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Abstract. The analysis of network traces often requires to find the spots
where something interesting happens. Since traces are usually very large
data-sets, it is often not easy and time intensive to get an intuitive under-
standing of what happens within a given trace. Through the use of suit-
able data visualization techniques, it is possible for humans to identify
noteworthy spots or characteristics of a trace much faster. Particularly
interesting properties of a certain class of network traces are node inter-
action dynamics, that is how the traffic matrix between nodes evolves
over time and the pattern of messages exchanged between nodes. This
paper presents some tools visualizing node interaction dynamics that
were developed to assist network trace analysts.
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1 Introduction

The collection of network traces is necessary in order to understand how network
protocols are used in operational networks and to validate simulation models that
are frequently used to evaluate new protocols. While the collection of network
traces is technically relatively straightforward, it turns out that the analysis of
the collected data is challenging due to the volume of network traces and the
difficulty to identify the spots of a trace where interesting observations can be
made. The later problem can be tackled by generating suitable visualizations
so that the perception capabilities of humans can be exploited to identify spots
effectively.

Most network trace analysis tools provide graphical displays of traffic over
time, showing traffic breakdowns in different time resolutions. While useful to get
a first overview, such traffic plots are not sufficient in order to develop a deeper
understanding of the exchanges captured in a network trace. For understanding
certain traces, it is essential to develop an understanding of the interaction dy-
namics. A simple example are network or port scans where the scanning strategy
reveals some insights about the tools an attacker might have used.

Another example are traces covering a specific type of traffic that is expected
to exhibit a certain behaviour. Some of our previous work has been related to
the collection and analysis of network management traces, and in particular
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SNMP traces [1, 2]. Initial results were published in [3] where we showed some
simple static visualizations of the SNMP topologies discovered in our traces.
While the simple static visualizations proved to be useful (one trace showed
some unexpected anomalies due to dynamic address assignments), the static
topology visualizations do not provide insights about the interaction dynamics.
In particular, it is not possible to determine whether a data collection engine
spreads the data retrieval traffic over a polling cycle or sends a burst of polling
requests at the start of each cycle. Furthermore, it is not possible to see whether
there are topology changes or if there are patterns of topology changes. (Note
that topology changes on the management plane are usually caused by devices
or links failing or returning back to their normal operational state.) To address
these questions, we need to visualize the node interaction dynamics in a way such
that it is possible to observe a pattern on a trace spanning days, even though
the messages are exchanged with a round-trip time measured in the order of
microseconds.

We started our investigation of node interaction visualization techniques by
asking the following two questions:

– To what extent can existing tools help in visualizing node interaction dy-
namics?

– Is it possible to develop generic solutions that can be used for different types
of traces?

The rest of the paper is structured as follows. We first review in Section 2
the state of the art in SNMP trace analysis and in network data visualization.
We then describe an experiment to use the network animator (NAM) for the
visualization of node interaction dynamics of SNMP traces in Section 3. Section 4
discusses a second experiment where we used a Java graph drawing library to
visualize topology changes in SNMP traces. We briefly describe how we applied
the tools to NetFlow traces in Section 5 before we draw our conclusions in
Section 6.

2 Related Work

The Simple Network Management Protocol (SNMP) [4] is widely deployed to
monitor, control, and (sometimes also) configure network elements. Even though
the SNMP technology is well documented, it remains relatively unclear how
SNMP is used in practice and what typical SNMP usage patterns are. In order
to get a better understanding how SNMP is utilized by network management
applications, an effort was started to collect SNMP traces from operational net-
works [3]. The Network Management Research Group (NMRG) of the Internet
Research Task Force (IRTF) produced an RFC [1] explaining the motivation be-
hind the SNMP trace collection effort and specifying two trace storage formats
that ease the exchange of traces between tools.

Static properties of several SNMP traces have been analyzed in [3] and a spe-
cific graphical representation has been introduced to visualize static SNMP flow
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topologies. Subsequent work to understand periodic pattern in SNMP traces,
carried out at the University of Twente, made it obvious that a common ter-
minology and a clear set of definitions are needed in order to produce results
that are well defined and comparable. The common terminology resulting from
this work has been published in [2]. Researchers at the Federal University of Rio
Grande do Sul created an online system visualizing SNMP traces. Their system
produces SNMP flow topology graphs similar to the graphs introduced in [3],
plus MIB tree and time series graphs [5].

Most network data visualization work has focused on developing effective
mechanisms to visualize large static data-sets. In the rest of this section we will
review related work on topology visualizations and on NetFlow data visualiza-
tions.

