
Knowledge Management and Promises

Mark Burgess

Oslo University College, Norway
mark@iu.hio.no

Abstract. Ontological modelling for machine inference has featured
prominently in IT management research recently, but there is more im-
mediate scope for knowledge modelling in the realm of human inference.
This work discusses the relationship between ISO Standard Topic Maps
and Promise Theory and shows how these two knowledge models models
complement one another and offer a semantic approach to policy based
management that can reduce organizational information complexity.

1 Introduction

Ontological modelling has been discussed at length as a way of using domain
knowledge to enhance web services for IT management. Ontology models typi-
cally involve complex XML markups intended for such smart web interfaces [1–4]
but do little to aid human understanding. Unfortunately, semantic inference in
automatic systems is beset with difficulties: the overhead in both modelling and
processing tends to lead to benefits that are either simplistic to humans or have
problems that are intractable to machines. The reason for this seems to be that
semantics are the domain of human imagination, not of machine logic. This sug-
gests a return to a division of labour between humans and machines in which
each party does what is most natural to it. Humans are good at reasoning and
associative thinking when provided with quality information, while machines are
good at consistent, repetitive implementation and rather poor at reasoning. This
is the starting point for this work.

Semantic modelling of information pre-dates the Web by several years in fact.
Topic Maps, discussed in this work, were originally invented as a form of elec-
tronic book-index, enhanced with associative thinking [5]. They have since fallen
into the shadow of efforts surrounding the semantic web research, but wrongly
in the opinion of the author. Topic maps appear simpler than the general ontol-
ogy languages of the semantic web and they are designed for human appraisal
rather than machine inference. Topic maps also have a simple relationship with
the theory of promises, which this paper aims to make use of.

2 Promises and topics

The concept of promises was introduced into IT management in 2005 as a fresh
approach to the problems of conflicts in policy based management [6]. The

heuristics and extended motivation for the model were described later in [7].
Promises provide a model for abstracting the intention behind operations from
the operations themselves, and have attractively simple algebraic and semantic
properties. The core of promise theory is the autonomy of agents that are able
to make promises, and the subsequent notion of voluntary cooperation, replac-
ing the problematic notion of obligation. This leads to many theoretical and
practical simplifications. The reference implementation of promise theory as a
technology is Cfengine [8], which forms an integral part of the discussion below.
Every statement made in the essentially declarative cfengine language can be
understood as being part of a promise.

This declarative manifesto, backed up by practical guarantees of outcome
reachability [9], has an important implication for automated management: the
complete separation of intent from action means that what remains for the hu-
man is to model intent. This is a form of knowledge management, and thus the
focus moves from implementation to knowledge.

Knowledge management is a field of research in its own right, and it covers
a multitude of issues both human and technological. Most would agree that
knowledge is composed of facts and relationships and that there is a need both
for clear definitions and semantic context to interpret knowledge properly; but
how do we attach meaning to raw information without ambiguity? This is an ad
hoc association which follows human social conventions, and is therefore poorly
suited to machine reasoning.

Knowledge has much in common with configuration: what after all is knowl-
edge but a configuration of ideas in our minds, or on some representation medium
(paper, silicon etc). It is a coded pattern, preferably one that we can agree on
and share with others. Both knowledge and configuration management are about
describing patterns.

Previous models of management have been based on pure data modelling and
the assumption ‘guaranteed’ change in accordance with the data [1, 10]. What
makes Topic Maps attractive compared to other more complex ontology tools is
that they are intended for human reasoning (something humans are very good
at), not for machine inference (which is something machines have rarely been
very good at). Moreover, although they sound like very different animals, Topic
Maps and Promises are in fact homomorphic and complement one another in a
neat, symbiotic relationship.

The reasoning may be summarized as follows: a simple knowledge model can
be used to represent a simple policy configuration model; conversely, a simple
model of policy configuration can represent indeed manufacture a knowledge
structure, and there is a natural promise engine that can implement this map-
ping: cfengine.

The Topic Map and Promise models are compatible because they appeal to
the same basic world-view: principles for reduction of knowledge into atoms and
the autonomy of concepts that automatically avoids overlap and conflict. Both
models effectively use the idea of autonomy of entities and a simple context

based data model that allows them both to represent their subjects, as well as
one another, in a homomorphic way.

