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Abstract. Many researchers have used game theory to study the problem of en-
couraging cooperation in peer-to-peer and mobilead hocnetworks, where re-
sources are provided collectively by the users. Previous work has modelled the
problem as either a multi-player social dilemma or a network of two-player pris-
oner’s dilemmas, but neither of these approaches captures a crucialaspect of the
problem, namelyscarcity: when resources are limited, players must not only con-
sider how to establish and sustain cooperation with each opponent, but howto
allocate resources among their opponents in order to maximise the total coopera-
tion received.
This paper presents a new game theoretic model of cooperation under scarcity,the
sharer’s dilemma, and a simpleexpected utility strategythat is shown to perform
well against a wide range of opponents. The expected utility strategy can easily
be applied to file sharing networks to create an incentive for users to contribute
resources.

1 Introduction

Any system with infrastructure that is provided collectively by the users faces the prob-
lem of encouraging users to contribute resources as well as consuming them. In other
words, users must cooperate with one another. Cooperation in peer-to-peer and mobile
ad hocnetworks has received a great deal of attention from researchers in recent years,
and many incentive mechanisms to encourage cooperation have been proposed. How-
ever, in this paper we will argue that such mechanisms have sofar lacked a suitable
theoretical foundation: some usead hocmethods that may be vulnerable to manipu-
lation by selfish users, while others are based on game theoretic models that fail to
capture the problem of allocating scarce resources among neighbours. We develop a
new game theoretic model of this problem and show that a strategy based on strict
utility-maximisation creates an incentive for selfish users to cooperate.

The next section of this paper reviews existing models of cooperation in networks,
including the prisoner’s dilemma and multi-player dilemmas. Section 3 introduces our
new model, the sharer’s dilemma, and describes the expectedutility strategy. Section
4 presents the results of simulations comparing a number of strategies. We discuss the
limitations of our findings in section 5, and conclude the paper in section 6 with some
directions for future work.



2 Game Theoretic Models of Cooperation

If a communication network is viewed as a group of self-interested individuals inter-
acting according to rules specified by the protocol designer, thengame theoryprovides
tools for modelling the behaviour of rational participants, andmechanism designcan
be used to create protocols that reward cooperation, encouraging rational participants
to behave in ways that benefit the network [1–3].

It might seem reductive to regard the participants in a communication network as
simple egoists – even economists no longer believe that people are motivated purely
by self-interest [4–6] – but here we are concerned with thebehaviour of nodesrather
than theintentions of users: game theory is not appropriate for modelling all human
interactions, but it is well suited to modelling those interactions in which humans del-
egate routine decisions to software, reducing complex social considerations to a choice
between programmatic ‘strategies’. Even if most participants have the best interests
of the network at heart, game theory allows us to assess the network’s vulnerability
to exploitation by a selfish minority. Mechanisms that prevent free riding may also be
able to prevent denial-of-service attacks in which malicious users exhaust the resources
provided by others.

2.1 The Prisoner’s Dilemma

Simple games can embody surprisingly complex problems, andperhaps no simple game
has received more attention thanthe prisoner’s dilemma, a single-round game for two
players, each of whom chooses between two actions,cooperationanddefection, and
receives a payoff that depends on the choices of both players: T is the ‘temptation’
payoff for unilateral defection,R is the ‘reward’ payoff for mutual cooperation,P is
the ‘punishment’ payoff for mutual defection, andS is the ‘sucker’ payoff for unilateral
cooperation [7].

The dilemma arises becauseT > R > P > S, which means a rational player
will defect regardless of her opponent’s choice. The players cannot escape the dilemma
by communicating about their intentions, because a rational player will claim that she
intends to cooperate, but will then defect. Thus rational players always defect, leading
to a suboptimal payoffP < R for both players.

The prisoner’s dilemma has been used to model a wide range of situations in nature
and society where the benefit of cooperation is greater than the cost. Wahl and Nowak
[8] describe the prisoner’s dilemma in terms of the cost of cooperating,c, and the benefit
of receiving cooperation,b. The restrictionb > c > 0 leads to the payoff structure de-
scribed above. Roberts and Sherratt [9] describe the dilemma using a single parameter,
k = b/c.

Public goods problems, social dilemmas [10] and reciprocalaltruism [11] find nat-
ural expression in the formb > c > 0, but not all prisoner’s dilemmas can be expressed
in this way: for example, many studies use the payoffsT = 5, R = 3, P = 1, S = 0.
In this paper we will only consider dilemmas that arise from the costs and benefits of
cooperating and can therefore be expressed in the formb > c > 0.