Early work on the visualization of network topologies was done in the 1990s.
The authors of [6] and [7] developed basic radial and geographic representations.
More recent work often focuses on the visualization of Autonomous Systems (AS)
routing topologies [8, 9]. Linear IP address spaces are sometimes displayed in two
dimensions using space filling curves [10–12], as this technique allows to show
aggregations with common prefixes. To visualize network activities, three dimen-
sional cube visualizations have been suggested, mapping source and destination
addresses and port numbers [13, 14]. These cube visualizations indicate interac-
tion dynamics, although they can be hard to read due to the two-dimensional
projection on computer displays.

NetFlow data is usually associated with time series displays such as those gen-
erated by RRDtool1. Radial layouts for visualizing NetFlow data were suggested
in [15], while hierarchical network maps resembling treemaps were proposed in
[16]. The work described in [17] proposes to display edge bundles on top of hi-
erarchical network maps. The Isis system described in [18] provides visual flow
data representations designed to make temporal relationships apparent and to
allow for visual classification of events to reveal traffic structure. Most of these
visualization systems focus on the visualization of static properties of NetFlow
data. While the Isis system supports the interactive exploration of traces, it does
not aim at animating node interaction dynamics.

3 Experiment #1: NAM

In our first experiment, we visualize the exchange of SNMP messages between
managers and agents in order to highlight how SNMP monitoring engines dis-
tribute the polling load over time. While doing the conceptual design of the trace
visualizer, it became apparent that what is being displayed should be decoupled
from the how to display it. For describing what should be displayed we had
to write our own tools because the SNMP trace format is relatively new and
there are no powerful processing tools readily available yet. The comma sepa-
rated values (CSV) SNMP trace format defined in [1] is very easy to parse in

1 http://oss.oetiker.ch/rrdtool/
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almost any programming language. Once the traces are parsed the flexibility of
the programming language allows for any filter to be described and any output
format to be used. We have used the programming language Python [19] in our
experiment for it’s rapid prototyping features. For visualization, we needed a
tool that uses an open format and is able to display network topologies (graphs)
and messages traversing the topology. We have chosen the popular network ani-
mator nam due to its ability to visualize the exchange of messages between nodes
and our familiarity with this tool.

We first describe the network animator used for the experiment. We then
describe how we convert SNMP traces into input files for the network animator
before we present and discuss the visualization results.

3.1 Description of nam

The network animator2 (nam) is distributed as part of the ns2 simulation software
package. It is mainly used to visualize traces generated by the ns2 simulator.
The nam tool is implemented in a mixture of C++, Tcl/Tk [20], and an object-
oriented extension of Tcl. In general, the animation software is not easy to modify
due to the high learning curve involved in understanding the interplay of the
different programming languages involved.

The network animator reads a simulation trace file (also called a nam trace
file), computes a graph layout for the recorded network topology, and after-
wards it animates the messages passing over the links connecting the nodes. The
graphical user interface provides controls to pause the animation, to change the
animation speed, to zoom in and out, and to recalculate the graph layout or to
manually reposition nodes.

The nam input file uses a relatively simple textual line-oriented format. We
only describe a subset of the features here that we have used in our experiment.
A nam trace file starts with a header containing version information, the list
of nodes, and the list of links connecting the nodes. The version line has the
following format:

V -t * -v 1.0a5 -a 0

The character V indicates that this is a version definition and the version number
1.0a5 is passed as the argument to the -v option. Nodes are defined using lines
of the following format:

n -t * -a %d -s %d -S UP -v circle -c black -i black

The character n indicates that this is a node definition. The -t * parameter
defines that this event does not have a time attached. The -a and -s parameters
define the address and the id of the node. The -S parameter defines the node
status while the -v parameter specifies the shape of the node and the -c and
-i parameters specify the color of the node. Links connecting nodes are defined
using lines of the following format:
2 http://isi.edu/nsnam/nam/
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l -t * -s %d -d %d -S UP -r %d -D %f -c black

The character l indicates that this is a link definition while the -t * parameter
again indicates that this definition does not have a time attached. The -s and -d
parameters specify the id of the source and destination nodes. The -S parameter
defines the link status and the -c parameter the link color. The -r and -D
parameters specify the data transmission rate of the link and the delay associated
with the link. Finally, the color header lines specify the color coding of message
types:

c -t * -i %d -n %s

The character c indicates that this is a color definition. The parameter -t *
again indicates the time of the event. The parameter -i specifies the id of the
color while the -n parameter carries a color name (according to the X11 color
database). Following the nam file header, network message events are encoded
using the following format:

h -t %f -s %d -d %d -e %d -c %s -i %d -a %d

The character h indicates a hop event. The parameter -t specifies the time of
the event while the parameters -s and -d specify the source and destination
node id of the message. The parameter -e carries the message size while the
-c parameter carries a conversation identifier and -i a message id. The color
of the message is specified using the -a parameter. Next to hop events, we use
receive events. They have the same format in the nam trace file, except that the
character h is replaced by the character r.

