
Churn Tolerance Improvement Techniques

in an Algorithm-neutral DHT

Kazuyuki Shudo

Tokyo Institute of Technology,
2-12-1-W8-43 Ookayama, Meguro, Tokyo, 152-8552 Japan

shudo@computer.org

Abstract

Churn resilience is an important topic in DHT research. In this paper, I
present techniques to improve churn resilience and their effects. All the tech-
niques can be implemented in a DHT layer and require no change to underlying
routing layers. In other words, they do not depend on a specific routing algorithm
and can work with various algorithms.

Keywords: overlay network, DHT, structured overlay, churn, emulation

1 Introduction

Distributed hash tables (DHTs) are distributed systems, by which autonomous
nodes provide a single hash table without center servers. There are extensive
applications of a DHT because a hash table is a general purpose mechanism and
can be applied to various kinds of name resolution.

Decentralized peer-to-peer systems such as a DHT provide the following mer-
its to service providers utilizing it.

– Lower management and providing cost
– Higher scalability
– Higher reliability

If we choose an approach to improve reliability of each node in the same way as
using a small number of servers, management cost rises much in proportion to the
number of servers and it spoils the merits. Oppositely, it reduces management
cost to use clients’ computers to provide a service, but we cannot count on them
to be reliable and highly-available.

To be reliable and cost-effective enough, a decentralized distributed system
has to tolerate churn, the continuous process of node joining and leaving, and
keep providing its service with churn.

In this paper, I present churn tolerance techniques for DHTs. Those tech-
niques are independent of underlying routing algorithms. All techniques target
the DHT layer and they require no change to underlying routing layers. The
independence enables the techniques to work with various routing algorithms,

Routing

requests

Originating

node

Responsible

node

Note that ring like this figure is not always the

appropriate shape to represent the ID space.

ID space

Holds the key-value pairs

A node on the route

Fig. 1. Routing to put and get to a DHT.

Chord, Kademlia and others, which have their own advantages. The contribu-
tion of this paper is a demonstration that those techniques work with various
algorithms effectively.

The churn tolerance techniques have been implemented in Overlay Weaver
[1, 2], an implementation of structured overlay, which provides multiple routing
algorithms. Section 4 presents the effects of the techniques.

2 Churn problem in a DHT

Put and get processes in a DHT are described as follows supposing an abstraction
in which a DHT is an application of structured overlay (Figure 1) [3].
put(key,value) A node finds a responsible node by routing with the specified
key, and transfers the key-value pair to the responsible node.
get(key) A node finds a responsible node by routing with the specified key,
requests values associated with the key from the responsible node, and receives
them.

It is possible for the get process to fail on condition that nodes in a DHT
have joined and left. It is the churn problem in a DHT. Direct causes of the
failure are as follows.

1. The key-value pair disappeared after put (because the responsible node de-
parted).

2. The responsible node does not hold the key-value pairs.
(a) A newly joined node became the responsible node for the key.
(b) The routing for the put operation did not reach the suitable responsible

node because of incomplete routing tables and other reasons.
3. Nodes in a route left during the routing. (This happens only in recursive

routing [4].)

For instance, we cannot retrieve a key-value pair if a responsible node for
the key departed after put. But the key-value pair remains on the DHT if it has

Key-based Routing Layer (KBR)

DHT CAST DOLR

CFS I3PAST Scribe SplitStream Bayeux OceanStore

Tier 0

Tier 1

Tier 2

KBR API

Fig. 2. Key-based routing (KBR) (Figure 1 from Dabek et al.[3]).

Messaging service interface

Messaging service

Routing runtime interface
Directory service interface

Directory service

Routing algorithm

Routing algorithm interface

DHT

DHT interface

Routing driver

Routing service interface

Mcast

Mcast interface

Other

services

Storage Network

DHT
shell

Mcast
shell

Content
sharing

Distributed
file system

Grid info.
service

Content
distributionApplication

OS/Hardware

Corresponding

to KBR API

Application-level

IP Multicast
router

Routing

layer

Higher-level

services

Applications…

Fig. 3. Components organizing runtime of Overlay Weaver.

been replicated to other nodes in advance of the departure. Section 3 presents
these sorts of techniques to improve churn tolerance.