2.2 The Shadow of the Future

Although rational players always defect in the single-round prisoner’s dilemma, it may
be possible to establish cooperation if the game is repeatedfor more than one round.
Players who expect to interact for many rounds must considerthe long-term effects of
their short-term decisions: automatic defection is no longer necessarily the best strategy,
because players have the chance to recognise cooperative opponents and gain a higher
payoff through mutual cooperation (although each player will still be tempted to defect
once her opponent has started to cooperate).

Simple strategies for the repeated prisoner’s dilemma include Tit For Tat, which
cooperates in the first round and thereafter copies its opponent’s action from the previ-
ous round [12]; Win Stay Lose Shift, which cooperates in the first round and thereafter
repeats its previous action if it receives cooperation, or switches to the other action if it
suffers defection [13]; and Stochastic Tit For Tat, which cooperates with a probability
equal to the fraction of rounds in which the opponent has cooperated [14]. All of these
strategies create an incentive for rational opponents to cooperate, while minimising
losses against uncooperative opponents.

2.3 Multi-Player Dilemmas

When a dilemma involves more than two players, the model must specify which actions
affect which players. If each player chooses one action thataffects all her opponents,
the situation is asocial dilemma[10]; encouraging cooperation is harder than in two-
player games, because it is not possible to cooperate with cooperators while defecting
against defectors [15, 16].

In a networked social dilemma, each player chooses one action that affects her
neighbours in a spatial lattice or other network [17–20]. Cooperation can succeed if
cooperative players’ interactions with other cooperatorssufficiently outnumber their
interactions with defectors.

Finally, if each player can choose a different action for each opponent, the situation
can be modelled as anetwork of two-player games. Several networked variants of the
prisoner’s dilemma have been developed [21–24], all based on the assumption that a
player’s choices and payoffs in her pairwise games are independent. However, if the
payoffs represent the costs and benefits of cooperating, we may ask whether the as-
sumption of pairwise independence is always realistic: there may be situations in which
a player has limited resources for cooperation, but can allocate them freely among her
pairwise interactions. In such cases no two-player strategy indicates how best to allocate
her scarce resources.

We argue that many of the situations modelled as networked dilemmas fit this pat-
tern: players can allocate their resources unevenly, cooperating more with some op-
ponents than with others. Hunters sharing food, animals grooming one another, and
network nodes uploading files are all faced with opportunities to strengthen or weaken
cooperative relationships by choosing how much to share, and with whom.



3 The Sharer’s Dilemma

To explore the problem of allocating resources in networkeddilemmas we propose a
simple extension to the prisoner’s dilemma, incorporatingscarcity into the game by
limiting the number of times a player can cooperate in each round. We call this new
gamethe sharer’s dilemma. The prisoner’s dilemma can be viewed as a special case
in which the limit is high enough that cooperation with everyopponent is possible in
every round.

As with the prisoner’s dilemma, many variants of the game arepossible, but here we
will only consider the simplest case: in each round, a playercan either cooperate with
one of her opponents or defect against them all. While simple,this starting point cap-
tures the essential problem of cooperation under scarcity:when resources are limited,
the problem is not only how to establish and sustain cooperation with each opponent,
but how to prioritise opponents in order to maximise the total cooperation received.

Strategies from the prisoner’s dilemma can be adapted to thesharer’s dilemma by
specifying how to choose between neighbours when more than one neighbour is eligible
for cooperation.

3.1 The Expected Utility Strategy

If a player expects that cooperating with an opponent will result in a higher level of co-
operation in return, she can weigh the expected benefit of heropponent’s reciprocation
against the cost of cooperating, and compare the incentivesoffered by different oppo-
nents. This idea is the basis of ourexpected utility strategyfor the sharer’s dilemma.

A player using the expected utility strategy estimates the benefit of cooperating with
each opponent, under the assumption that all the benefit received from the opponent so
far is a result of reciprocation – in other words the cooperation received can be attributed
to the cooperation given. The benefit of all the cooperation received in previous rounds
divided by the cost of all the cooperation given in previous rounds is theexpected benefit
per unit of costof cooperating in the current round. A player maximises her expected
benefit by cooperating with whichever opponent will providethe greatest benefit in
return.

