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Abstract. Network monitoring plays an important role in network management.
Through the analysis of network parameters (e.g., flow throughput), managers
can observe network behavior and make decisions based on them. The choice of
network parameters although should be relevant for each specific objective. In
this paper, we focus on the analysis of network parameters that are relevant for
our self-management of lambda-connections proposal. This proposal consists of
an automatic decision process to offload large IP flows onto lambda-connections.
This paper aims at statistically analyzing a list of potential network parameters
as relevant estimators for flow volume. The main contribution of this work is the
introduction of a statistical methodology to validate that some few network pa-
rameters can be considered as good predictors for flow volume. These predictors
are therefore of great interest to be used in our automatic decision process.

1 Introduction

Recently, a clear change in the set of core technologies that form the Internet is being
observed. Internet backbones that once relied solely on IPv4 routing to deliver end-to-
end communications are moving towards hybrid solutions. One example is the rising of
hybrid optical switching and packet forwarding networks. These hybrid networks are
composed of intermediate devices that are both switches at the optical level and tradi-
tional routers at the network level. In such an environment, network flows can traverse
a hybrid network through either an optical path or a chain of routing decisions. In this
hybrid environment, moving large flows from the IP level to the optical level presents
the following advantages: (a) flows experience faster and more reliable transmissions
with optical switching than with traditional IP routing; (b) remaining flows at the IP
level also experience better services because the network layer is less congested after
offloading these large flows.

The decision today to select which flows will be placed in which level (optical or
network) is still up to network human operators. However, this is not a trivial deci-
sion to be made. Operators have to cope with several network parameters (e.g., flow



throughput, flow duration) to come up with a balanced plan. The choice of a proper set
of network parameters is therefore crucial for this task. Besides, network operators have
to select flows in a timely manner, since it is far cheaper to send traffic at the optical
level than at the IP level, as pointed out by Cees de Laat’s research [1].

A new approach for the management of hybrid networks has been investigated by
us [2] to speed up the process of flow selection. Our approach, called self-management
of hybrid networks, consists of monitoring a network of interest to automatically decide
which IP flows should be transported at the optical level and which other flows should
remain at the network level. The main targets of our approach are flows that despite be-
ing small in number are responsible for most of the IP traffic, i.e., the so called elephant
flows [3] [4]. However, to properly select those flows, our self-management approach
needs to employ a set of parameters while analyzing network data.

The goal of this paper is to present a study on selecting a proper set of potential
parameters to be used as good predictors for the traffic volume generated by elephant
flows. Volume prediction is employed in our self-management approach to reduce the
time (and consequently cost) of a high-volume flow staying at the IP level consuming
network resources. The faster a high-volume flow is detected, the lesser the network
resources it consumes. In this context, the main research questions that motivate the
investigation presented in this paper are: Which network parameters could be used to
predict the volume of flows?, and How can these parameters be evaluated?

In order to answer these questions, we have first carried out a study on the lit-
erature about the parameters (e.g., throughput, duration) that can be observed using
current management technologies (e.g., NetFlow, SNMP). To find out how accurate
each parameter is, we collected and analyzed network traces from the University of
Twente (UT) network. From the collected traces, those flows that have been classified
as elephant ones have been filtered and analyzed. We then propose the employment of
statistical techniques, such as correlation and tree classification, as a methodology to
evaluate which network parameters are more relevant to predict flow volume. Such a
methodology is therefore the main contribution of this paper.

The remainder of paper is structured as follows. In Section 2 we review the current
research work on traffic characterization. In Section 3 we describe our methodology by
presenting the decisions and steps taken to make our statistical analysis. In Section 4
we present the selected parameters. Finally, we close this paper in Section 5, where we
draw our conclusions and future work.

2 Related Work

Investigations about flow characteristics have been carried out by researchers for some
years already. Thompson et al. [5] present a flow-based characterization of network
usage and workloads on a commercial backbone. The authors analyzed traffic data col-
lected at one observation point on different time scales. Recently, Kim et al. [6] pre-
sented a detailed analysis of flow-based traffic characteristics. The metrics that have
been considered were packets, bytes, and port distribution. It is interesting to mention
that these two papers did not present an extensive reasoning about the chosen metrics.



