Design of an IP Flow Record Query Language

Vladislav Marinov and Jiirgen Schonwélder

Computer Science, Jacobs University Bremen, Germany
{v.marinov, j.schoenwaelder}@jacobs-university.de

Abstract. Internet traffic is often summarized by collecting NetFlow /IPFIX
flow records. Several tools exist to filter or to search for specific flows in

a collection of flow records. However, there is a need for a framework (fil-

ter language) which allows certain types of traffic patterns to be defined
and matched in a collection of flow records. The goal of this project is to
research the various filter/query languages used by tools or proposed in

the literature and to extract a common basis for a new orthogonal flow
record query language. We present research motivation and state of the

art in this paper.

Key words: NetFlow, IPFIX, network traffic analysis, query language

1 Introduction

The analysis of network traffic and more specifically Internet traffic has become
an important area of research. Cisco has designed the Netflow /IPFIX protocol [1,
2], which allows to create a summary for the traffic flows that traverse a router.
A network flow is defined as an unidirectional sequence of packets between given
source and destination endpoints. Flow records include details such as IP ad-
dresses, packet and byte counts, timestamps, Type of Service (ToS), application
ports, input and output interfaces, etc. Network elements (routers and switches)
gather flow data and export it to collectors for analysis.

Although the flow records carried by NetFlow/IPFIX provide aggregated in-
formation about the packets traversing a specific router, this information still
contains too many details for network administrators and is not useful unless
processed by network analysis tools. Most of the existent tools provide mech-
anisms for selecting specific flows in a collection of flow records. This makes
possible some simple tasks like filtering by an IP address or port number or
generating Top N talkers reports. However, identifying more complex flow pat-
terns resembles a search for a pin in a haystack. In order to describe complex
traffic patterns and match a collection of flow records against the description,
one needs a useful flow record query language.

The rest of this paper is structured as follows: Section 2 presents the state
of the art in query languages used by network analysis tools. In Section 3, we
present the research motivation for a new filter/query language and we conclude
in Section 4.

2 State of The Art in Query/Filter Languages

Several early implementations of network analysis tools used a Relational Database
Management System (RDBMS) to store the data contained in flow records and
therefore they use SQL-based query languages for selecting flows.

B.Nickless [3] describes a system which uses standard MySQL and Oracle
DBMS for storing the attributes from NetFlow records. Using powerful SQL
queries, the tool was able to provide good support for basic intrusion detection
and usage statistics. With the advance of high-speed links, however, network
managers could not rely on pure DBMS anymore because of performance issues.
There was also a semantic mismatch between the traffic analysis operations and
the operations supported by the commercial DBMS. The data used by network
analysis applications can be best modeled as transient data streams as opposed to
the persistent relational data model used by traditional DBMS. It is recognized
that continuous queries, approximation and adaptivity are some key features that
are common for such stream applications. However, none of these is supported
by standard DBMS. Based on these requirements B.Babcock et al. [4] propose
the design of a Data Stream Management System (DSMS). Together with the
model the authors also extend the SQL query language so that the DSMS can
be queried over time and provide examples of network traffic reports that are
generated based on flow data that is stored in such a DSMS. Gigascope [5] is
another stream database for network monitoring applications. It uses GSQL for
query and filtering which is yet another modification of the SQL query language
adopted in a way so that time windows can be defined inside the query. Tribeca
[6] is another extensible, stream-oriented DBMS designed to support network
traffic analysis. It is optimized to analyze streams coming from the network in
real time as well as offline traces. It defines its own stream query language which
supports operations such as projection, selection, aggregation, multiplexing and
demultiplexing of streams based on stream attributes. The query language also
defines a windowing mechanism to select a timeframe for the analysis.