3 The promise model

3.1 Promise theory

Promises are a modelling framework (see [6]) that presents a decentralized view
of behaviour in systems. Promise theory describes the intentions and attributes
of system artefacts (i.e. anything from system components to ideas), which are
autonomous in the sense that they can change independently.

A promise is the announcement of an intention [7] (usually expected to repre-
sent a possible future) and it requires verification to confirm eventual compliance.
Promises are not events but conditions (states) that persist in the memory of
recipients who are in the scope of the promise. A promise is more than an inten-
tion, since an intention need not be announced, and it is less than a commitment
since a commitment often involves an investment or action plan for keeping the
promise.

Promises are made by a promiser ‘agent’ to a promisee ‘agent’, i.e. they
are directed relationships each labelled with a promise body which describes
the substance of the promise. A promise with body +b is understood to be
a declaration to “give” behaviour from one agent to another (possibly in the
manner of a service), while a promise with body −b is a specification of what
behaviour will be received, accepted or “used” by one agent from another (see
table 1). A promise valuation vi

(
aj

b→ ak

)
is a subjective interpretation by agent

ai (in a currency of its choice) of the value of the promise in the parentheses; this
can be used for ranking of importance, for example. The value can be negative
if it is pure cost. Usually an agent can only evaluate promises in which it is
involved.

Symbol Interpretation

a
+b→ a′ Promise with body b

a′
−b→ a Promise to accept b

va(a
b→ a′) The value of promise to a

va′(a
b→ a′) The value of promise to a′

Table 1. Summary or promise notation

A promise body b has a type which describes the nature or subject of the
promise, and a constraint which explains what restricted subset of the total
possible degrees of freedom are being promised. Since any dynamical, systematic

behaviour is a balance between degrees of freedom (avenues for change) and
constraints, this is sufficient to describe a wide variety of phenomena.

Promise theory is mainly about the analysis of epochs in which promises are
essentially fixed. If basic promises change, we enter a new epoch of the system
in which basic behaviours change. Thus promise theory is mainly about steady-
state behaviour about which one can accumulate lasting knowledge.

3.2 Promises in cfengine

Cfengine 3 is the reference implementation of promise theory as a technology
for configuration. It allows promises to be expressed as a language and kept by
software automation. Cfengine’s representation of a promise has the following
generic form:

promise-type:

context-classifiers::

promiser-object -> { list of possible promisees },

comment => ‘‘Expression of intention’’,
body-attribute-1 => value-1,
...
body-attribute-n => value-n;

Such declarations are grouped into ‘promise bundles’. Such a statement encodes
a single promise, for example:

files:

linux||solaris::

"/etc/shadow" -> { "ISO17799 team", "other promise" },

comment => "Check integrity of the shadow file",
changes => record_hash_changes(),
perms => my_perms("root","0600");

This partially disclosed promise is directed at a team of humans and at another
promise that depends on this one. It concerns the file /etc/shadow. The scope
or context of the promise is the set of all agents that belong to the classes linux
or solaris, and the body of the promise contains the properties that the file

should have: namely a particular owner, a particular set of access rights to the
file and a static hash signature.

Cfengine views this initial declaration as a promise proposal, which is intended
to apply to any host or agent in scope. The declaration of the suggested promise
is typically made at some central location where management is centralized.

Other hosts that are not represented in the scope are supposed to ignore
the promise proposal, but hosts that lie in these classes will normally take this
promise proposal at face value and try to keep it, as if it were a command,
although there is no way of actually forcing them to do this. Indeed this voluntary
behaviour represent another kind of retractable promise, namely one to accept
these suggestions and implement them in the first place. At every step, the
cooperation by agents is voluntary, but the effect is to set up an entirely prosaic
workflow.

There are many different types of promise that one can make in cfengine.
The engine is extensible and different agents are provided to keep different kinds
of promises. The component cf-agent, for instance, can make promises to con-
figure the resources of computers. With the advent of cfengine 3, a knowledge
management component was introduced called cf-know, in which topic map
relationships could be promised. Cfengine forms the basis by which one might
integrate the management of declarative knowledge about configuration promises
with the intentions and implementations of the declarations.