More recently, Ribeiro et al. [7] used packet sampling as the measurement technique
while mainly observing its effect on the flow size distribution. They also observed the
effects on the packet counts, SYN information, and sequence number information. They
concluded that TCP sequence numbers are essential for accurate flow size estimation,
but no conclusions have been drawn about the best estimators.

We believe these works, both historical analysis of traces and comparison of diverse
observation points, even if suitable for highly detailed studies, are missing one impor-
tant dimension of analysis: they focus on estimating precise flow size distribution or
packet distribution, but none of them focus on the best parameters to predict flow size.

3 Methodology

This section first presents our approach to create the list of potential network parame-
ters. After that, the measurement set up to collect network traces is introduced. Finally,
we explain the statistical techniques we used to evaluate the potential parameters.

3.1 List of potential network parameters

Network parameters provide valuable information about the status of network traffic
and devices (e.g., routers, switches). In the context of our self-management approach,
network parameters are important to predict the volume of each flow. This prediction
is used to decide which flows should be moved to the optical level and which others
should stay at the network level.

To define a set of relevant parameters for our autonomic decision process, a research
on the literature has been carried out to list candidates parameters. Such candidates
parameters have been taken from the following sources: (a) MIB modules MIB-II [8],
RMON-2 [9], and SMON [10]; (b) the information model for the IP Flow Information
eXport (IPFIX) protocol [11]. Since these sources also deal with information other than
related to flows (e.g., MAC to IP address translation in MIB-II), we have intuitively
selected the subset of information that are helpful in predicting the volume of flows.
The outcome of this research is the classification of network parameters divided in two
main groups: flow identifier parameters, and flow behavior parameters.

Flow identifier is a set of fields that defines groups of packets (flows) that share some
common fields. Since the number of fields in a flow can be extensive [11], we limited
the fields to those relevant to our approach:

1. TCP/UDP port numbers represent the communication end points that network ap-
plications use to exchange data via transport protocols (i.e., TCP and UDP). Ports
are important because some applications can generate more traffic than others. For
example, a Telnet session is expected to generate far less data than an FTP session.

2. IP addresses identify network devices belonging to a certain network. Following
the same reasoning above, some devices can generate more traffic than others. For
example, a file server is expected to generate more traffic than an ordinary desktop.



3. Network segments are portions of computer networks that vary in size from small
networks (e.g., LAN) to large ones (e.g., WAN). Some network segments can gen-
erate more traffic than others. For example, the University of Groningen network
receives lots of data from the LOFAR [12] sensor network segment. The parameters
that identify network segments are:

– Subnet: Continuous bits in an IP address prefix used to identify a subnet;
– Autonomous System: A collection of IP routing prefixes.

4. Protocols allow the communication between end points on top of IP. TCP and UDP
are the most important Internet protocols. Several other protocols exist, but few of
them have a representative significance in terms of traffic [13]. The value of the
protocol number in the IP header is the parameter we consider.

5. Type of Service (ToS) is a 8 bits portion of the IP header that is reserved to define
a service level request. Even though the support for ToS is not widely employed in
current routers and therefore not widely used, it can represent a potential network
parameter to track flows that generate considerable amount of traffic.

Flow behavior is a set of network parameters used to characterize the behavior of
flows. The potential flow behavior parameters that are relevant to our research are:

1. Duration: literature [14] [15] [16] has shown that some large flows may also be long
in duration, normally presenting a heavy-tail distribution. Duration can therefore be
a potential input parameter for our automatic decision approach.

2. The number of packets of a flow can give a good indicative about a flow’s behavior.
3. The number of bytes of a flow is naturally an important parameter to be considered,

since the automatic decision module aims at offloading high volume flows.
4. Throughput is the average rate of a communication. It is usually expressed in bytes

per seconds (Bps), but it can also be measured in packets per second (Pps). Those
two throughput units of measurement will be considered.

It is worth mentioning that analysis on flow identifiers has been previously carried
out by us [17] [18] [19], and for the sake of space it will not be included in this paper.
We thus focus on the analysis of the flow behavior group only.