The Berkeley Packet Filter (BPF) [7] specifies simple rules which are widely
used among network analysis tools to filter a stream of packets. BPF allows
users to construct simple logical expressions for filtering network traces by IP
address, port number, protocol etc. and translates them into a small program
executed by a generic packet filtering engine. One popular use of the BPF is in
the tcpdump utility. The BPF rules for constructing filter expressions are also
used in nfdump [8], which is a powerful and fast filter engine used to analyze
network flow records. nfdump is currently one of the de facto standard tools for
analyzing NetFlow data and generating reports. BPF expressions are also used
in the CoralReef network analysis tool described in [9,10] in order to generate
traffic reports from collected trace files. The Time Machine tool described in
[11] uses BPF expressions to define classes of traffic and BPF is also part of the
query language used by the engine for retrieval of interesting traffic.

The flow-tools package [12] is another widely-used collection of applica-
tions for collecting and analyzing NetFlow data. Two of the flow-tools appli-
cations are responsible for filtering flows and generating reports: flow-filter

and flow-report. The former application uses the Cisco Access Control List
(ACL) format to specify a filter for IP addresses and command line arguments
for specifying other filtering parameters such as port numbers, ASes etc. The
latter uses a configuration file where reports can be defined by using a number
of primitives.

FlowScan described in [13] is a collection of perl scripts which glues together
a flow-collection engine such as the flow-capture application from flow-tools,
a high performance RRD database, which is specifically designed for time series
data [14], and a visualization tool. FlowScan has the capability of generating
powerful high-level traffic reports, which might help operators to detect interest-
ing traffic patterns. However, reports must be specified as separate perl modules,
which is not trivial and might involve some heavy scripting.

C.Estan et al. [15] proposes an approach for detecting high-level traffic pat-
terns by aggregating NetFlow records in clusters based on the flow record at-
tributes. Aggregation on several flow attributes results in a multidimensional
cluster. Initially all possible multidimensional clusters are constructed. Then
an algorithm is executed which selects only clusters that are interesting to the
network administrator. It aims at retaining clusters with the least degree of ag-
gregation (so that a bigger number of flow attributes is contained). Interesting
activities are considered to be exceeding a certain threshold of traffic volume of
a cluster or significant change of the traffic volume inside the cluster. Finally,
all clusters are prioritized by being tagged with a degree of unezrpectedness and
presented to the network administrator as a traffic report.

The SiLK Analysis Suite [16] is another script-based collection of command-
line tools for querying NetFlow data. It provides its own primitives for defining
filtering expressions. Unlike other network analysis tools, SiLK contains two
applications that allow an analyst to label a set of flows sharing common at-
tributes with an identifier. The rwgroup tool walks through a file of flow records
and groups records that have common attributes, such as source/destination IP
pairs. This tool allows an analyst to group together all flows in a long lived ses-
sion such as a FTP connection. rumatch creates matched groups, which consist
of an initial record (a query) followed by one or more responses. Its most basic
use is to group records into both sides of a bidirectional session, such as a HT' TP
request. From the huge collection of tools that we have surveyed SiLK is the only
one, which is capable of declaring some correlation between flows. Therefore, we
believe that it might serve as a good basis for a new flow query language.

A summary of the query languages used by the various network traffic anal-
ysis tools is presented in Table 1.

3 Research Issues

Given the large number of flow records collected on high-speed networks, it is
necessary to reduce their number to a comprehensible scale using filtering and
aggregation mechanisms. Each flow or aggregated flow has a set of properties
attached to it that characterize the flow. It is to be expected that flows that

Table 1. Query languages used by network traffic analysis tools

| Tool [Query Language | Input Data Format
B.Nickless et. al. [3] SQL RDBMS
B.Babcock et. al. [4]| extended SQL DSMS
Gigascope GSQL DSMS
Tribeca proprietary DSMS
tcpdump BPF pcap files
nfdump BPF nfcapd raw NetFlow files
CoralReef BPF pcap and crl files
Time Machine BPF indexed pcap files
Flow-Tools ACL /proprietary flow-capture raw NetFlow files
FlowScan perl script flow-capture raw NetFlow files
AutoFocus proprietary |packet header traces/raw NetFlow files
SiLK proprietary raw NetFlow files

correspond to similar network activities (certain applications or certain attacks)
have similar properties. In addition to the properties recorded in flow records,
one can derive further properties that are even more suitable to characterize
the behavior of a flows. One objective when investigating traces is to detect
regularities such as repeating patterns. These patterns typically spread over
several flows. For example, if an intensity peak in flow X always occurs after an
intensity peak in flow Y with a fixed delay, they form a pattern describing a
certain network behavior. The goal of network administrators is to detect such
patterns of correlated flows.

