed.

3.1 Determining task importance

The following strategies to assign priorities to tasks in Q have been designed.
Random (RC) Assigns random priorities to tasks.
ClosestConstraintViolation (CCV) This algorithm assigns higher priority

to tasks closer to violating a workflow constraint, i.e. are closer to their deadline
or budget. This naturally depends on the tasks of the workflow that have already
been assigned. Giving priority to workflows closer to violating a constraint may
prevent these workflows from violating that constraint, as they gain precedence
for using the available resources.

ClosestRelativeConstraintViolation (CRCV) This algorithm is similar
to the previous one, but the time or budget remaining values are first normalized,
and priority is given based on these normalized values. In other words, a task
whose workflow already uses a high percentage of its allowed budget or time
interval, receives priority.

Time

DR 1

DR3

CR2

DR2

CR1

Allowed interval for task

(a) High resource occupa-
tion

Time

DR 1

DR3

CR2

DR2

CR1

Allowed interval for task

(b) Low resource occupa-
tion

Fig. 3. Two different tasks and the current reservations on their available resources

TaskLeastAvailableResourceTime (TLART) This approach considers the
set of available resources (computational, data and network) for a task and the
occupation on these resources. This occupation is evaluated during the time in-
terval in which the task is allowed to execute. Tasks where the average occupation
across their available resources during this interval is higher, receive higher pri-
ority. In other words, tasks whose available resources are already heavily in use
receive priority. Figure 3 shows the available resources and their reservations for
two different tasks. The resources of the task in Figure 3(a) are obviously more
occupied than the resources of the task in 3(b). TLART would consequently give
higher priority to the former task.

TaskMostAvailableResourceTime (TMART) This heuristic is exactly
the opposite of TLART, as it gives precedence to tasks with lower average re-
source occupations. In Figure 3, TMART gives higher priority to the task in
Figure 3(b). This is a somewhat greedy strategy, as tasks that are already known
to have a high probability of finding a suitable assignment are given priority.

3.2 Assigning tasks to resources

The following strategies are available to assign tasks to resources.
RandomInserter (RI) Randomly chooses a Computational Resource able

to process the task and an input and output Data Resource containing the
required data sets. The task is scheduled to start as early as possible, taking into
consideration the current reservations on the Computational, Data and network
resources.

This process of finding reservations for a task is illustrated in Figure 4 for
a task with non-streaming input and output. Figure 4(a) shows the initial situ-
ation. Figure 4(b) shows a first attempt at finding reservations for the current
task. The first free interval on the input Data Resource is valid and an over-
lapping free interval exists for the network link from the Data Resource to the
Computational Resource. An adjacent interval is available on the Computational
Resource and another adjacent interval is present on the network link going from

Time

DR 1

CR

DR 2

Link

Link

Allowed interval for task

(a) Initial situation

Time

DR 1

CR

DR 2

Link

Link

Invalid

(b) First try

Time

DR 1

CR

DR 2

Link

Link

Invalid

(c) Second try

Time

DR 1

CR

DR 2

Link

Link

Valid

(d) A valid solution

Fig. 4. Finding the earliest possible reservations and starttime for a task

the Computational Resource to the output Data Resource. However, there is no
valid interval available on the output Data Resource. Figure 4(c) shows the sec-
ond attempt at finding suitable reservations. The second free interval on the
input Data Resource is again valid, but if reading from the resource is started as
early as possible, then there is insufficient overlap with the free interval on the
network link. The correct solution is shown in Figure 4(d). Figure 4 only shows
the case of a task with non-streaming input and output. The three other cases
are handled differently, as input-, output- and processing time depend on each
other.

SimpleInserterWithDelay (SIWD) The algorithm starts by choosing a
Computational Resource from the available resources, and subsequently proceeds
by choosing an input and output Data Resource for that particular Computa-
tional Resource. The resource is selected in terms of completion time, lowest use
cost or a weighted average. Determining the best resource in terms of comple-
tion time considers both a resource’s speed and occupation, by looking for the
earliest usable time slot on that resource as shown in Figure 5. In other words,
a slower resource might be picked over a faster resource because it has an earlier
time slot available. Reservations are made as described earlier for the random
algorithm.

Note that this strategy considers each resource separately. A Computational
Resource might be selected because it has a very early available time slot, but
this slot is not usable due to reservation dependencies on the other resources,
and the Computational Resource may have been a poor choice. Furthermore, the
practice of first choosing a Computational Resource and then Data Resources
can often lead to suboptimal solutions [15].