3 Churn tolerance techniques

In this section, I describe techniques to improve churn tolerance of a DHT. I
have implemented all the techniques in a DHT implementation of an overlay
construction toolkit Overlay Weaver [1, 2], and measured their effects.

Overlay Weaver follows an abstraction of structured overlay proposed by
Dabek et al. [3], in which higher level services such as DHT and multicast are
built on the basic routing layer (Figure 2). This model enables us to combine
arbitrary implementations of each layer and Overlay Weaver demonstrated it.
For example, we can choose and combine a suitable implementation of a routing
algorithm for an application with a DHT implementation.

If the churn tolerance techniques are implemented only in the DHT layer,
they are independent of underlying routing algorithms and work with various
algorithms. This flexibility is a nature of churn tolerance techniques. The tech-
niques are apt to refer to internal structures of a routing algorithm (e.g. leaf
set in Pastry) and find contacts with other nodes. The techniques can be inde-
pendent of a routing algorithm by accessing the routing layer only through a
carefully-designed and algorithm-neutral interface.

3.1 Routing layer API

In the abstraction proposed by Dabek et al., the routing layer provides a func-
tion supporting replication to upper layers including DHT. The function is
replicaSet(key,max rank). It returns an ordered list of nodes which are can-
didates for the responsible node for the specified key. The order reflects how are
the nodes adequate to be the responsible node and have a replica. In other words,
after the first node departs, the next node is most adequate for the responsible
node.

Overlay Weaver provides a similar mechanism to support churn tolerance
techniques. A routing process results in the list of candidates for the responsible
node, not just one responsible node. This mechanism is different from Dabek’s
one which is a function called locally. It serves a number of techniques not only
replication. Additionally, Dabek’s proposal does not include an empirical proof
(Section 6), but this paper demonstrates efficiency of algorithm-neutral churn
tolerance techniques.

Within the routing layer (Figure 3), the Routing algorithm component pro-
vides a function rootCandidates(ID target,int maxNumber to a Routing driver
component. The function is similar to Dabek’s replicaSet function.

Following sections present these four techniques.

– Replication
– Join-time transfer
– Multiple get
– Repeated implicit put

First three techniques utilize the list of responsible node candidates.

3.2 Replication

In a put process, not only the responsible node but also several nodes receive
and hold the key-value pair which has been put. Even if the responsible node left
after the put, later get requests can complete by obtaining the requested values
from the other nodes.

The key-value pair is replicated to several nodes along the list of responsible
node candidates, which is obtained as a result of routing. By this replication,
even if the responsible node left, later routing reaches the next candidate, which
returns the requested value, and get requests complete.

This is not the only method to select nodes on which a key-value pair is
replicated. An example of other methods is generation of multiple keys. For
example, a put process can generate another three keys based on the specified key
by exclusive-or’ing 01, 10 and 11 to the first 2 bits of the key: key⊕010..(binary),
key⊕ 100.., key⊕ 110... But I have not adopted this method because it requires
a larger amount of messages between nodes. Replication on responsible node
candidates requires routing just once, but this method involve multiple routing
the same times as the number of replicas.

Our implementation of replication allows both the node originated the put
request and the responsible node to initiate replication. The number of messages
sent to make replicas is identical in both cases, but efficiency of those messaging
differ if node IDs reflect network proximity. The responsible node is better if the
distance between node IDs in the routing algorithm reflects network proximity
with proximity identifier selection (PIS) [5]. The efficiency is identical in both
cases because our implementation does not take account of network proximity
currently.

The implementation of replication has the two following parameters.