3.2 Collecting network traces

This subsection shows how network traces have been collected in order to evaluate
the set of parameters to describe flow behaviors. The collection process consisted in
collecting NetFlow data from the UT NetFlow-enabled router running NetFlow version
9. This router exported NetFlow records to a flow collector hosted in our department.
Traces from the UT network have been collected over a period of one day (Sep 18th,
2008). Once the traces were collected, they needed to be combined for our analysis.
Since NetFlow reports long-lived flows in different records, one needs to combine the
NetFlow records in order to closely compute the original flow duration, number of
packets, and octets. The throughputs (in Bps and Pps), however, are calculated as an
average throughput over the entire duration of the flow.



In order to combine NetFlow records, there is a need to determine the maximum
gap that separates two consecutive flow records of the same flow. We have deliberately
chosen a gap of 30 seconds, which is a common value for the TCP TIME-WAIT state.
We then decided that all NetFlow records of the same flow whose gap was smaller or
equal to 30 seconds are grouped into the same flow. Our whole analysis has been made
then over combined flows rather than using the original NetFlow records.

Once the NetFlow records have been combined into flows, we stored the flows in
a format suitable for our analysis. In our case, we imported the flows into a MySQL
database. MySQL has been chosen due to the familiarity of the paper’s authors with
such a tool. The amount of collected NetFlow records stored in MySQL accounted for
30.51 GB, plus 37.28 GB of indexes to speed up our analysis. Once combined, flows
accounted for 26.08 GB plus 37.24 GB of indexes.

3.3 The steps of our statistical analysis

The statistical analysis of the potential network parameters could have been performed
in different ways. Simulation tools, for example, could be employed to reproduce a net-
work being measured. A controlled environment of a lab network could be used too.
However, none of these methods can 100% capture the real behavior of flows. Con-
sidering that, we believe that statistically analyzing data collected from real networks
would provide more significant and relevant conclusions.

The initial number of flows considered in our statistical analysis was 378,363,608,
which generated a volume of 18.11 TB on Sept 18th, 2008. We started our statistical
analysis by defining the set of flows we are focused on. This set of flows is based on the
target our self-management of lambda-connections aims at, i.e., the elephant flows. We
focus our analysis therefore on flows that have the following characteristics: (a) few in
number, (b) persistent in time, and (c) represent most of the traffic.

Out of the total number of collected flows (378,363,608), a very small percentage
of the flows (0.82%) accounted for the biggest percentage (97%) of the total traffic.
This percentage of flows (3,092,885 in numbers), from now on addressed as big flows,
matches the characteristics (a) and (c) previously mentioned. Besides, it also confirms
the long tail distribution on the network traffic, showing that few flows are responsible
for most of the traffic.

Our next step was to check, out of the big flows, the ones persistent in time. Persis-
tent means that they do not have a short duration, as it is the case of bursty flows [6].
Table 1 shows some statistics about the duration of our big flows. It also shows that
most of these flows (75%) have a considerable short duration, i.e., a duration shorter
than 57 seconds. This allows us to conclude that most of the flows are short-lived.

Conditional probability

Statistics about flow duration do not say much about the persistence in time of the
other 25% of the flows. To have a better insight about the persistence of these flows,
more specifically about when the majority of them tend to get stable regarding to their
duration, we used conditional probability [20]. Conditional probability is the probabil-
ity of some event A happening given the occurrence of some other event B (P (A | B)).



Table 1. Statistics of duration of the big flows

Flows 3,092,885
Mean 274 sec

Median 19 sec
Minimum 0 sec
Maximum 86,507 sec

Percentiles (25%) 12 sec
Percentiles (50%) 19 sec
Percentiles (75%) 57 sec

In our analysis, we are interested in knowing the probability of flows being persis-
tent in time. For that, we observe the conditional probability of flow duration as follows.
Given that the duration (D) of a flow has already lasted at least certain amount of time
B (D >= B), what is the probability this flow will last for at least one more minute
(D >= B + 60 sec)?

Table 2 shows the conditional probability of duration of our big flows expressed in
seconds. It shows that there is a small probability (24%) that a flow will last at least
one more minute, given the fact it has just started. However, there is a considerable
improvement (67%) in this probability when flows have elapsed at least one minute.
This probability gets more stable the bigger the minimum flow duration is. This allows
us to conclude that the longer a flow has already elapsed, the smaller is its probability
of ending in the next time period.

