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Abstract. Many researchers have used game theory to study the problem of en-
couraging cooperation in peer-to-peer and mohiehocnetworks, where re-
sources are provided collectively by the users. Previous work haglfad the
problem as either a multi-player social dilemma or a network of two-plages p
oner’s dilemmas, but neither of these approaches captures a asjpét of the
problem, namelgcarcity when resources are limited, players must not only con-
sider how to establish and sustain cooperation with each opponent, bubhow
allocate resources among their opponents in order to maximise the toperaeo
tion received.

This paper presents a new game theoretic model of cooperation wadeitysthe
sharer’s dilemmaand a simplexpected utility strategthat is shown to perform
well against a wide range of opponents. The expected utility strategyasaly e
be applied to file sharing networks to create an incentive for users tatmaetr
resources.

1 Introduction

Any system with infrastructure that is provided colleclivby the users faces the prob-
lem of encouraging users to contribute resources as webmsuming them. In other
words, users must cooperate with one another. Cooperatipedr-to-peer and mobile
ad hocnetworks has received a great deal of attention from reBeesén recent years,
and many incentive mechanisms to encourage cooperatialdean proposed. How-
ever, in this paper we will argue that such mechanisms havardacked a suitable
theoretical foundation: some usel hocmethods that may be vulnerable to manipu-
lation by selfish users, while others are based on game tieonedels that fail to
capture the problem of allocating scarce resources amoig@pbwurs. We develop a
new game theoretic model of this problem and show that aeglyabased on strict
utility-maximisation creates an incentive for selfish ssercooperate.

The next section of this paper reviews existing models opeoation in networks,
including the prisoner’s dilemma and multi-player dilemen&ection 3 introduces our
new model, the sharer’'s dilemma, and describes the expatititg strategy. Section
4 presents the results of simulations comparing a numbdrategies. We discuss the
limitations of our findings in section 5, and conclude thegrdp section 6 with some
directions for future work.



2 Game Theoretic Models of Cooperation

If a communication network is viewed as a group of self-ies¢ed individuals inter-
acting according to rules specified by the protocol desighengame theonprovides
tools for modelling the behaviour of rational participgraad mechanism desigcan
be used to create protocols that reward cooperation, eagimg rational participants
to behave in ways that benefit the network [1-3].

It might seem reductive to regard the participants in a comipation network as
simple egoists — even economists no longer believe thatipewp motivated purely
by self-interest [4—6] — but here we are concerned withithleaviour of nodesather
than theintentions of usersgame theory is not appropriate for modelling all human
interactions, but it is well suited to modelling those iatetions in which humans del-
egate routine decisions to software, reducing complexasoonsiderations to a choice
between programmatic ‘strategies’. Even if most partietpehave the best interests
of the network at heart, game theory allows us to assess tinrés vulnerability
to exploitation by a selfish minority. Mechanisms that prenfeee riding may also be
able to prevent denial-of-service attacks in which malisiasers exhaust the resources
provided by others.

2.1 ThePrisoner’s Dilemma

Simple games can embody surprisingly complex problemsparttaps no simple game
has received more attention thtére prisoner’s dilemmgaa single-round game for two
players, each of whom chooses between two actioosperationand defection and
receives a payoff that depends on the choices of both playeis the ‘temptation’
payoff for unilateral defectionR is the ‘reward’ payoff for mutual cooperatiot, is
the ‘punishment’ payoff for mutual defection, afds the ‘sucker’ payoff for unilateral
cooperation [7].

The dilemma arises becauge > R > P > S, which means a rational player
will defect regardless of her opponent’s choice. The plsigannot escape the dilemma
by communicating about their intentions, because a ratiglager will claim that she
intends to cooperate, but will then defect. Thus rationayets always defect, leading
to a suboptimal payoff < R for both players.

The prisoner’s dilemma has been used to model a wide rangeiafiens in nature
and society where the benefit of cooperation is greater thewcdst. Wahl and Nowak
[8] describe the prisoner’s dilemma in terms of the cost ofparating ¢, and the benefit
of receiving cooperatiory,. The restrictiorb > ¢ > 0 leads to the payoff structure de-
scribed above. Roberts and Sherratt [9] describe the dikemsing a single parameter,
k=b/c.

Public goods problems, social dilemmas [10] and recipraftalism [11] find nat-
ural expression in the form> ¢ > 0, but not all prisoner’s dilemmas can be expressed
in this way: for example, many studies use the paydffs- 5, R = 3, P = 1,5 = 0.