Time

CR1

CR3

CR2

execution time on CR Xcurrent reservations

selected resource

(earliest completion time)

Fig. 5. Resource selection by the SimpleInserterWithDelay strategy

Time

DR1

CR1

DR2

Link

Link

completion time t=50

Allowed interval for task

(a) Resource combination 1

Time

DR3

CR2

DR4

Link

Link

completion time t=80

Allowed interval for task

(b) Resource combination 2

Fig. 6. Resource selection by the BestCombinationInserter strategy

BestCombinationInserter (BCI) This strategy improves SIWD by evalu-
ating every possible resource combination of input Data Resource, output Data
Resource and Computational Resource - including the network links involved -
according to the criteria earliest completion time, lowest use cost or a weighted
average of both. To determine the earliest completion time of a task on a partic-
ular resource combination, the earliest possible valid set of resource reservations
must be found on that combination. The procedure for finding this reservation
set is similar to the reservation procedure described for the RandomInserter al-
gorithm (Figure 4). The BCI strategy is obviously computationally considerable
more expensive than SIWD.

BestCombinationInserter is illustrated in Figure 6 which lists two possible re-
source combinations for a task with streaming input and non-streaming output.
While combination 6(a) has slower resources (note that the reservation inter-
val lengths are longer), it is still preferable to 6(b) because it has an earlier
completion time.

TieBestCombinationInserter (TBCI) This approach improves BestCom-
binationInserter by handling tie situations. If two combinations have the same
completion time, then the selection is made based on the total cost of each
combination, and vice versa.

3.3 Handling constraint violations

Only one strategy to handle constraint violation situations is presented here, due
to space limitations, although others are available. The DeleteViolatingWorkflow
(DVW) strategy simply blacklists the offending task’s workflow and removes all
reservations that have already been made for that workflow. This enforces strict
constraints, and violating workflows are removed to free up resources.

Fig. 7. The European network as a result of the COST-292 project

4 Results and Discussion

4.1 Developed simulation environment

Testlab evaluations and field trial implementations require a lot of effort, and
are impractical to perform large-scale testing. Only rigorous testing on large-
scale environments with different setups can provide a true comparison on the
performance of different algorithms. Since building large testbeds is costly, time
consuming and often impractical, simulation is an important aid in the evalua-
tion of algorithms.

Therefore, a simulation framework is designed and implemented in Java to
facilitate the evaluation of the developed algorithms. It is able to simulate any
combination of algorithm, network topology and workflow load. The configura-
tion of network infrastructure, workflow load and the scheduling algorithm to
use are supplied to the simulator in an XML format. Note that the workflow load
supplied to the simulator is a fixed description consisting of a list of workflows
including individual submit times and properties such as deadline and budget.
This allows us to evaluate different scheduling strategies on the same resource
topology and workflow load.

For performance reasons, the simulator performs high-level simulation of net-
work transfers (i.e. not down to packet level but transfer times determined based
on data size, network route and individual network link bandwidth). The simu-
lator logs detail information on all tasks and resources.

4.2 Simulation Setup

The following evaluation setup has been used to obtain the results presented here.
A simulation is run for each algorithm using the same load and network. These
simulations are repeated a number of times with different loads and networks to
obtain a view on the average performance of the algorithms.

The basic network topology is randomly generated starting from the Euro-
pean network shown in Figure 7 but with varying parameters such as available
network bandwidth between nodes, the number, speed and cost of Computa-
tional Resources and the number and data repositories of the Data Resources.

Bandwidth between cities is randomly chosen from 1Gbps, 100Mbps or 10Mbps.
Cities have a number of nodes connected to them - always through 1Gbps links
- on which the Computational and Data Resources reside. Data and Computa-
tional Resources never share a node, and each city has at least one Data Resource
and one Computational Resource. Three classes of Computational resources ex-
ist, executing tasks at 0.5x, 1.0x or 2x reference speed, and for the simulations
presented here, tasks can execute on every Computational Resource.

All workflows are line workflows, i.e. there are no parallel or alternative paths.
Tasks’ input and output data sizes range from 768Mb to 46Gb, according to
a random uniform distribution. Input and output can be streaming or non-
streaming. Processing time depends on the size of the input data and the Com-
putational Resource’s speed. Processing 768Mb data at reference speed takes
120 seconds, while processing 46Gb takes 2 hours at reference speed. A task
has a probability of 0.3 to find its requested input data on a particular Data
Resource. Likewise, it has a 0.3 probability to be able to store its output data
on a particular Data Resource.