4 The topic map model

4.1 Introduction

Let us now examine the topic map model. Topic maps were originally designed
for creating generalized electronic book-indices. They pre-date the World Wide
Web by several years yet they work effectively as a semantic web of subject
references and document pointers. The basic model is effectively described in
terms of the TAO: Topics, Associations and Occurrences [11].

A topic is representation of any subject one wishes to discuss, abstract or
physical e.g. an item of ‘abstract knowledge’, which might have a number of ex-
emplars. It might be a person, a machine, a quality, etc. Topics may be classified
into topic-types so that related things can be collated and unrelated things can
be separated, e.g. types allow one to distinguish between rmdir the Unix utility
and rmdir the Unix system-call. Each typed topic can further point to a num-
ber of exemplars called occurrences, which might include documents, database
entries, physical manifestations and other information references that exemplify
or are about the topic. Occurrence references are like the page numbers in an
index. Unlike an ordinary index, a topic map has a rich (potentially infinite)
variety of cross reference types.

A book index typically has ‘see also’ to refer from one topic to another. Topic
Maps allow one to define any kind of association between topics. For instance,

topic_1 ‘‘is a kind of’’ topic_2

topic_1 ‘‘is improved by’’ topic 2
topic_1 ‘‘solves the problem of’’ topic_2

and so on.
The topic map model thus has three levels, in order: types, topics and occur-

rences. These all label different levels of granularity. Types are exemplified by
topics, which in turn are exemplified by occurrences (though in a different way).
The primacy of topics in this hierarchy stems from their ability to form networks.
Thus, while topic-type classifications and occurrences are disjoint entities, topics
willfully connect in a space of associative interconnectedness.

The classic approach to information modelling is to build a hierarchical de-
composition of non-overlapping objects. Entity relation models and object ori-
ented class hierarchies force all occurrences of data to lies in a rigid informa-
tion model. The data are forcibly manipulated into non-overlapping containers
which often prove to be overly restrictive (cf. the need for aspect orientation and
‘friends’ in Object Orientation etc).

Occurrences

Topics

Type containers

Fig. 1. Topic maps as a concept transducer: abstract topics live inside abstract clas-
sifiers or types, but can network independently. Topics ‘shine different lights’ on the
concepts they represent called occurrences.

Each topic allows us to effectively ‘shine a light’ onto the occurrences of
information that highlight the concepts pertinent to the topic somehow (see
fig. 1). Formally topic maps use the term ‘occurrence-types’ to label individual
topic’s relationships to (viewpoints on) their occurrences; occurrence relationship
types are not necessarily sub-types of the topics. Topics and occurrences are
not classified into Draconian disjoint sets by their types: indeed, this is what

allows topic maps to exceed simple hierarchical data modelling. Topic maps
(networks of associated topics) bridge the world of concepts and exemplars by
working as a ‘concept transducer’ that shines multiple lights onto the real world
of occurrences.

The topic map model is an ISO standard that is quite rich in possibilities [5].
As a framework, the model has a simplicity to address the real problems of
information complexity, but it lacks an operational road-map for usage. The
same can be said about cfengine, which also provides a framework without a
road-map. The key observation to integrating topic with promises is this: topic
maps can represent the knowledge declared in a set of promises. They can model
the relationships between the parts and types of a promise, they can point to
occurrences of the promise made by multiple parties and they can discuss the
abstract intentions of the promises with references to other literature. Promises
on the other hand can describe how to build a topic map, its configuration and its
maintenance. There is thus a natural duality between topic maps and promises.

4.2 The Cfengine Topic Map Model

Cfengine is a ‘self-healing’ management automation system, meaning that it can
adapt to change and repair errors without human intervention. it was created
by the author in 1993 [12]. It currently consists of a number of components
that run on each individual (i.e. autonomous) computer in a network, and each
computer typically voluntarily collects promise suggestions from a single point of
management. The components are all able to make promises, e.g. cf-agent can
make (and keep) promises about configuration changes, while cf-monitord can
make promises about system data collection, etc. These components integrate
to form maintenance loops.