– The number of replicas
– Performing node: the node originated the put request or the responsible node

Only the responsible node hold the key-value pair if one is specified as the number
of replicas.

Note that we should distinguish replication from caching. A cache is a key-
value pair preserved by a node in an earlier put or get process in which the node
is involved. It is for the purpose of performance improvement, not for churn
tolerance though it contributes to churn tolerance unexpectedly. However, it is
possible to cache a key-value pair with the intention of utilizing it also as a
replica.

Replica consistency The DHT implementation of Overlay Weaver, on which
our research is based, preserves eventual consistency [6, 7] at most even with the
churn tolerance techniques in this paper.

One of natural concerns about consistency of replicas is different values as-
sociated with the same key according to nodes. It happens in cases that an old
value to be overridden remains and almost simultaneous put requests compete.

But these are not the cases in our DHT implementation because multiple
values can be associated with a single key and no value is removed by a put
request. This is the same policy as a DHT implementation Bamboo [8] and its
deployment, OpenDHT [6]. A get request yield all values associated with the
specified key.

However, it is possible for a get request to result in an obsolete value which
has been removed if a remove operation failed on some replicas. Resolution for
such inconsistency is left for an application which uses the DHT. Vector clock
in Dynamo [7] is a promising support to resolve such inconsistency even though
the current implementation does not provide it.

3.3 Join-time transfer

It is possible for a newly joining node to be the most proper responsible node
for existing key-value pairs. In this case, a node holding those pairs transfers
them to the newly joining node. This technique is called join-time transfer in
this paper. With this technique, the new responsible node can respond to later
get requests.

Table 1. Causes of get failure each technique treats.

Replication Join-time Multiple Repeated
transfer get implicit put

• Key-value pairs disappeared
√ √

• A responsible node does not (requires replication)
hold the key-value pairs:
· A joined node became

√ √ √
a responsible node

· A joined node became
√ √ √

a responsible node
• Nodes in a route left

In our implementation, a joining node asks a few nodes which are expected to
hold key-value pairs the joining node should have. The asked nodes are respon-
sible node candidates (Section 3.1) for the node ID of the joining node. Routing
to join yields the list of the candidates and the joining node asks the specified
number of the candidates in order as in the list. An asked node transfers key-
value pairs which the joining node is more proper to have and the joining node
holds them. Note that the transferring node does not expressly discard those
pairs though the node can do it and keeps them.

The only parameter of this technique is the number of nodes a joining node
asks.

3.4 Multiple get

In a get process, the requesting node can ask values from multiple nodes, not
only the responsible node for the key. The requested nodes are responsible node
candidates the same as replication. With this technique, if a get request is routed
to a newly joined node which does not have the value, an old responsible node
is possible to be also asked and return the value.

A former mentioned technique, join-time transfer, also mitigates the prob-
lem where a newly joined node became a responsible node. Effects of the two
techniques overlaps but are not identical.

Multiple get compensates suboptimal routing for putting. A routing can reach
a node other than the responsible node for the specified key when routing tables
are incomplete. In this case a suboptimal node holds the key-value pair, but later
get requests can ask the holding node with the multiple get technique.

The number of asked nodes is the parameter of the multiple get technique.
Only one responsible node receives a get request in case the parameter is 1.

3.5 Repeated implicit put

Each node composing a DHT puts key-value pairs it holds periodically and
autonomically without explicit put requests. The implicit put process also makes
replicas as an usually-requested put process.

The number of replicas gets fewer according to nodes leaving even though
join-time transfer supplements replicas. The purpose of this technique, repeated
implicit put, is supplementation of replicas.

This technique has the same effect as the join-time transfer. A node which
joined after a key-value pair was put can receive it if the node is responsible for
the key. But its effect is limited as it cannot save a get request issued before an
implicit put process runs. There is an interval between implicit put processes.