In this paper we will only consider dilemmas that arise frdma tosts and benefits of
cooperating and can therefore be expressed in the fasna > 0.



2.2 The Shadow of the Future

Although rational players always defect in the single-mbprisoner’s dilemma, it may
be possible to establish cooperation if the game is repdatedore than one round.
Players who expect to interact for many rounds must consigelong-term effects of
their short-term decisions: automatic defection is no éanecessarily the best strategy,
because players have the chance to recognise cooperagigaans and gain a higher
payoff through mutual cooperation (although each playdrstiil be tempted to defect
once her opponent has started to cooperate).

Simple strategies for the repeated prisoner’s dilemmaudelTit For Tat, which
cooperates in the first round and thereafter copies its app&naction from the previ-
ous round [12]; Win Stay Lose Shift, which cooperates in thst found and thereafter
repeats its previous action if it receives cooperationyatches to the other action if it
suffers defection [13]; and Stochastic Tit For Tat, whiclogerates with a probability
equal to the fraction of rounds in which the opponent has eraipd [14]. All of these
strategies create an incentive for rational opponents tpe@te, while minimising
losses against uncooperative opponents.

2.3 Multi-Player Dilemmas

When a dilemma involves more than two players, the model npestify which actions
affect which players. If each player chooses one actionafiatts all her opponents,
the situation is aocial dilemmg10]; encouraging cooperation is harder than in two-
player games, because it is not possible to cooperate withecators while defecting
against defectors [15, 16].

In a networked social dilemmaeach player chooses one action that affects her
neighbours in a spatial lattice or other network [17-20]of&ration can succeed if
cooperative players’ interactions with other cooperagrficiently outnumber their
interactions with defectors.

Finally, if each player can choose a different action fotreagponent, the situation
can be modelled asretwork of two-player gameSeveral networked variants of the
prisoner’s dilemma have been developed [21-24], all baseth® assumption that a
player's choices and payoffs in her pairwise games are ignt. However, if the
payoffs represent the costs and benefits of cooperating, ayeask whether the as-
sumption of pairwise independence is always realistiadetheay be situations in which
a player has limited resources for cooperation, but cacatéothem freely among her
pairwise interactions. In such cases no two-player stydteticates how best to allocate
her scarce resources.

We argue that many of the situations modelled as networKethdias fit this pat-
tern: players can allocate their resources unevenly, gatipg more with some op-
ponents than with others. Hunters sharing food, animalsrgiiog one another, and
network nodes uploading files are all faced with opportasito strengthen or weaken
cooperative relationships by choosing how much to shakwétt whom.



3 TheSharer’'sDilemma

To explore the problem of allocating resources in networtidemmas we propose a
simple extension to the prisoner’s dilemma, incorporasogrcity into the game by
limiting the number of times a player can cooperate in eacimdoWe call this new
gamethe sharer’s dilemmaThe prisoner’s dilemma can be viewed as a special case
in which the limit is high enough that cooperation with evepponent is possible in
every round.

As with the prisoner’s dilemma, many variants of the gamepassible, but here we
will only consider the simplest case: in each round, a plagereither cooperate with
one of her opponents or defect against them all. While sintpig starting point cap-
tures the essential problem of cooperation under scargtign resources are limited,
the problem is not only how to establish and sustain coojperatith each opponent,
but how to prioritise opponents in order to maximise theltod@peration received.

Strategies from the prisoner’s dilemma can be adapted tehtheer's dilemma by
specifying how to choose between neighbours when more th@n@ighbour is eligible
for cooperation.

3.1 TheExpected Utility Strategy

If a player expects that cooperating with an opponent willifein a higher level of co-
operation in return, she can weigh the expected benefit dfpygonent’s reciprocation
against the cost of cooperating, and compare the incentifeed by different oppo-
nents. This idea is the basis of axpected utility strategfpr the sharer’s dilemma.

A player using the expected utility strategy estimates treefit of cooperating with
each opponent, under the assumption that all the benefivegiceom the opponent so
far is a result of reciprocation — in other words the cooperateceived can be attributed
to the cooperation given. The benefit of all the cooperatimeived in previous rounds
divided by the cost of all the cooperation given in previcusnds is thexpected benefit
per unit of cosiof cooperating in the current round. A player maximises xpeeted
benefit by cooperating with whichever opponent will provitie greatest benefit in
return.