Cfengine’s knowledge agent cf-know makes promises about knowledge rela-
tionships, using the model of topic maps. It is not a generic topic map language:
it provides a configuration language for managing a knowledge base that can
be compiled into a topic map. The full ISO standard topic map model is suffi-
ciently rich to capture a general topic index, indeed it is almost too rich to be a
useful tool for system knowledge management. However, this is where powerful
configuration management can help to simplify the process: encoding a topic
map is a complex problem in configuration, which is exactly what cfengine is
for. Cfengine’s topic map promises have the following form:

topics:

topic_type_context:: # canonical container

"Topic name" # short topic name

comment => "Use this for a longer description",

association => a("forward assoc to","Other topic","backward assoc");

"Other topic";

occurrences:

Topic_name:: # Topic

"http://www.example.org/document.xyz" # URI to instance

represents => { "Definition", "Tutorial"}; # sub-types

A topic declaration involves a type, in topic map parlance, which maps to a
scope or class context in cfengine. The topic-type is itself a reference to a con-
tainer topic, since a type is also a topic. Topics of given types form disjoint sets;
however topics of the same name may exist in several types, e.g. Cfengine (the
software) or Cfengine (the company). Each topic effectively promises to have a
name and a number of associations with other topics. In the cfengine mapping,
this is made explicit. The type of a topic is simply the cfengine class canonical-
ization of the topic name used as a scope; in practice this means converting non
alphanumeric characters into underscores and adding the double-colon.

The distinction between topic and topic-type is to some extent immaterial in
a topic map; at one level, a type relationship is just another kind of association
between topics. However, type is used differently: its describes disjoint classifiers
(cfengine is an instance of software, or cfengine is an instance of company), where
as associations are used more generally at the conceptual level to link topics of
any type into a network without boundaries (cfengine ‘is used to implement’
promises, or promises ‘may be used to configure’ a topic map).

Cfengine’s rendition of Topic Maps is simplified even further. It does not
implement the full ISO standard, but rather a subset that is necessary and
sufficient to be isomorphic with promises. Promise theory adds a clear structure
to the topic map ontology, which is highly beneficial as experience shows that
weak conceptual models lead to poor knowledge maps. The result is a language
for making simple topic maps which (although it does not support the entire ISO
standard) is both simpler and adds powerful features allowing variable expansion,
re-use and more structured bundling of data.

5 Modelling configuration promises as topic maps

We can model topic maps as promises within cfengine; the question then remains
as to how to use topic maps to model configurations so that cfengine users can
navigate the documented promises using a web browser and be able to see all
of the relationships between otherwise isolated and fragmentary rules. This will
form the basis of a semantic Configuration Management Database [13] (sCMDB)
for the cfengine software. The key to making these ends meet is to see the
configuration of the topic map as a number f promises made in the abstract
space of topics and the turning each promise into a meta-promise that models

the configuration as a topic with attendant associations. Consider the following
cfengine promise.

bundle agent update

{

files:

any::

‘‘/var/cfengine/inputs’’ -> { ‘‘policy_team’’, ’’dependent’’ },

comment => ‘‘Check policy updates from source’’,

perms => true,

mode => 600,

copy_from => true,

copy_source => /policy/masterfiles,

compare => digest,

depth_search => true,

depth => inf,

ifelapsed => 1;

}

This system configuration promise can be mapped by cfengine into a number
of other promise proposals intended for the cf-know agent. Suppressing some of
the details, we have:

type_files::

"/var/cfengine/inputs"

association => a("promise made in bundle","update","bundle contains promise");

"/var/cfengine/inputs"

association => a("specifies body type","perms","is specified in");

"/var/cfengine/inputs"

association => a("specifies body type","mode","is specified in");

"/var/cfengine/inputs"

association => a("specifies body type","copy_from","is specified in");

etc ...

occurrences:

_var_cfengine_inputs::

"promise_output_common.html#promise__var_cfengine_inputs_update_cf_13"

represents => { "promise definition" };

Note that in this mapping, the actual promise (viewed as a real world entity) is
an occurrence of the topic ‘promise’; at the same time each promise could be dis-
cussed as a different topic allowing meta-modelling of the entity-relation model
in the real-world data. Conversely the topics themselves become configuration
items or ‘promisers’ in the promise model. The effect is to create a navigable se-
mantic web for traversing the policy; this documents the structure and intention
of the policy using a small ontology of standard concepts and can be extended
indefinitely by human domain experts (see [14]).