This technique looks useless in case the number of replicas is 1. It is not
correct. Even in the case, the technique has the same effect as join-time transfer
and can transfers key-value pairs to the proper responsible node.

The parameter of this technique is an interval of implicit put processes. A
node waits for the specified time between the processes. Actual intervals are fluc-
tuated a little with random numbers and the fluctuation prevents synchronized
behavior of many nodes, which put a much load on the overlay.

Only this technique does not refer to a list of responsible node candidates
(Section 3.1) though other three techniques presented in this paper use the list.

3.6 Targets of each technique

Table 1 illustrates causes of get failure, listed in Section 2, which each technique
treats.

Replication prevents disappearance of key-value pairs which happens accord-
ing to node leaving. Repeated implicit put supplements replicas, however the
technique does not take the effect if the number of replicas is 1.

Both join-time transfer and multiple get treat a problematic situation where
a node does not hold key-value pairs which the node is responsible for. The
former one prevents the situation and the latter one enables a get request to
succeed in the situation.

Repeated implicit put is also possible to save the situation (Section 3.5), but
it takes effect intermittently.

This paper presents no solution to the last cause in which nodes on the
route leaves during a recursive routing. Concurrent multiple routing processes
can mitigate this problem.

4 Effect of techniques

This section demonstrates the effects of the techniques presented in Section 3. In
an experiment, we ran 1000 nodes on a single computer, issued a number of get
requests, measured the number of successful requests, and calculated the success
rate.

Those nodes ran on a Distributed Environment Emulator, which Overlay
Weaver provides. It hosts a large number of nodes and controls them along a
given emulation scenario. An Emulator hosts an application which can work on
a real network without any modification. The Emulator provides a lightweight

Chord

without repeated put

400

500

600

700

800

900

1000

1 2 3 4Num of replicas

N
u
m
 o
f
s
u
c
c
e
s
s
fu
l

re
q
u
e
s
ts

0-1
2-1
0-2
2-2

Chord

with repeated put

400

500

600

700

800

900

1000

1 2 3 4Num of replicas

N
u
m
 o
f
s
u
c
c
e
s
s
fu
l

re
q
u
e
s
ts

0-1

2-1

0-2

2-2

(a) Chord

Pastry

without repeated put

400

500

600

700

800

900

1000

1 2 3 4Num of replicas

N
u
m
 o
f
s
u
c
c
e
s
s
fu
l

re
q
u
e
s
ts

0-1

2-1

0-2

2-2

Pastry

with repeated put

400

500

600

700

800

900

1000

1 2 3 4Num of replicas

N
u
m
 o
f
s
u
c
c
e
s
s
fu
l

re
q
u
e
s
ts

0-1

2-1

0-2

2-2

(b) Pastry

Kademlia

without repeated put
400

500

600

700

800

900

1000

1 2 3 4Num of replicas

N
u
m
 o
f
s
u
c
c
e
s
s
fu
l

re
q
u
e
s
ts

0-1

2-1

0-2

2-2

Kademlia

with repeated put

400

500

600

700

800

900

1000

1 2 3 4Num of replicas

N
u
m
 o
f
s
u
c
c
e
s
s
fu
l

re
q
u
e
s
ts

0-1

2-1

0-2

2-2

(c) Kademlia

Fig. 4. Effects of presented techniques.

Messaging service which bypasses a TCP/IP protocol stack and lightens the com-
munication process between hosted nodes though those nodes can use TCP/IP
if we want.

The Messaging service delivers a message as fast as the hosting computer
can. It does not copy a message body even in memory and then the bandwidth
between nodes is infinity in theory. It models an ideal communication medium
effectively and not limited by a physical medium. Churn is the only cause of
failure of a get request because no message is lost. In other words, the communi-
cation medium, the in-memory Messaging service takes no effect on the success
rate.

4.1 Conditions

We generated a churn scenario with a generating tool and gave the scenario to
hosted 1000 nodes. All the following experiments were made with the identical
scenario.