Three different scenarios are evaluated, with workflow loads consisting of
respectively 250, 500 and 750 workflows over a 24h interval, with a uniform
distribution arrival. These loads are chosen to stress the available resources and
the algorithms.

4.3 Detailed evaluation results

The results on the following combinations of priority-, assignment-, and con-
straint handling strategies are presented: RC-RI-DVW, CCV-SIWD-DVW, CCV-
BCI-DVW, CCV-TBCI-DVW, CRCV-TBCI-DVW, TLART-TBCI-DVW and
TMART-TBCI-DVW. The abbreviations for the different strategies are defined
in Section 3.

Figure 8(a) shows the average workflow acceptance rates for 20 different runs,
as a function of an increasing workflow load. While these loads may not seem very
high, recall that the execution of a single task can take several hours. Half of the
runs prioritized makespan, the other half budget. The workflow acceptance rate
is the percentage of workflows that can be successfully assigned to resources and
executed. Recall that strict constraints are enforced, i.e. workflows that would
violate a constraint are simply not started.

Figure 8(b) - which shows the average Computational Resource occupation
as a function of an increasing load - serves to illustrate that the decrease in
acceptance rates as loads go up is attributed to a saturation of Computational
Resources, rather than the algorithms. Note that it is very unlikely for resources
to reach full utilisation, due to free time fragmentation on the one hand, and the
dependencies between reservations on different resources on the other hand.

From Figure 8(a), it is evident that randomly assigning workflows to re-
sources results in unacceptable workflow acceptance rates. Likewise, using the
naive SIWD resource assignment strategy produces barely higher acceptance
rates. SIWD is inefficient because it considers Computational and Data Re-
sources independently, which has several implications. Firstly, choosing a fast

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 500 750

d
e
p
lo
ye
d

workflows

RC-RI-DVW

CCV-SIWD-DVW

CCV-BCI-DVW

CCV-TBCI-DVW

CRCV-TBCI-DVW

TLART-TBCI-DVW

TMART-TBCI-DVW

(a) Deployment rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 500 750

u
ti
lis
at
io
n

workflows

RC-RI-DVW

CCV-SIWD-DVW

CCV-BCI-DVW

CCV-TBCI-DVW

CRCV-TBCI-DVW

TLART-TBCI-DVW

TMART-TBCI-DVW

(b) Computational Resource occupation

Fig. 8. Average results over 20 runs including standard deviation, as a function of an
increasing workflow load. Loads are over a 24h interval. The standard deviations are
shown as well.

Computational Resource independently makes no guarantees about the avail-
able Data Resources and network links for that resource. Furthermore, always
choosing the best Computational Resource ensures that these Computational
Resources will quickly become unavailable.

Further observations show that the tie considering strategy of TBCI indeed
improves the BCI strategy slightly, as it produces a higher acceptance rate.

The results show that the performance of the CRCV priority heuristic com-
pared to the CCV approach drops as the loads go up. The rationale behind the
CRCV priority strategy is to give higher priority to workflows that have already
used up relatively more of their budget or available time. However, the absolute
time or budget remaining is important, as it allows CCV to assign lower priori-
ties to tasks and workflows with loose constraints and high priority to workflows
with strict constraints. This is however not the case for CRCV. This can result in
situations where workflows or tasks with loose constraints are given priority and
thus needlessly reserve fast or cheap resources, while they could have completed
with slower or more expensive resources.

The TMART priority algorithm performs considerably worse than TLART.
Giving more priority to tasks that are unlikely to be deployed definitely increases
the possibility of these tasks being deployed, without adversely affecting tasks
that already have a good possibility of getting deployed. The opposite ‘greedy’
strategy TMART definitely has a negative impact on the amount of workflows
that can be deployed.

Figure 9 displays the running times of the algorithms to determine a schedule,
as a function of an increasing workflow load. The algorithms are executed in
Sun Java 6 on an AMD Opteron 2350 machine with 8Gb memory installed. The
less complex SIWD and BCA assignment strategies are obviously considerably
faster than the BCI and TBCI strategies, which need to consider every resource
combination for each task. Furthermore, the more complex priority assignment

0

200

400

600

800

1.000

1.200

1.400

1.600

250 500 750

se
co
n
d
s

workflows

RC-RI-DVW

CCV-SIWD-DVW

CCV-BCI-DVW

CCV-TBCI-DVW

CRCV-TBCI-DVW

TLART-TBCI-DVW

TMART-TBCI-DVW

Fig. 9. Average execution time of each algorithm as a function of the load, 24h interval.
The standard deviations are shown as well.

algorithms TLART and TMART also cause higher execution times, as they need
to evaluate the occupation of every potential resource for each task.