3.2 Conversion Algorithm for SNMP Traces

In order to use the network animator, we wrote a program to convert SNMP
traces into the nam trace format. The program reads SNMP traces in the CSV
format defined in [1]. In order to generate the nam header with the complete
node and link list, our program needs to read the whole CSV file before nam
output can be produced. In order to be able to share visualizations with other
researchers and the public, we took care that our converter hides information
such as IP addresses and absolute time-stamps.

For each transport address in the SNMP trace file, a node with a unique id
is generated. The id is not derived from the transport address contained in the
trace file. The links are inferred by determining all pairs of transport addresses
that exchanged SNMP messages and translating this to source/destination node
ids. For SNMP traces, the number of nodes and links encountered is usually
small [3]. Finally, we generate for each SNMP message two nam trace events,
namely a hop event and a receive event. The SNMP message events are color
coded, allowing network analysts to distinguish easily between different request
message types and responses.

An important issue is the time scale. Our visualization is designed to display
traces covering weeks. However, in a real scenario, packets travel the network in
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fractions of a second. Any decent time scale that will allow a user to view the
entire data-set will make the SNMP messages almost invisible. For this reason we
tweak the network properties in the following way: we change the delay assigned
to a link to 60 seconds. This is unrealistic, but it helps to make packets visible for
longer time periods since it allows users to select faster than real-time timescales
and still be able to see SNMP messages being sent. This change also helps to
obtain a general overview over the network because the user actually sees all the
data in the last 60 seconds. Another issue is the data rate of the links. It is used
by the network animator to display the size of the message (in conjunction with
the delay). For this reason, a 150 byte message on a 1Mbps link is too small
to be displayed. Therefore we have also decreased the rate of the links down to
1kbps.

3.3 Results and Discussion

The generation of topology layouts is left to the network animator. Our conver-
sion program does not provide any hints to the network animator concerning
the graph layout.

Fig. 1. Network layout calculated by nam

Figure 1 shows a typical layout calculated by NAM. In this trace, two man-
ager applications monitor an almost disjoint set of network devices. (Note that
this layout is different from the layouts described in [3] since it is based on the
network addresses of the nodes involved and does not distinguish different SNMP
flows to the same endpoints.)
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(a) Message waves (b) Dispersed messages

Fig. 2. SNMP interaction dynamics visualized in nam (trace l06t01)

Figure 2 shows screenshots from a visualization of trace l06t01 (see [3] for
more details about this trace). The left part (a) shows a manager polling de-
vices by sending requests at about the same time to many devices. The devices
respond with roughly the same delay causing subsequent requests to be sent out
at roughly the same time as well. This leads to message “waves” in the visu-
alization. The right part (b) shows a manager distributing the messages well
over time, thereby avoiding bulky request/response waves. Part (b) also shows
notification messages originating from one agent to inform the manager of some
events.

Fig. 3. SNMP message interaction details

Figure 3 shows some details highlighting the visualization of request/response
interactions over a single link. Due to the adaptation of the link properties
(delay and data rate), a request and the corresponding response usually appear
traveling on a link at the same time.

4 Experiment #2: NetViz/JUNG

In our second experiment, we aim at visualizing the changes of the manager
/ agent topology over time by calculating topology-change dynamics graphs.
A topology-change dynamics graph is a undirected graph showing the relation
between nodes based on the recorded activity. If a message between node X and
node Y has been seen in the last tlink seconds, there is an edge between the
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nodes in the graph. If no activity has been seen on the link for a period of tlink

seconds, the edge between the nodes is removed. Once a node remains with no
active links attached to it (no edges on the graph), a timeout timer is fired and
if no link attaches to it for tnode seconds, the node is removed from the graph.
In general, one can expect that the relationship between SNMP managers and
agents is rather static. Changes usually occur if there is a (notable) event in the
network (devices powering up / down, notifications emitted that do not happen
regularly). To understand a trace, it is therefore a good approach to find such
topology changes and to further analyze them.