The scenario is as follows.

1. Starts 1000 nodes.
2. Lets all nodes join a DHT, one every 0.15 seconds.
3. Puts different 1000 key-value pairs on the DHT, one every 0.2 seconds.
4. Gets all 1000 key-value pairs from the DHT, one every 0.2 seconds.

Nodes to which put and get were determined at random when the scenario is
generated.

Churn lasts from the start of put to the end of get. The scenario keeps the
number of nodes as 1000 by letting a node leave and another node join imme-
diately. This model of churn is identical to experiments by Rhea et al. [9], and
different from the churn model adopted by Kato et al. [10] In the latter model,
the number of nodes varies because another node does not join immediately after
a node left.

Churn is timed by a Poisson process and the frequency of it is 2 times a
second. Thus the average life time of a node is 1000(nodes)/2(times/sec) =
500seconds.

Communication timeout is 3 seconds and routing timeout is 10 seconds. Be-
cause of it, a put or get request timeouts and fails if tries to contact a failed
node 4 times. A node removes a failed node from its routing table.

We used a PC with 2.8 GHz Pentium D processor, Linux 2.6.21 for x86-64
and HotSpot Server VM of Java 2 SE 5.0 Update 12. The version of Overlay
Weaver is 0.6.4. All experiments were made 6 times and we adopted the average
of middle 4 values as the result.

4.2 Results

Figure 4 shows the results. We conducted experiments with all combinations
of all routing algorithms Overlay Weaver provides and two routing styles, it-
erative and recursive routing. While Overlay Weaver supports various routing
algorithms including Chord, Kademlia, Koorde, Pastry, Tapestry and their varia-
tions, Figure 4 shows results with representative ones, Chord, Pastry and Kadem-
lia, and the routing style is iterative routing.

The vertical axis indicates the number of successful get requests out of 1000
requests. Numbers closer to 1000 are better. The horizontal axis indicates the
number of replicas from 1 to 4. Each algorithm has two graphs. Graphs on the
left side shows the results with repeated implicit put enabled, and disabled in
the right-hand graphs. The interval of the implicit put processes is 30 seconds.

Four lines in a graph differ in parameters of two techniques, join-time transfer
and multiple get. The parameter of the former technique is the number of nodes
to which a newly joined node asks. It is 0 (disabled) or 2. The parameter of the

latter technique is the number of target nodes of get requests. It is 1 (disabled)
or 2. Legends such as “<number>-<number>” in the graphs mean these two
parameters. A couple of numbers means “<join-time transfer>-<multiple get>”.

4.3 Observations

We observed the following facts in Figure 4.

– A larger number of replicas resulted in a better success rate.
– Both join-time transfer and multiple get improved success rates.
– In Pastry and Kademlia, join-time transfer (with the parameter 2) was more

effective than multiple get (with the parameter 2). Oppositely, in Chord,
multiple get was more effective.

– Repeated implicit put filled up the gaps between the results with different
parameters of join-time transfer and multiple get. Four lines in the right
graphs are very close.

– Replication with 3 replicas showed better results than 4 replicas in a few
cases.

These trends were also observed in the results with recursive routing. Tapestry,
another routing algorithm, shows the same trend as Pastry as expected. They
share an important part of their routing algorithm and this result looks natural.

Part of get requests failed even though the churn tolerance techniques were
applied. The reasons of those failure are as follows.

– The techniques and the parameters were not enough to compensate such
degree of churn completely.
For example, all replicas disappeared or a get request was issued before the
responsible node received a replica by implicit put.

– Routing requests did not reach the responsible node because of incomplete
routing tables.

– Timeouts happened many times in communication and a routing could not
finish (Section 4.1).

Note that the results shown in this section do not support relative superi-
ority of each routing algorithm. Each algorithm has its specific parameters and
they have an effect on churn tolerance. In this paper, all parameters of rout-
ing algorithms were the default values of Overlay Weaver 0.6.4 and were not
adjusted.