When comparing her opponents in this way, a player does not need to know the
cost or benefit of cooperation from the opponent’s point of view – she only needs to
estimate the cost to herself of cooperating, and the benefit to herself of the resulting
reciprocation, so costs and benefits may be subjective.

If it is possible to measure costs and benefits in the same units then the cost of
earning reciprocation can be subtracted from the expected benefit, and a player may
defect if the cost of cooperating exceeds the expected benefit. However, even if costs
and benefits are not commensurable, a player can still use theexpected utility strategy
to maximise her benefit by earning the most reciprocation perunit of cost.

Like any cooperative strategy, the expected utility strategy faces the problem of
bootstrapping: when two players first meet, one or both of them must risk cooperating
without knowing how much reciprocation (if any) will result. In the prisoner’s dilemma,
Tit For Tat and Win Stay Lose Shift take the simple approach ofalways cooperating in
the first round, but this may not be possible in the sharer’s dilemma due to the limit on



the amount of cooperation per round. The expected utility strategy could assign a high
expected benefit to first-time interactions, but this might be vulnerable to exploitation
by whitewasherswho can continually change identities [25]; alternatively, the benefit
could be estimated using the average benefit of previous first-time interactions [26].

Uncertainty about the duration of the game can be incorporated into the strategy by
applying adiscount factorto future payoffs, reducing the expected benefit of reciproca-
tion if games tend to be short-lived [25]. The discount factor need not be the same for
all opponents; if old players can be expected to outlive new players, as in many peer-to-
peer networks [27–29], then it may be appropriate to use a heavier discount factor for
new opponents.

4 Simulations

This section describes simulations to compare various strategies for the sharer’s dilemma.
Our model is a population ofn players connected uniformly at random so that each
player hasd neighbours on average. In each round of the game, each playereither co-
operates with one of her neighbours, increasing the neighbour’s payoff byb, or defects,
increasing her own payoff byc. The players make their choices in a random order each
round.3

We simulate two strategies adapted from the prisoner’s dilemma: the first, Tit For
Tat (TFT), cooperates with a randomly chosen neighbour thatcooperated with it in the
previous round, or defects if no neighbours cooperated. Thesecond, Stochastic Tit For
Tat (STFT), cooperates with one randomly chosen neighbour,choosing each neighbour
with a probability proportional to the fraction of rounds inwhich the neighbour has
cooperated. To bootstrap cooperation, TFT and STFT treat new neighbours as if they
cooperated in the previous round.

We also simulate a strategy based on BitTorrent’s incentivemechanism, which uses
reciprocation to encourage peers in a file sharing network toupload [30]. Each peer
maintains anactive setof connections, with all other connections ‘choked’ (nothing
is uploaded). The peer updates its active set periodically,unchoking those connections
that have recently provided the best download speeds, so neighbours that upload more
quickly are more likely to be unchoked. To bootstrap cooperation, the active set also
includes one randomly chosen connection.

To model this behaviour in the sharer’s dilemma, the BitTorrent (BT) strategy coop-
erates in each round with a randomly chosen member of its active set, which contains
one randomly chosen neighbour and thes other neighbours that have provided the most
cooperation in recent rounds. A new active set is chosen every r rounds, using an expo-
nential moving average to measure the cooperation receivedfrom each neighbour.4

Finally, we simulate the expected utility (EXU) strategy described in the previous
section, which cooperates with whichever neighbour has provided the highest bene-
fit/cost ratio in previous rounds, unless the highest ratio is less than 1 (meaning that the

3 In all the simulations presented here,n = 1, 000, d = 10 andc = 1. Three different values of
b are simulated, as explained in the text.

4 The results presented here uses = 1 andr = 5, which appear to give the best payoff for the
BT strategy in this setting.



cost exceeds the benefit), in which case EXU defects. Cooperating with a neighbour
lowers its benefit/cost ratio, while receiving cooperationraises its ratio. To bootstrap
cooperation, EXU assigns new neighbours a benefit ofb and a cost ofc, as if they have
cooperated once and received cooperation once.

4.1 Fixed Population Proportions
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Fig. 1. Fixed population proportions. The payoff received by each strategy as a function ofb,
the benefit of receiving cooperation, averaged over 20 runs. The large figure shows a population
containing all six strategies; the small figures show populations containing AC, AD and each of
the four reactive strategies.