Table 2. Conditional probability of duration of the big flows

P (D >= B + 60 sec | D >= B) Percentage
P (D >= 60 sec | D >= 0 sec) 24%

P (D >= 120 sec | D >= 60 sec) 67%
P (D >= 180 sec | D >= 120 sec) 78%
P (D >= 240 sec | D >= 180 sec) 83%
P (D >= 300 sec | D >= 240 sec) 86%
P (D >= 360 sec | D >= 300 sec) 89%
P (D >= 420 sec | D >= 360 sec) 90%
P (D >= 480 sec | D >= 420 sec) 91%
P (D >= 540 sec | D >= 480 sec) 92%
P (D >= 600 sec | D >= 540 sec) 92%

Applying this finding in our self-management approach results in a trade-off be-
tween flow duration and decision time. A decision about selecting a flow to be offloaded
to the optical level cannot be taken too soon because there is a high probability that the
flow is going to last short. In contrast, this decision cannot either be postponed too long
because the flow will be consuming resources at the IP level while the decision is not
taken. Moreover, there is a slight chance that the flow may end when the decision is
finally made.



We choose therefore an elapsed duration of 5 minutes to define a flow as being
persistent in time. The reason for that comes from the fact the percentage of flows
lasting for at least another minute gets relatively stable (around 90%) when flows reach
a minimum duration of 5 minutes. Moreover, in our analysis, flows with duration below
5 minutes did not represent a considerable amount of traffic (26% of the total traffic),
whereas flows with duration above or equal to 5 minutes represented 74% of the total
traffic.

Based on the outcome of the conditional probability applied on our traces, another
filtering was done in the 3,092,885 flows in order to remove flows with a duration
shorter than 5 minutes. This resulted in the selection of 283,783 flows (0.07% of the
total number of collected flows) having duration above or equal to 5 minutes. These
are thus the flows whose metrics throughput (Pps and Bps), packets, and duration are
observed in relation to the volume generated.

Correlation and classification tree techniques

Once we defined our set of flows to be analyzed, we observe how those metrics relate
with flow volume by drawing correlation charts. These charts provide us a visual im-
pression of what the correlation is, although they are not very quantitative. In order to
obtain quantitative correlation values regarding the considered metrics, we used Pear-
son’s correlation method [21]. Pearson’s correlation computes the pairwise associations
for a set of variables and displays the results in a matrix. This is useful for determin-
ing the strength and direction of the association between two metrics. It can be used
therefore to measure the linear association between two metrics. In our context, there
is an unmistakable intuition that Bps and duration have the strongest correlation to tell
about the volume of flows. We use Pearson’s correlation, however, to see if this fairly
obvious correlation may contain some other unsuspected correlations. Even though we
suspected that there are some correlations, we did not know which are the strongest.
Applying therefore correlation analysis on our data can lead to a better understanding.

Even though Pearson’s correlation is a good method to find out the relationship be-
tween two metrics only, it does not consider the combination of more than two of them.
It could be therefore that an interaction of more than two metrics could give a better re-
finement about the best predictors for a flow volume. In order to find that out, we used
a classification tree technique widely used in data mining areas, called CHi-squared
Automatic Interaction Detector (CHAID) method. CHAID is a method that divides a
data set into exclusive and comprehensive partitions that differently relate with an ob-
served dependent variable [22]. These partitions are defined by a tree structure and they
are classified in descendent order of independent variables, called predictors. For each
partition of predictors, CHAID assigns a probability of response. All probabilities are
subsequently used to rank the partitions with the strongest relation with the dependent
variable. It is worth mentioning that the partitions of each predictor are merged if they
are not significantly (significance level of 0.05%) different in regard to the dependent
variable.

In the case of our analysis, CHAID calculates which independent metrics – dura-
tion, packets, Pps, and Bps (the predictors) – have the strongest relation with flow vol-



ume (the dependent variable). The CHAID outcome and the results of our correlation
analysis are presented in the next section.