This section could demonstrate that algorithm-neutral churn tolerance tech-
niques take effect. The next problem is which technique and what parameter we
choose. The decision should be based on cost performance, not only performance.
In the next section, I discuss cost performance of churn tolerance techniques.

5 Cost performance of churn tolerance techniques

In this section, I discuss how to calculate cost performance of churn tolerance
techniques. It is rational that the effect is represented by a function which takes

the success rate of get requests as an input, because the effect appears as the
success rate.

Next, let me consider the cost. There are various kinds of cost of the churn
tolerance techniques as follows.

– Traffic and the number of times of communication
– Time required to join, put and get
– Memory and storage consumption
– Processing time

Preceding work [9, 10] focused on communication traffic and time to complete
get operations. Other kinds of cost have drawn less attention and one of the
reasons for it is that the other resources are seldom a bottleneck on today’s
Internet.

Nevertheless, replication with n replicas consumes n times larger storage or
memory. It is fairly expensive with a large amount of data or on an embedded
node with small resources. Therefore it is necessary to premise an application
and an applied environment when considering the cost.

Table 2. DHT processes in which each technique is involved.

join put get ordinary

Replication
√

Join-time transfer
√

Multiple get
√

Repeated implicit put
√

It is also necessary to take account of the behavior of the system which
depends on an application. Table 2 shows timing on which each churn tolerance
technique works. This table indicates that replication is expensive with many put
operations and multiple get is expensive with many get operations. Repeated
implicit put is a process which keeps running and takes its cost continuously
even without put or get requests. The cost in a time unit increases according to
the number of key-value pairs in the DHT.

Suppose that the application is the domain name system (DNS), the fre-
quency of get operations is much higher than other operations such as join and
put. In this case, multiple get is expensive but replication and join-time trans-
fer are relatively inexpensive. It may be possible to use an expensive parameter
for such lower frequent operations. For example, an application like the DNS
may allow a higher number of replicas. On the other hand, a different type of
application shows different properties. A sensor network on a DHT will receive
more put requests than the DNS and we cannot neglect the communication and
storage cost of replication.

As shown here, we cannot calculate the cost of churn tolerance techniques
without premising a concrete application. By making such a premise, we can esti-
mate the frequency of each operations on a DHT, join, put, get and remove. If we

have real-world traces of an application or a scenario which reflects application
behavior, we can calculate the determinate cost based on them.

The emulation scenario for experiments shown in Section 4 is artificial. It
does not make significant sense to inspect the cost in the experiments.

6 Related work

A layered model of structured overlay proposed by Dabek et al. (Figure 2) [3]
includes an API to implement replication (Section 3.1). The authors proposed
the model and APIs between the layers. The paper includes no empirical proof
of those proposals.

In contrast to it, I demonstrated that it is possible to implement a number of
churn tolerance techniques such as join-time transfer, multiple get and repeated
implicit put in addition to replication. Those techniques were implemented based
on a single mechanism similar to Dabek’s replicaSet function. The mechanism
provides the DHT layer with the list of responsible node candidates. Section 4
showed the effects of those techniques combined with various routing algorithms.

Rhea et al. evaluated churn tolerance of Bamboo [8], that is their DHT
implementation [9]. The authors used a network emulator ModelNet and ran
1000 nodes on 40 PCs. On the emulated environment, they measured the effects
of methods to recover node failures, reactive recovery and periodic recovery.
They also measured and evaluated techniques to reduce the required time to
perform routing. Those techniques include TCP-style timeout calculation and
proximity neighbor selection (PNS) [5].

All techniques in Rhea et al. are implemented in the routing layer of the
Dabek’s model [3], while the techniques described in this paper target the DHT
layer. Rhea et al. premises their Bamboo implementation and its particular al-
gorithm derived from Pastry. In contrast to it, the techniques in this paper nat-
urally work in combination with various routing algorithms because their target
is the DHT layer, which is independent of routing algorithms. The most signifi-
cant contribution of this paper is empirical demonstrations of the combinations
of the techniques and the routing algorithms shown in Section 4.