When comparing her opponents in this way, a player does nat teeknow the
cost or benefit of cooperation from the opponent’s point efwi she only needs to
estimate the cost to herself of cooperating, and the bemwefietself of the resulting
reciprocation, so costs and benefits may be subjective.

If it is possible to measure costs and benefits in the sams then the cost of
earning reciprocation can be subtracted from the expectedflt, and a player may
defect if the cost of cooperating exceeds the expected beHefivever, even if costs
and benefits are not commensurable, a player can still usextiexted utility strategy
to maximise her benefit by earning the most reciprocatiorupérof cost.

Like any cooperative strategy, the expected utility sgattaces the problem of
bootstrappingwhen two players first meet, one or both of them must risk eoajing
without knowing how much reciprocation (if any) will resulh the prisoner’s dilemma,
Tit For Tat and Win Stay Lose Shift take the simple approacahefiys cooperating in
the first round, but this may not be possible in the sharelésina due to the limit on



the amount of cooperation per round. The expected utiligtatyy could assign a high
expected benefit to first-time interactions, but this mighthinerable to exploitation
by whitewasheravho can continually change identities [25]; alternatiyéhe benefit
could be estimated using the average benefit of previoudifinstinteractions [26].

Uncertainty about the duration of the game can be incorpdrato the strategy by
applying adiscount factoto future payoffs, reducing the expected benefit of recigroc
tion if games tend to be short-lived [25]. The discount facteed not be the same for
all opponents; if old players can be expected to outlive niawers, as in many peer-to-
peer networks [27-29], then it may be appropriate to use @drediscount factor for
new opponents.

4 Simulations

This section describes simulations to compare varioutegfies for the sharer’s dilemma.
Our model is a population of players connected uniformly at random so that each
player hasi neighbours on average. In each round of the game, each @lger co-
operates with one of her neighbours, increasing the neigtdbpayoff byb, or defects,
increasing her own payoff by The players make their choices in a random order each
round?

We simulate two strategies adapted from the prisoner'smitila: the first, Tit For
Tat (TFT), cooperates with a randomly chosen neighbourabaperated with it in the
previous round, or defects if no neighbours cooperated.s€eend, Stochastic Tit For
Tat (STFT), cooperates with one randomly chosen neighlsbogsing each neighbour
with a probability proportional to the fraction of roundswhich the neighbour has
cooperated. To bootstrap cooperation, TFT and STFT tremtneéghbours as if they
cooperated in the previous round.

We also simulate a strategy based on BitTorrent’s incemtigehanism, which uses
reciprocation to encourage peers in a file sharing networkptoad [30]. Each peer
maintains aractive setof connections, with all other connections ‘choked’ (nathi
is uploaded). The peer updates its active set periodiaalighoking those connections
that have recently provided the best download speeds, ghbirs that upload more
quickly are more likely to be unchoked. To bootstrap coof@nathe active set also
includes one randomly chosen connection.

To model this behaviour in the sharer’s dilemma, the Bit@ot(BT) strategy coop-
erates in each round with a randomly chosen member of itgeastit, which contains
one randomly chosen neighbour and ¢taether neighbours that have provided the most
cooperation in recent rounds. A new active set is chosety eug&unds, using an expo-
nential moving average to measure the cooperation recéivadeach neighbotr.

Finally, we simulate the expected utility (EXU) strategysdebed in the previous
section, which cooperates with whichever neighbour hasiged the highest bene-
fit/cost ratio in previous rounds, unless the highest ratiess than 1 (meaning that the

% In all the simulations presented here= 1,000, d = 10 andc = 1. Three different values of
b are simulated, as explained in the text.

* The results presented here use- 1 andr = 5, which appear to give the best payoff for the
BT strategy in this setting.



cost exceeds the benefit), in which case EXU defects. Cotipgraith a neighbour
lowers its benefit/cost ratio, while receiving cooperatiaises its ratio. To bootstrap
cooperation, EXU assigns new neighbours a benefitasfd a cost of, as if they have
cooperated once and received cooperation once.

4.1 Fixed Population Proportions
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BT EXU
r 600 r 600
—0 0
1200 1200

STFT

Payoff received by strategy

15 25 3.5
Benefit of receiving cooperation

Fig. 1. Fixed population proportions. The payoff received by each strategy fanction ofb,
the benefit of receiving cooperation, averaged over 20 runs. Toe fgure shows a population
containing all six strategies; the small figures show populations contaiAR and each of
the four reactive strategies.