We end up with the following mappings, which because they are based on a
model that is both simple and rigid is guaranteed to lead to densely connected
networks. The two concepts may be compared as tuples:

Promise : 〈Pr, P
∗
e , B〉, B = 〈L, V 〉∗

Topic map : 〈T, A∗, O∗〉, A = 〈L, TA〉∗ (1)

For promises: Pr is the promiser, P ∗
e is a number of promisees (all of which are

autonomous entities). B is the body of constraints that describes the promise’s
intent. This in turn consists of pairs of associations between names (l-values) L of
constrainable properties and the values V to be adhered to. For topic maps: T is
a topic, which is an autonomous, standalone entity. A is a body of associations to
other topics in topic-space, and O∗ is a number of associated occurrences of the
topic in the documentation/information medium. A body of associations is a set
of pairs of association labels or types L and topics TA ∈ T . There is no principled
difference between associations between topics and occurrence relations, except
the sets or spaces to which the end-points belong. In mapping to promises we
would use associations to map concepts discussed in promises, and occurrences
to map to the instances of rules in a policy.

Table 2 shows this mapping of concepts in words.

Promise theory Topic maps

Promise of type topics Topic

Promise of type occurrences Occurrences

Promiser P Topic name

Promise context Topic-type or classifier

Promise body Associations

Promisees Special associations
Table 2. Mapping between promises and topic map concepts.

6 Knowledge about promises

Cfengine is able to construct the topic map and the promise graph and perform
analyses of these. Figure 3 shows a simple top-level example of a navigable

information structure computed by cfengine from a few topics relating to this
paper (with association labels removed). Imagine the same idea as a discussion
of the meaning intended in policy.

Figure 2 shows part of a page rendered by cf-know about the subject of
promises. It should various interpretations that are promised in the configu-
ration, and their associations to related topics. Further down this page (not

Fig. 2. An excerpt of a topic page about promises, showing several occurrences of
interpretation of the concept, and their associative links to related subjects.

shown) are links to topics of type promise. Following one of these links takes us
to fig. 3, which is a configuration promise that is actually encoded as policy for
cf-agent. The upper graph shows the thirty or so most closely associated topics
(by any association), and the lower (truncated) graph picks out only promisee,
and depends on constraints, thus automatically generating a possible impact
analysis for changes to any of these promises.

Fig. 3. A topic page about a policy item rendered by cf-know, showing relationships be-
tween neighbouring concepts and the subset of these that gives dependency or change-
impact analysis.

Graphical representations of information open up all kinds of analyses and
allow imaginative humans to see possibilities in a way that only confuses machine
reasoning systems. One challenge in knowledge management is that of reducing
information complexity. Even in a policy specification, the rule sets (promises)
can run to thousands of lines and might contain dependencies and relationships
that are not obvious to the reader. With the Topic-Map-Promise alliance, one
can automatically generate a topic map from a promise-based policy and then
annotate it and link it to other information bases, effectively forming a set of
adaptive container classes. The chief advantage of topic maps is that they are
non-hierarchical and their categories are adaptive and context dependent in the
links between topic and occurrence – this is the same as cfengine’s promise
model and reduces the depth of information structures. Moreover there will be
no categorization conflicts in either promises or topic maps by design. This sets
them apart from obligation systems and Object Oriented data models.

Nevertheless, any information model that has typed elements is two dimen-
sional and must trade complexity in the number of types and sub-types (depth)
against the number of topics in each type category (breadth) and this is a fun-

damental problem of all information systems. However, there is a way out: the
free networking of associations in topic maps means one can form standard one-
dimensional pathways (routing solutions) through the associative network, which
we might call ‘stories’. In ref. [15] we develop this idea to find minimum distance
connections between topics that are modelled for human consumption. Thus the
notion of topic maps extends to include ‘typed stories’ based on the idea of transi-
tivity rules for semantic associations. The homomorphism with promises further
implies that there must now be a corresponding structure in promise theory: it
is processes or work-flows. Space forces us to refer to this elsewhere [15].

A final possibility of this work is a fundamental redesign of archaic models
like the ‘CMDB’. Cfengine’s answer to the Configuration Management Database
(CMDB) is not a traditional inventory system like most present day solutions,
but rather a knowledge-based semantic web of information that links database
records (occurrences) to manuals, papers and enterprise level policies through the
concepts they employ. Without the promise concept such a task is very difficult
indeed, but using Promise Theory and Topic Maps such a modern information
base can now be built.