4 Results

The potential flow behavior parameters have been statistically evaluated by observing
how they individually contribute to identify flows that generate large amounts of data.
This section starts by presenting the results regarding our correlation analysis, followed
then by the CHAID classification tree.

4.1 Volume vs considered metrics

Fig. 1. Correlation between octets and
packets.

Fig. 2. Correlation between octets and dura-
tion.

Fig. 3. Correlation between octets and Pps. Fig. 4. Correlation between octets and Bps.

Figures 1, 2, 3, and 4 show the relation of packets, duration, Bps, and Pps with
the number of octets (flow volume), respectively. All figures present both axes with
logarithmic scale. The figures show that there is a linear relation between packets, Bps,
and Pps with octets, but that does not hold in the case of duration. Figure 2 shows that a



flow can have a long duration and a small amount of octets, a short duration and a great
amount of octets, and all in between. On the other side, the metrics packets, Bps, and
Pps walk along with octets in the sense that the bigger those metrics are, the bigger the
flow volume is expected to be generated.

It is worth mentioning that there is a certain degree of linearity among those metrics.
Figure 1 shows a strong linear relationship between the number of packets and flow
volume. Figures 4 and 3, in turn, show a slightly bigger variability in the linearity when
compared to packets. The reason for that comes from the fact that flow duration presents
a strong variability, which affects Bps and Pps linearity when related to flow volume.
For example, we have seen cases in which a lot of packets can be generated in a short
amount of time (high Pps), but it is also possible that a small amount of packets can be
generated in a longer period (low Pps).

In order to quantify this linearity, we used then Pearson’s r correlation, which is
defined as the sum of the products of the standard scores of the two measures divided
by the degrees of freedom:

r =
1

n− 1

n∑
i=1

(
Xi − X̄

sx
)(

Yi − Ȳ

sy
)

where (Xi−X̄
sx

), X̄ , and sx are the standard score, sample mean, and sample standard
deviation, respectively [23]. Table 3 shows the r correlation among our considered pa-
rameters.

Table 3. Pearson’s correlation octets pairwise with other considered parameters

Packets Bps Pps Duration
Pearson’s r correlation for octets 0.927 0.671 0.642 0.058

A correlation of 0 (zero) means that there is no linear relationship between the two
variables. On the other hand, a correlation of 1 means that there is a strong positive
linear relationship between the two variables. As table 3 shows, there is a strong linear
relationship between packets (0.927), Bps (0.671), and Pps (0.642), with octets. On the
contrary, duration does not present a strong linear relationship (0.058). This means that
duration should not be exclusively focused on when trying to predict a flow volume.

Since Pearson’s correlation only shows the relation between two metrics, we used
CHAID in order to see the relation of more than two metrics with the flow volume. For
that, we first divided flow volume into 4 categories according to their size. The 25%
biggest flows are referred as HIGH volume, whereas the 25% smallest flows are named
LOW volume. The medium flow sizes (i.e., the remaining 50%) are then divided into
the 25% biggest medium flows, referred as MEDIUM HIGH volume, whereas the 25%
smallest medium flows are named MEDIUM LOW volume. Once the flow volume is
categorized, we observe how the considered parameters relate to these 4 categories.

Figure 5 partially shows the result of our CHAID classification tree. Only nodes 1
and 10 were expanded for the sake of space. Flow volume is the dependent variable and



Node 0

Category % n

25,0 70945LOW

25,0 70946MEDIUM LOW

25,0 70946MEDIUM HIGH

25,0 70946HIGH

Total 100 ,0 283783

BpsVolume

Node 1

Category % n

78,9 22382LOW

17,2 4895MEDIUM LOW

3,5 990MEDIUM HIGH

0,4 111HIGH

Total 10,0 28378

Duration<= 255,5222

Node 2

Category % n

59,7 16947LOW

30,0 8525MEDIUM LOW

8,9 2535MEDIUM HIGH

1,3 371HIGH

Total 10,0 28378

(255,5222, 617,4076]

Node 3

Category % n

64,7 18368LOW

25,6 7258MEDIUM LOW

8,2 2322MEDIUM HIGH

1,5 431HIGH

Total 10,0 28379

(617,4076, 1022,7583]