For example, one would be interested in finding out where, when, and how
often a certain Internet service is used. A concrete scenario is a network admin-
istrator who wants to detect VolIP applications by finding STUN flows generated
by VoIP applications when they try to discover whether they are located behind
a Network Address Translator (NAT). If one knew the pattern that is created
when a service is trying to establish a connection, one could search for this
specific pattern in the selected flows.

The goal of this project is to design a flow record query language, which
allows to describe patterns in a declarative and easy to understand way. The
language should be able to define filter expressions (needed to select relevant
flows) and relationships (needed to relate selected flows). Another requirement
is that it should be possible to express causal dependencies between flows as well
as timing and concurrency constraints. Existent query languages as discussed in
Section 2 are not suitable for detecting complex traffic patterns because of either
performance issues (SQL-based query languages) or because they lack a time
and concurrency dimension (BPF expressions and the other query languages
we discussed). Furthermore, the new query language should provide support for
network specific aggregation functions, such as IP address prefix aggregation, IP
address suffix aggregation, port number range aggregations, etc. which are not
part of many standard query languages.

4

Conclusions

We presented the state of the art in query languages used by network traffic
analysis tools and motivated the need for developing a new declarative language
that allows to define and identify high level traffic patterns in a collection of
network flow records. We plan to collect a comprehensive set of interesting traffic
patterns from network operators and base our new query language on the needs
to express these patterns.

Acknowledgement

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (October
2004

Clais)e, B.: Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (January 2008)

Nickless, B.: Combining Cisco NetFlow Exports with Relational Database Tech-
nology for Usage Statistics, Intrusion Detection, and Network Forensics. In: Proc.
of LISA’00, USENIX Association (2000) 285-290

Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
Data Stream Systems. In: Proc. of PODS’02, ACM (2002) 1-16

. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: A Stream

Database for Network Applications. In: Proc. of SIGMOD’03, ACM (2003) 647-651
Sullivan, M., Heybey, A.: Tribeca: a System for Managing Large Databases of
Network Traffic. In: Proc. of ATEC’98, USENIX Association (1998) 13-24
McCanne, S., Jacobson, V.: The BSD Packet Filter: A New Architecture for User-
level Packet Capture. In: Proc. of USENIX’93, USENIX Association (1993) 259—
270

: nfdump, http://nfdump.sourceforge.net/

Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.: The Coral Reef Software
Suite as a Tool for System and Network Administration. In: Proc. of LISA XV,
USENIX Association (2001) 133-144

Ken Keys and David Moore and Ryan Koga and Edouard Lagache and Michael
Tesch and KC. Claffy: The Architecture of CoralReef: an Internet Traffic Moni-
toring Software Suite. In: Proc. of PAM’01, CAIDA, RIPE NCC (April 2001)
Kornexl, S., Paxson, V., Dreger, H., Feldmann, A., Sommer, R.: Building a Time
Machine for Efficient Recording and Retrieval of High-Volume Network Traffic. In:
Proc. of IMC’05, USENIX Association (2005)

: flow-tools, http://www.splintered.net/sw/flow-tools/

Plonka, D.: FlowScan: A Network Traffic Flow Reporting and Visualization Tool.
In: Proc. of LISA’00, USENIX Association (2000) 305-318

: Rrdtool, http://oss.oetiker.ch/rrdtool/

Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource
Consumption in Network Traffic. In: Proc. of SIGCOMM’03, ACM (2003) 137-148
Michael Collins, Andrew Kompanek, Timothy Shimeall: Analysts Handbook: Using
SiLK for Network Traffic Analysis. CERT. 0.10.3 edn. (November 2006)