7 Conclusions

This work shows that there is a two-way mapping between promises and topic
maps that enables a simple formal representation of human understanding to be
codified. This may be used to annotate policy with meaning and intention, and
navigate it efficiently without hierarchical complexity. Using a Promise Theory
framework, system policy can be expressed directly in the form of low level
intentions whose implementation can be promised by cfengine for any initial
state of the system. Automation keeps the promises and humans think about
why the promises were made – a simple division of labour which makes the best
use of each’s abilities.

A promise theoretic grounding will always generate a well-formed topic map
because the model is directly comparable to that of topic maps. The main diffi-
culty with topic maps is finding a sufficient number of meaningful associations
to make a dense enough network for easy ‘routing’ of thought. Here the lack of
a rigid hierarchy is essential, and an effective way to find meaningful trains of
thought is to weaken associative logic not simply reason about it as a logical
system [15].

The approach proposed here discourages the use of traditional data model
management schema, i.e. inter-occurrence relationships like hyperlinks and the
entity relation models, and especially object hierarchies. Rather than dealing
with hundreds or even thousands of tables in the Common Information Model
(CIM), Operational Support Systems or commercial CMDBs, and searching for
meaning by brute-force matching of data, we can deal with smaller conceptual
neighbourhoods that point more meaningfully from high level intentions to low
level implementation. Greater abstraction means fewer things to deal with. Fur-
ther aspects of this approach will be reported elsewhere.

Acknowledgment: I am grateful to Jan Bergstra, Alva Couch and Steve
Pepper for helpful discussions. This work is supported by the EC IST-EMANICS
Network of Excellence (#26854)

References

1. J. Strassner. Handbook of Network and System Administration, chapter Knowledge
Engineering Using Ontologies. Elsevier Handbook, 2007.

2. D. Trastour, C. Bartolini, and C. Priest. Semantic web support for the business-
to-business e-commerce lifecycle, 2002.

3. J.M.Serrano, J.Serrat, J.Strassner, and M.O.Foghlú. Management and context in-
tegration based on ontologies behind the interoperability in autonomic communi-
cations. In SIWN International Conference on Complex Open Distributed Systems
(CODS 2007), volume 1, pages 435–442, 2007.

4. J.M. Serrano, J. Serrat, S.V.D. Meer, and M.O. Foghlú. Ontology-based man-
agement for context integration in pervasive services operations. In First In-
ternational Conference on Autonomous Infrastructure, Management and Security
(AIMS 2007), volume LNCS 4543, pages 35–48, 2007.

5. S. Pepper. Encyclopedia of Library and Information Sciences, chapter Topic Maps.
CRC Press, ISBN 9780849397127, 2009.

6. Mark Burgess. An approach to understanding policy based on autonomy and
voluntary cooperation. In IFIP/IEEE 16th international workshop on distributed
systems operations and management (DSOM), in LNCS 3775, pages 97–108, 2005.

7. J. Bergstra and M. Burgess. A static theory of promises. Technical report,
arXiv:0810.3294v1, 2008.

8. M. Burgess. The Cfengine reference manual. http://www.cfengine.org/docs.
9. M. Burgess. Configurable immunity for evolving human-computer systems. Science

of Computer Programming, 51:197, 2004.
10. M. Debusmann and A. Keller. Sla-driven management of distributed systems

using the common information model. In Proceedings of the VIII IFIP/IEEE IM
conference on network management, page 563, 2003.

11. S. Pepper. The tao of topic maps. In Proceedings of XML Europe Conference,
2000.

12. M. Burgess. A site configuration engine. Computing systems (MIT Press: Cam-
bridge MA), 8:309, 1995.

13. M. Brenner, M. Garschhammer, M. Sailer, and T. Schaaf. Cmdb yet another mib?
on reusing management model concepts in itil configuration management. In Proc.
7th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM), 2006.

14. http://research.iu.hio.no/topicmaps/tm.php.
15. A. Couch and M. Burgess. Compass and direction in topic maps. (Oslo University

College preprint), 2009.