Each simulation consists of 20 independent runs of 2,000deeach. At the end
of each round a randomly chosen player is removed and replaith a new player
using the same strategy, who is connected tandomly chosen neighbours. To allow
the initial conditions to fade, no measurements are takeinglthe first half of the run.
The payoff received by each strategy is averaged over ttanddwalf of the run.

In the first set of simulations the population contains eguaportions of the four
reactive strategies described above and the simple seatégyvays Cooperate (AC)
and Always Defect (AD). We vary the strength of the dilemmasipulating three
different values ob, the benefit of cooperation; the cast= 1 is held constant. The
first frame of Figure 1 shows the payoff received by eachesgsaforb = 1.5, b = 2.5
andb = 3.5. Whenb is close toc, AD narrowly outperforms all the reactive strategies
except EXU. Increasing favours the cooperative strategies at the expense of AD. For
all values ofb, EXU receives the highest payoff.

We also evaluate each reactive strategy separately agéirshd AD, as shown in
the small frames of Figure 1. Each population contains epgragortions of AC, AD
and the strategy being tested. Once again the outcome departtie value o0b. For
b = 1.5, none of the reactive strategies does better than AD, aithd@XU comes
close. However, asincreases, all the reactive strategies except TFT do kibaarAD.



The poor performance of TFT can be ascribed to its short mgneeen in a per-
fectly cooperative population, the probability of recetyicooperation from a given
neighbour in a given round is only/d. TFT only considers the previous round, so it
is often unable to distinguish between cooperators andctefe The other reactive
strategies evaluate their neighbours over longer periods.

All the results shown in Figure 1 are significant at the 99%Ilesing the two-tailed
Mann-Whitney U test.

4.2 Evolutionary Simulations
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Fig. 2. Evolution of the population. The number of players using each strategyfasction of
the number of rounds, averaged over 50 runspfer 1.5 (left), b = 2.5 (top right) andb = 3.5
(bottom right).

To further investigate how each strategy fares in a mixedifadipn, we now allow
the population proportions to evolve. As before, at the drehoh round a single player
is chosen uniformly at random and replaced with a new pléygmow the new player’s
strategy is chosen using theulette wheel methodhe probability of the new player
adopting each strategy is proportional to the total payedeived by that strategy in
the previous round. Thus the mixture of strategies in theufain evolves according
to the payoffs received: a player’s payoff can be intergtete hereproductive fitness
[31].

To prevent any strategy from becoming extinct, if the sgtef the player being
replaced is used by five or fewer players, the new player avaappts the endangered

5 Student’s t test is not suitable for making comparisons between stratmgasse the sam-
ples are not independently and randomly drawn from normally distribpdgdlations. The
Mann-Whitney U test was chosen because it makes fewer assumphiontsthe population
distribution.



strategy. This allows strategies that are unsuccessfutruoertain conditions to re-
emerge later in the game, and prevents strategies from ladimgnated by random
drift.

Figure 2 shows the evolution of the population o= 1.5, b = 2.5 andb = 3.5,
averaged over 50 independent runs of 100,000 rounds eads.qMikly pushed to the
edge of extinction; by cooperating equally with all its rfeéigurs, it wastes resources on
AD that could have been used to earn reciprocation fromikeaceighbours. TFT has
trouble distinguishing between cooperators and defecheesto its short memory, and
it too is quickly defeated.Once AC has been eliminated, the other reactive strategies
all outperform AD. It might seem paradoxical that any siggiterould benefit from the
elimination of altruists, but in evolutionary simulationss relative payoffs, rather than
absolute payoffs, that are decisive: the defeat of AC mdiesnvironment harsher for
the reactive strategies, but harsher still for AD, whicheiees most of its cooperation
from AC.

Despite their selfishness, BT, EXU and STFT succeed in ésiétd almost full
cooperation: after 20,000 rounds the fraction of playeigperating in each round is
always above 95%. As in the simulations with fixed populapooportions, EXU out-
performs all the other strategies for all value$of

To test the significance of the results we use the two-tailesdAWhitney U test
to compare the number of players using each strategy at thefehe 50 runs. All the
differences between strategies are significant at the 99, ivith the exception of
AD and TFT, which are not significantly different whénr= 1.5 orb = 2.5.