Node 4

Category % n

41,7 11833LOW

42,1 11936MEDIUM LOW

13,6 3852MEDIUM HIGH

2,7 757HIGH

Total 10,0 28378

(1022,7583, 1697,9863]

Node 5

Category % n

5,0 1415LOW

65,6 18608MEDIUM LOW

23,7 6734MEDIUM HIGH

5,7 1621HIGH

Total 10,0 28378

(1697,9863, 2731,7209]

Node 6

Category % n

0,0 0LOW

48,9 13867MEDIUM LOW

38,8 10999MEDIUM HIGH

12,4 3513HIGH

Total 10,0 28379

(2731,7209, 4464,7299]

Node 7

Category % n

0,0 0LOW

20,6 5836MEDIUM LOW

56,1 15916MEDIUM HIGH

23,3 6626HIGH

Total 10,0 28378

(4464,7299, 7953,0370]

Node 8

Category % n

0,0 0LOW

0,1 21MEDIUM LOW

57,2 16230MEDIUM HIGH

42,7 12128HIGH

Total 10,0 28379

(7953,0370, 14046,6021]

Node 9

Category % n

0,0 0LOW

0,0 0MEDIUM LOW

39,9 11322MEDIUM HIGH

60,1 17056HIGH

Total 10,0 28378

(14046,6021, 30295,7701]

Node 10

Category % n

0,0 0LOW

0,0 0MEDIUM LOW

0,2 46MEDIUM HIGH

99,8 28332HIGH

Total 10,0 28378

Duration> 30295,7701

Node 11

Category % n

100 ,0 1791LOW

0,0 0MEDIUM LOW

0,0 0MEDIUM HIGH

0,0 0HIGH

Total 0,6 1791

<= 1655,0

Node 12

Category % n

99,6 3834LOW

0,4 16MEDIUM LOW

0,0 0MEDIUM HIGH

0,0 0HIGH

Total 1,4 3850

(1655,0, 2708,0]

Node 13

Category % n

73,7 16757LOW

21,5 4879MEDIUM LOW

4,4 990MEDIUM HIGH

0,5 111HIGH

Total 8,0 22737

Pps> 2708,0

Node 70

Category % n

0,0 0LOW

0,0 0MEDIUM LOW

1,3 46MEDIUM HIGH

98,7 3535HIGH

Total 1,3 3581

Pps<= 354,0

Node 71

Category % n

0,0 0LOW

0,0 0MEDIUM LOW

0,0 0MEDIUM HIGH

100 ,0 24797HIGH

Total 8,7 24797

> 354,0

Node 72

Category % n

85,9 13448LOW

12,0 1878MEDIUM LOW

2,0 310MEDIUM HIGH

0,1 20HIGH

Total 5,5 15656

<= 0,7

Node 73

Category % n

55,0 1412LOW

35,1 902MEDIUM LOW

8,2 211MEDIUM HIGH

1,7 43HIGH

Total 0,9 2568

(0,7, 1,4]

Node 74

Category % n

42,0 1897LOW

46,5 2099MEDIUM LOW

10,4 469MEDIUM HIGH

1,1 48HIGH

Total 1,6 4513

> 1,4

Node 97

Category % n

0,0 0LOW

0,0 0MEDIUM LOW

2,1 45MEDIUM HIGH

97,9 2109HIGH

Total 0,8 2154

<= 48,6

Node 98

Category % n

0,0 0LOW

0,0 0MEDIUM LOW

0,1 1MEDIUM HIGH

99,9 1426HIGH

Total 0,5 1427

> 48,6

Page 1

Fig. 5. CHAID classification tree.

it is the node 0 in the CHAID tree. Node 0 contains the 4 aforementioned categories
for the flow volume. The CHAID method then starts dividing the predictors (i.e., Bps,
Pps, duration and packets) into partitions (nodes) and cross-tabulating them against the
dependent variable (node 0). The predictor that presents the smallest level of signifi-
cance (i.e., the most statistically significant relationship with the dependent variable) is
placed at the first depth of the CHAID classification tree along with its partitions. After
the CHAID method has decided about the first level predictor and its best merged parti-
tions, CHAID begins to place other predictors beneath the initial predictor. The CHAID
method continues this procedure until further sub-divisions cannot be performed.