4.1 Description of NetViz/JUNG

In order to create topology-change dynamics graphs for traces that can be very
large in size, we decided to take a two step approach similar to the way the
network animator works. We have implemented a graph animation tool called
NetViz that reads an ordered timestamped list of events as input (addition of a
vertex, addition of an edge, removal of a vertex, removal of an edge) and runs
the animation. An additional program is used to read trace files and to produce
the intermediate file containing a timestamped list of events. One benefit of this
approach (besides increased modularity) is that animation scripts are usually
several orders of magnitude smaller than the original trace files they are derived
from.

The animation file format is very simple. Each line has the following basic
format:

<timestamp> <action> <identifier>

The <timestamp> of the first line contains an absolute timestamp while all sub-
sequent timestamps are relative. The <action> is one of Va, Vr, Ea, Er (vertex
add/remove, edge add/remove) and the <identifier> is a unique identifier for
the vertex / edge to be added / removed.

For the visualization of the topology, we used the Java Universal Network
/ Graph Framework3 (JUNG), a software library for the modeling, analysis,
and visualization of data that can be represented as a graph or network [21].
The library supports a number of different graph layout algorithms, clustering
algorithms, and user interface controls such as lenses. The library makes it easy
to write Java [22] programs that dynamically update the graph by adding nodes
and edges while the displayed layout is dynamically recomputed. We added a
simple graphical user interface (GUI) with a few controls around the JUNG
framework.

4.2 Conversion Algorithm for SNMP Traces

The conversion program reads an SNMP trace in the CSV format defined in
[1] and internally constructs a graph. Nodes are identified by their IP addresses
3 http://jung.sourceforge.net/
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and edges are identified by the IP addresses of the endpoints, independent of the
direction of message exchanges. To each node and edge, there is a time-to-live
counter attached, initialized with the values tnode and tedge, passed as command
line arguments. The timer for an edge starts running from the moment it is
added to the graph, while the timer of a vertex starts running when there are no
more edges connecting this vertex to other vertexes. The default value for tnode

and tedge was set to 600 seconds.

4.3 Results and Discussion

The graph visualizer reads the animation file and draws the graph as it changes
over time. The placement of the nodes on the canvas is done according to a
relaxation algorithm, which considers each edge as a spring and finds the node
configuration with minimum potential energy. When vertexes or edges are in-
serted or removed, the new configuration is relaxed until it reaches a minimum
again.

Fig. 4. Dynamic network layout calculated by NetViz/JUNG (trace l06t01)

The GUI of the application, shown in Figure 4, provides a label with human
readable time of the replay, based on the timestamps, which are in seconds since
the Epoch, and a timeline with the regions of activity marked on it. Since in
most of the cases the configuration of the graph remains intact for most of the
time and just has several peaks of activity over the whole time period, running
the animation at a constant speed is somewhat boring as nothing is happening
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most of the time. To deal with this, we introduced an idle speed at which the
animation runs when there is no activity. Once it gets close to some activity, the
animation switches back to normal speed, so that the user can see what changes
exactly are taking place on the graph. The normal and idle speed can be passed
as command line arguments, or otherwise default to 300 real-world seconds per
1 second animation time for normal speed and 6000 real-world seconds for idle
speed.

The application allows for interaction with the canvas by moving it with the
mouse (pulling with the hand tool) and zooming in and out with the mouse
wheel. Further controls to move the timeline and to pause the animation are
possible but have not been realized yet at the time of this writing.

Fig. 5. Enlarged timeline display of Figure 4

Figure 4 shows a typical situation of a few SNMP managers polling peri-
odically a set of SNMP agents. The nodes are identified by labels indicating
whether they act as a manager (labels starting with m) or an agent (labels
starting with a). The timeline shown at the bottom of the window indicates
when changes happen in the topology. Figure 5 show a zoom-in on the timeline
of the configuration of Figure 4. The topology changes at the beginning of the
trace are usually caused by adding nodes and edges until a stable situation has
been established and as such usually do not indicate events of special interest.
(An option to address this could be to suppress topology change events in the
first tstartup = max(tnode, tedge) seconds).

Our experience using this tool and, in particular, the adaptive replay mech-
anism has been very positive. In fact, the activity timeline itself gives valuable
insight into the traces since changes to the topology-change dynamic graphs
likely indicate events of some significance. A shortcoming of the current imple-
mentation is, however, that the removal of nodes and edges can lead to rather
drastic changes of the graph layout. To deal with this, we are experimenting with
strategies where nodes and edges first become invisible for a while so that a node
/ edge disappearing and reappearing shortly later does not cause instabilities in
the graph layout.