The higher execution time of TMART versus TLART can be attributed to
the fact that TMART can deploy considerable less workflows than TLART.
Consequently, the constraint violation handler is called more often for TMART,
resulting in an increased execution time.

5 Future Work

Areas for future work include a more extensive evaluation on the performance
of the various algorithms, not limited to line workflows, but also including com-
pletely arbitrary workflows containing parallel paths and alternative paths of
decision branches.

Additionally, only one constraint handling strategy has been presented in
this paper. Additional constraint violation handling strategies are available, and
their evaluation must be presented as well. Alternate (meta-)heuristics may also
be evaluated.

Furthermore, online scheduling algorithms have been designed, and their de-
tailed performance evaluation is ongoing at the time of writing.

6 Conclusions

The Independent Films In Progress (IFIP) project is a framework aimed at the
media industry, providing a platform for users to automate and submit produc-
tion processes such as editing and distribution. Users submit a series of tasks
or workflows they want to be executed within certain constraints. The platform
autonomously assigns the appropriate resources to the users’ workflows and ex-
ecutes them. A key issue in such a platform is how to efficiently allocate tasks
to the available resources, hereby improving throughput, scalability and QoS.

To this end, this paper presents a number of offline scheduling algorithms
which are based on the List Scheduling technique, but use different strategies to

handle the various stages of the heuristic such as assigning priorities to tasks,
task-to-resource assignments and constraint violation handling. Extensive evalu-
ation of the developed algorithms has proven that they outperform naive imple-
mentations, and shows the importance of selecting adequate priority, deployment
and constraint handling strategies.

Acknowledgment

Part of the research described in this paper is funded through the IBBT-project
IFIP.

References

1. IBBT: Independent films in progress (IFIP). http://www.ibbt.be/en/project/
ifip (2008-2010)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability : A Guide to the The-
ory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman (January 1979)

3. Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid
computing. In: Metaheuristics for Scheduling in Distributed Computing Environ-
ments. Springer (2008)

4. Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: State of the art
and open problems. Technical report, School of Computing, Queen’s Univeristy
(2006)

5. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31(4) (1999) 406–471

6. Andries, L.: Facing media traffic challenges. Broadcast Engineering (Feb, 2010)
7. IBBT: Grid enabled infrastructure for service oriented high definition media ap-

plications (GEISHA). http://www.ibbt.be/en/project/geisha
8. Volckaert, B., Wauters, T., De Leenheer, M., Thysebaert, P., De Turck, F., Dhoedt,

B., Demeester, P.: Gridification of collaborative audiovisual organizations through
the mediagrid framework. Future Gener. Comput. Syst. 24(5) (2008) 371–389

9. Harmer, T.: Gridcast–a next generation broadcast infrastructure? Cluster Com-
puting 10(3) (2007) 277–285

10. Walsh, A.E.: The media grid: A public utility for digital media. In: 8th Interna-
tional Symposium on Spatial Media (ISSM) jointly held with IEEE International
Conference on Computer and Information Technology (IEEE CIT). (2007)

11. Basu, S., Adhikari, S., Kumar, R., Yan, Y., Hochmuth, R., Blaho, B.E.: mm-
grid: Distributed resource management infrastructure for multimedia applications.
In: IPDPS ’03: Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, Washington, DC, USA, IEEE Computer Society (2003)
88.1

12. Seinstra, F.J., Geusebroek, J.M., Koelma, D., Snoek, C.G.M., Worring, M., Smeul-
ders, A.W.M.: High-performance distributed video content analysis with parallel-
horus. IEEE MultiMedia 14(4) (2007) 64–75

13. Chrétienne, P., Coffman, E.G., Lenstra, J.K., Liu, Z., eds.: Scheduling Theory and
its Applications. John Wiley and Sons (1995)

14. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. 33(6)
(June 2007) 369–384

15. Alhusaini, A.H., Prasanna, V.K., Raghavendra, C.S.: A unified resource scheduling
framework for heterogeneous computing environments. In: Proc. Eighth Heteroge-
neous Computing Workshop (HCW ’99). (April 12, 1999) 156–165