CHAID chooses Bps as the best predictor for flow volume as it is ranked right
below node 0. From node 1 to node 10 it is possible to see how each group of flows,
classified by their Bps throughput, influences the flow volume. Flows with small Bps
throughput tend to be small in flow size (e.g., node 1). On the other extreme, flows
with big Bps throughput tend to generate large flows (e.g., node 10). The second best
predictor pointed out by the CHAID method is flow duration. CHAID classification tree
shows that flows with high Bps and long durations are those that have the greater flow
volume. Finally, for flows with long duration, those with high Pps are responsible for
most of the volume generated, being therefore Pps the third best predictor. The number
of packets did not show a significant prediction in our model, and it was ignored by the
CHAID method.

CHAID also provides a measure of confidence that the classification model is cor-
rect as presented in Table 4. Table 4 shows the accuracy of our classification tree model
for the 4 observed flow volume categories. It indicates that our classification model
correctly classifies about 89% of the flows while misclassifying a flow volume only
in about 11% of the cases. That high accuracy allows us to assume that our CHAID
classification model correctly selects the proper predictors for the flow volume.

Table 4. The accuracy of our CHAID classification model

Predicted
Observed LOW MEDIUM LOW MEDIUM HIGH HIGH Accuracy

LOW 65,499 5,446 0 0 92.3%
MEDIUM LOW 6,381 60,334 4,231 0 85.0%
MEDIUM HIGH 521 3,016 62,835 4,574 88.6%

HIGH 63 48 7,257 63,578 89.6%
Overall percentage 25.5% 24.3% 26.2% 24.0% 88.9%

CHAID statistically confirms the intuition that Bps and duration are the metrics
to be considered when observing flow volume. In order of importance, Bps, duration,
and Pps (as an optional refinement) are the best predictors. These metrics have more
impact on the flow volume than others. Our self-management of hybrid networks should
therefore take them into account, rather than other metrics, when taking decisions on
moving flows to the optical level.

5 Conclusions and Future Work

This paper presented a statistical evaluation of potential network parameters for our
self-management of lambda-connections. Two research questions were risen:

Research question 1: Which network parameters could be used to predict the vol-
ume of flows? The number of potential network parameters is wide. The selection of
the parameters shall be done depending on a defined objective. Since we focus on the
prediction of the volume of flows, we narrowed down the selection of network parame-
ters, dividing them into two main groups: flow identifiers parameters, and flow behavior



parameters. The former was exhaustedly researched in previous works of ours [17] [18]
[19]. The latter group was the focus of this paper and resulted in the evaluation of the
parameters: duration, packets, Bps, and Pps.

Research question 2: How can these parameters be evaluated? These metrics were
evaluated by using statistics methods. We started with conditional probability to know
when most of the flows gets stable regarding to their duration. We found out that flows
with a minimum duration of 5 minutes have 89% of chance of continuing running for
at least the next minute. Our next statistical step was to find out correlation among
the considered parameters. Even though initially some metrics such as duration and
Bps were intuitively expected to influence flow volume, little was known about how
strong this influence could be. Moreover, we were not aware if there were any other
unsuspected parameters (e.g., Pps and packets) that could have significant influence to
flow volume. To solve this uncertainty, we used first Pearson’s r correlation. Pearson’s
correlation showed that packets (r = 0.927), Bps (r = 0.671), and Pps (r = 0.642) have
a strong linear relationship with flow volume, while duration (r = 0.058) has not. Thus,
since all parameters have certain influence on the flow volume, they should not be used
alone, but in groups. We used then CHAID technique to analyze that. As evaluated by
CHAID, Bps and duration are the best predictors for flow volume, followed by Pps.
Even though packets was considered by Pearson’s correlation as the parameter with the
strongest linear relationship with flow volume, the total number of packets can only be
known after the end of a flow, being therefore inadequate to predict flow volume.

As future research, we aim at performing further investigations on Bps and duration
parameters. We will investigate how to use them in a tuning process for our decision
process to take automatic and online decisions to offload elephant flows.
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