The techniques in this paper work together with all techniques shown in
Rhea et al. because their target layers are different and they do not conflict. The
communication layer of Overlay Weaver actually implements TCP-style timeout
calculation proposed in Rhea et al.

Kato et al. evaluated 4 DHT algorithms, Bamboo, Chord, Accordion and
FreePastry on their network emulator peeremu [10]. They conducted experiments
in which up to 1000 nodes ran on 10 or 20 PCs. Their metrics were success rate
of get requests and time to complete them.

There is a different type of approach to build a churn tolerant system, su-
pernodes. The distributed system itself elects supernodes suitable for composing
an overlay based on their attributes such as computation performance, band-
width and running time so far. Only the elected supernodes maintain a DHT
(an overlay) and they serve other ordinary nodes.

This supernodes architecture relaxes churn tolerance required for a DHT. It
introduces another merit, by which the system qualifies convenient nodes capable
of composing a DHT, for example, capable of bi-directional communication.
Conventional routing algorithms of structured overlay require all nodes on an
overlay to be able to communicate each other. It makes DHT construction easier
to choose supernodes as they can communicate in bi-direction, for example, not
behind a NAT. With supernodes, churn tolerance is still an important property
because even supernodes suffer churn.

7 Conclusion

I presented a number of churn tolerance techniques for DHT and demonstrated
their effects. They work with various routing algorithms of structured overlay
because they all target the DHT layer of the Dabek’s model. I implemented
those techniques in Overlay Weaver, measured their effects with all the algo-
rithms Overlay Weaver provides, and showed the effects with Chord, Pastry
and Kademlia in Section 4. The most significant contribution of this paper is
the empirical demonstration of those routing-algorithm-neutral churn tolerance
techniques.

In Section 5, I discussed how we can determine which technique and what
parameter we choose. The decision should be based on cost performance of the
techniques and I concluded that we need an emulation scenario which reflects a
concrete application because the cost is heavily dependent on the frequency of
join, get, put and remove operations on a DHT.

A promising next step is measurement and calculation of cost performance
based on concrete applications such as DNS and sensor networks. It leads to the
establishment of methodology by which we construct a churn-tolerant system
with appropriate techniques and their parameters.

Acknowledgments

I would like to thank Daishi Kato, Youki Kadobayashi, Yusuke Doi, Akito Fujii,
Mikio Yoshida and members of IDEON working group in WIDE project for
insightful discussions.

References

1. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay Weaver: An overlay construction
toolkit. Computer Communicatios (Special Issue on Foundations of Peer-to-Peer
Computing) 31(2) (2008) 402–412

2. Shudo, K.: Overlay Weaver: An overlay construction toolkit (2006) http://
overlayweaver.sf.net/.

3. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common
API for structured peer-to-peer overlays. In: Proc. IPTPS’03. (2003)

4. Rhea, S., Chun, B.G., Kubiatowicz, J., Shenker, S.: Fixing the embarrassing slow-
ness of OpenDHT on PlanetLab. In: Proc. WORLDS ’05. (2005)

5. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.:
The impact of DHT routing geometry on resilience and proximity. In: Proc. SIG-
COMM 2003. (2003)

6. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Sto-
ica, I., Yu, H.: OpenDHT: A public DHT service and its uses. In: Proc. ACM
SIGCOMM 2005. (2005)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proc. SOSP 2007. (2007)

8. Rhea, S.C.: The Bamboo distributed hash table (2003) http://www.bamboo-
dht.org/.

9. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proc. USENIX ’04. (2004)

10. Kato, D., Kamiya, T.: Evaluating DHT implementations in complex environments
by network emulator. In: Proc. IPTPS 2007. (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