Each simulation consists of 20 independent runs of 2,000 rounds each. At the end
of each round a randomly chosen player is removed and replaced with a new player
using the same strategy, who is connected tod randomly chosen neighbours. To allow
the initial conditions to fade, no measurements are taken during the first half of the run.
The payoff received by each strategy is averaged over the second half of the run.

In the first set of simulations the population contains equalproportions of the four
reactive strategies described above and the simple strategies Always Cooperate (AC)
and Always Defect (AD). We vary the strength of the dilemma bysimulating three
different values ofb, the benefit of cooperation; the costc = 1 is held constant. The
first frame of Figure 1 shows the payoff received by each strategy forb = 1.5, b = 2.5
andb = 3.5. Whenb is close toc, AD narrowly outperforms all the reactive strategies
except EXU. Increasingb favours the cooperative strategies at the expense of AD. For
all values ofb, EXU receives the highest payoff.

We also evaluate each reactive strategy separately againstAC and AD, as shown in
the small frames of Figure 1. Each population contains equalproportions of AC, AD
and the strategy being tested. Once again the outcome depends on the value ofb. For
b = 1.5, none of the reactive strategies does better than AD, although EXU comes
close. However, asb increases, all the reactive strategies except TFT do betterthan AD.



The poor performance of TFT can be ascribed to its short memory: even in a per-
fectly cooperative population, the probability of receiving cooperation from a given
neighbour in a given round is only1/d. TFT only considers the previous round, so it
is often unable to distinguish between cooperators and defectors. The other reactive
strategies evaluate their neighbours over longer periods.

All the results shown in Figure 1 are significant at the 99% level using the two-tailed
Mann-Whitney U test.5

4.2 Evolutionary Simulations
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Fig. 2. Evolution of the population. The number of players using each strategy asa function of
the number of rounds, averaged over 50 runs, forb = 1.5 (left), b = 2.5 (top right) andb = 3.5

(bottom right).

To further investigate how each strategy fares in a mixed population, we now allow
the population proportions to evolve. As before, at the end of each round a single player
is chosen uniformly at random and replaced with a new player,but now the new player’s
strategy is chosen using theroulette wheel method: the probability of the new player
adopting each strategy is proportional to the total payoff received by that strategy in
the previous round. Thus the mixture of strategies in the population evolves according
to the payoffs received: a player’s payoff can be interpreted as herreproductive fitness
[31].

To prevent any strategy from becoming extinct, if the strategy of the player being
replaced is used by five or fewer players, the new player always adopts the endangered

5 Student’s t test is not suitable for making comparisons between strategiesbecause the sam-
ples are not independently and randomly drawn from normally distributedpopulations. The
Mann-Whitney U test was chosen because it makes fewer assumptions about the population
distribution.



strategy. This allows strategies that are unsuccessful under certain conditions to re-
emerge later in the game, and prevents strategies from beingeliminated by random
drift.

Figure 2 shows the evolution of the population forb = 1.5, b = 2.5 andb = 3.5,
averaged over 50 independent runs of 100,000 rounds each. ACis quickly pushed to the
edge of extinction: by cooperating equally with all its neighbours, it wastes resources on
AD that could have been used to earn reciprocation from reactive neighbours. TFT has
trouble distinguishing between cooperators and defectorsdue to its short memory, and
it too is quickly defeated.6 Once AC has been eliminated, the other reactive strategies
all outperform AD. It might seem paradoxical that any strategy would benefit from the
elimination of altruists, but in evolutionary simulationsit is relative payoffs, rather than
absolute payoffs, that are decisive: the defeat of AC makes the environment harsher for
the reactive strategies, but harsher still for AD, which receives most of its cooperation
from AC.

Despite their selfishness, BT, EXU and STFT succeed in establishing almost full
cooperation: after 20,000 rounds the fraction of players cooperating in each round is
always above 95%. As in the simulations with fixed populationproportions, EXU out-
performs all the other strategies for all values ofb.

To test the significance of the results we use the two-tailed Mann-Whitney U test
to compare the number of players using each strategy at the end of the 50 runs. All the
differences between strategies are significant at the 99% level, with the exception of
AD and TFT, which are not significantly different whenb = 1.5 or b = 2.5.

4.3 Invasion Simulations

The previous sections have shown that the expected utility strategy performs well when
played by a substantial fraction of the population, but we would also like to know
whether it is suitable for use in populations dominated by other strategies. To find out,
we simulate the evolution of six populations, each containing 975 players of one strat-
egy and five players of each of the other strategies. As before, no strategy is allowed to
drop below five players. The results are averaged over 50 runsof 100,000 rounds each.