5 Application to NetFlow Traces

The tools described in Sections 3 and 4 were originally developed to visualize
SNMP traces. It turned out that it was straightforward to modify the translators
so that they can parse NetFlow [23] traces and produce intermediate files for the
visualization tools. Of course, flow traces collected at backbone routers need to
be filtered and / or aggregated appropriately for the tools to produce meaningful
node interaction visualizations.



Visualization of Node Interaction Dynamics in Network Traces 11

For the nam conversion, some adaptations are required since flow traces only
record the start and end of a flow, plus the number of bytes and packets ex-
changed. In order to enhance the visualization, we decided to choose the size
and density of the visualized packets solely based on the duration of a flow. The
source emits packets as long as the flow is present. The packets travel slowly
in order to enhance the visualization. This also has the nice effect that very
short flows will still be visible, so it is possible to go faster through an animation
without losing a lot of details.

We are currently interested to understand flow patterns generated by per-
sonal hosts and specific applications. In particular, we like to answer the question
to what extend flow patterns can be used to identify machines or even users. We
assume that flow pattern generated by a certain host or user can serve as a
fuzzy fingerprint and we are trying to explore techniques to identify hosts or
users based on such fuzzy fingerprints. In order to evaluate whether this is fea-
sible, we started an effort to collect flow records on end user devices such as
notebooks. These traces are reasonably small in size and with some limited fil-
tering one can achieve useful visualizations of interaction dynamics in order to
identify characteristic patterns.

Fig. 6. Visualization of NetFlow traces using nam

Figure 6 shows a screenshot of nam visualizing the traffic generated by a
notebook during one day. The screenshot shows some Web browsing activity
of the user of the notebook at a certain point of time. By moving through the
timeline, it is possible to easily identify periods of high activity and sites visited
frequently. To further improve the visualization results, it is useful to pre-process
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the NetFlow traces by aggregating IP addresses so that, for example, different
IP addresses of Google servers appear as a single node.

6 Conclusions

Most existing visualizations of network traces focus on the static properties of the
traces. Since our goal is to understand the dynamics recorded in network traces,
we did some experiments to create visualizations of node interaction dynamics
using readily available tools or libraries.

We found that with relatively little effort, it is possible to adapt tools or
libraries to produce meaningful visualizations of interaction dynamics. However,
effective integration of the tools / libraries remains a major problem. To be
effective, a network analyst must be supported by multiple different visualization
views of the same data and user interactions must be reflected on all views. To
achieve this, much more development work is needed.

Our experience with nam is two-fold: On the one hand, it was very easy
to get started since the nam intermediate file format is easy to generate and
debug. However, the graph layout algorithm used by nam is not producing very
satisfying results for larger graphs (e.g., ineffective use of the canvas space and
many overlapping nodes) and the zooming capabilities help to to deal with this
shortcoming only to some extend. Furthermore, we found that the speed of the
animation does not scale well for larger trace files. As the nam tool is written in
Tcl/Tk (with some parts in C/C++), it is not easy to extend it since the effort
of learning how the nam tool has been implemented is relatively high.

Our experience with the JUNG graph drawing framework has been mixed as
well. The graphs produced by the JUNG library generally look nice and using
the Java library is rather straightforward due to good documentation and many
readily available examples. While the performance of the graph layout algorithms
is generally good, we did experience performance difficulties when we tried to
animate more complex graphs. This is mainly a Java limitation since drawing
on a canvas is relatively costly and does not exploit the capabilities of modern
graphics hardware.

While we started with SNMP traces with very specific properties (dominant
regular polling traffic with a relative stable communication matrix), it turned
out that some of the tools we created could be adapted easily to deal with other
trace formats. The decoupling of visualization software from specific data sources
through intermediate file formats has proven to be a big win here. Unfortunately,
some other openly available visualization tools we looked at do not support such
intermediate formats and integrating their visualization capabilities or adapting
these tools to different trace formats requires much more involved programming
efforts.

Based on the experience we have gained by using nam and NetViz/JUNG
for the visualization of node interaction dynamics, we are currently implement-
ing a new visualization tool called snam that utilizes the Open Graphics Library
(OpenGL) [24] and is able to take advantage of the capabilities of modern graph-
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ics hardware. We plan to further develop our tool towards an integrated trace
visualization environment that consists of a loosely coupled set of visualization
and data conversion tools that can be orchestrated as needed for a given trace
analysis task.
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