4.3 |nvasion Simulations

The previous sections have shown that the expected utitayeg)y performs well when
played by a substantial fraction of the population, but waulMalso like to know
whether it is suitable for use in populations dominated tepstrategies. To find out,
we simulate the evolution of six populations, each conteyré75 players of one strat-
egy and five players of each of the other strategies. As beforstrategy is allowed to
drop below five players. The results are averaged over 50afub30,000 rounds each.

The results fob = 1.5 are shown in Figure 3. EXU is able to invade any strategy
except STFT. This is a strong result — clusters of Tit For Tay@rs can invade other
strategies in networked variants of the prisoner’s dilenfi2d, but in our simulations
there are no clusters: new players are connected to evestingxpplayer with equal
probability.

STFT and EXU can each resist invasion by any other strategyOllonger runs
of 1 million rounds each, EXU stabilises at 80% of the popafatvhen it starts as
the dominant strategy, while STFT stabilises at 90% whesiititially dominant. This
shows that each strategy does better against itself thae against the other, making
both strategiesvolutionarily stableat least among the strategies considered here [31].

8 This is not a weakness of the Tit For Tat strategy as such, but onlyrahethod of adapting
it to the sharer’s dilemma. STFT, which is also based on the Tit For Taegyrdrom the
prisoner’s dilemma, does not have the same weakness.
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Fig. 3. Invasion simulations. The number of players using each strategy astofu of the num-
ber of rounds, averaged over 50 runs, foe= 1.5. EXU can invade any strategy except STFT;
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5 Discussion

This paper is only a preliminary exploration of the sharelilemma — many inter-
esting aspects of the game remain to be investigated. Fonggawe have assumed
that all players possess equal resources for cooperatinrih® dynamics of cooper-
ation may change when some players have more resources tthens. dPiatelet al.
[32] have shown that when high-capacity BitTorrent nodesable to participate in
multiple swarms they benefit from allocating their resoarbetween swarms, to the
detriment of the low-capacity nodes in each swarm. The skatdemma gives us a
theoretical framework for investigating whether such éssapply to cooperation under
scarcity in general. We can simulate variation in capacityupdating the players at
different rates, with high-capacity players making thédipices more frequently than
low-capacity players, allowing them to cooperate moreroiitea given period of time.

In the simulations presented here we have also assumedlthkty@rs assign the
same subjective cost to cooperating and the same subjbetnefit to receiving coop-
eration. This restriction is not required by the model, armdwould like to explore the
effect of variation within the population: for example, dreéding might be an appeal-
ing strategy to players who consider the cost of cooperatrige high, while altruism
might appeal to those who consider the cost to be low. Howeween players can re-
ceive different payoffs from the same outcomes, it beconiffisudt to compare the
success of different strategies in a meaningful way, andisieeof evolutionary simula-
tions becomes problematic; we will need to consider new wagemparing strategies
before we can explore subjective payoffs.

A third simplifying assumption concerns network structuse have only consid-
ered random graphs where a new player is connected to eatimg)player with equal
probability. This rules out the formation of clusters, faaeple, which might help to
establish cooperation in otherwise hostile networks; @ndther hand, if players are
able to choose their neighbours, defectors might be ableptie the first-time co-
operation of reactive strategies. The structure and dycmofithe network are clearly
relevant to the outcome of the game, so when using the shalitgimma to model any
scenario we will need to make sure that we are modelling tiwark, as well as the
individual players, realistically.

6 Conclusonsand Future Work

We have seen that a simple extension to a well-known gamerocaitp a new perspec-
tive on the problem of cooperation in networks: incorpargtscarcity into the pris-
oner’s dilemma reframes the problem of cooperation as agmobf prioritisation and

suggests new strategies based on maximising expectey. ukttie sharer’s dilemma
provides a game theoretic model for many situations in eatund society where the
benefit of cooperation is higher than the cost, and whereauress for cooperation are
scarce.

Itis easy to see how the strategies described in this papét be applied to peer-to-
peer file sharing networks such as BitTorrent; our simufetjeghough simplified, show
that the expected utility strategy performs well in a mixegylation of other strategies,
indicating that it may be possible to deploy it incrememntail existing networks.



We are also interested in the possibility of using the exqebcttility strategy in
multi-hop networks, such as peer-to-peer overlays andlmabihocnetworks, to cre-
ate an incentive for nodes to forward messages. Howevemihirequire a more com-
plex utility model that can incorporate actions whose omtealepends on the choices
of other nodes. We are currently investigating the use oad&a% concept afubjective
expected utilitto choose between actions with uncertain outcomes [33].
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