The results forb = 1.5 are shown in Figure 3. EXU is able to invade any strategy
except STFT. This is a strong result – clusters of Tit For Tat players can invade other
strategies in networked variants of the prisoner’s dilemma[12], but in our simulations
there are no clusters: new players are connected to every existing player with equal
probability.

STFT and EXU can each resist invasion by any other strategy. In 50 longer runs
of 1 million rounds each, EXU stabilises at 80% of the population when it starts as
the dominant strategy, while STFT stabilises at 90% when it is initially dominant. This
shows that each strategy does better against itself than it does against the other, making
both strategiesevolutionarily stable, at least among the strategies considered here [31].

6 This is not a weakness of the Tit For Tat strategy as such, but only of our method of adapting
it to the sharer’s dilemma. STFT, which is also based on the Tit For Tat strategy from the
prisoner’s dilemma, does not have the same weakness.
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(b) BT is invaded by AD, EXU and TFT
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(c) STFT resists invasion by any strategy
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Fig. 3. Invasion simulations. The number of players using each strategy as a function of the num-
ber of rounds, averaged over 50 runs, forb = 1.5. EXU can invade any strategy except STFT;
EXU and STFT both resist invasion.



5 Discussion

This paper is only a preliminary exploration of the sharer’sdilemma – many inter-
esting aspects of the game remain to be investigated. For example, we have assumed
that all players possess equal resources for cooperation, but the dynamics of cooper-
ation may change when some players have more resources than others. Piateket al.
[32] have shown that when high-capacity BitTorrent nodes are able to participate in
multiple swarms they benefit from allocating their resources between swarms, to the
detriment of the low-capacity nodes in each swarm. The sharer’s dilemma gives us a
theoretical framework for investigating whether such issues apply to cooperation under
scarcity in general. We can simulate variation in capacity by updating the players at
different rates, with high-capacity players making their choices more frequently than
low-capacity players, allowing them to cooperate more often in a given period of time.

In the simulations presented here we have also assumed that all players assign the
same subjective cost to cooperating and the same subjectivebenefit to receiving coop-
eration. This restriction is not required by the model, and we would like to explore the
effect of variation within the population: for example, free riding might be an appeal-
ing strategy to players who consider the cost of cooperatingto be high, while altruism
might appeal to those who consider the cost to be low. However, when players can re-
ceive different payoffs from the same outcomes, it becomes difficult to compare the
success of different strategies in a meaningful way, and theuse of evolutionary simula-
tions becomes problematic; we will need to consider new waysof comparing strategies
before we can explore subjective payoffs.

A third simplifying assumption concerns network structure: we have only consid-
ered random graphs where a new player is connected to each existing player with equal
probability. This rules out the formation of clusters, for example, which might help to
establish cooperation in otherwise hostile networks; on the other hand, if players are
able to choose their neighbours, defectors might be able to exploit the first-time co-
operation of reactive strategies. The structure and dynamics of the network are clearly
relevant to the outcome of the game, so when using the sharer’s dilemma to model any
scenario we will need to make sure that we are modelling the network, as well as the
individual players, realistically.

6 Conclusions and Future Work

We have seen that a simple extension to a well-known game can provide a new perspec-
tive on the problem of cooperation in networks: incorporating scarcity into the pris-
oner’s dilemma reframes the problem of cooperation as a problem of prioritisation and
suggests new strategies based on maximising expected utility. The sharer’s dilemma
provides a game theoretic model for many situations in nature and society where the
benefit of cooperation is higher than the cost, and where resources for cooperation are
scarce.

It is easy to see how the strategies described in this paper could be applied to peer-to-
peer file sharing networks such as BitTorrent; our simulations, though simplified, show
that the expected utility strategy performs well in a mixed population of other strategies,
indicating that it may be possible to deploy it incrementally in existing networks.



We are also interested in the possibility of using the expected utility strategy in
multi-hop networks, such as peer-to-peer overlays and mobile ad hocnetworks, to cre-
ate an incentive for nodes to forward messages. However, this will require a more com-
plex utility model that can incorporate actions whose outcome depends on the choices
of other nodes. We are currently investigating the use of Savage’s concept ofsubjective
expected utilityto choose between actions with uncertain outcomes [33].
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